1
|
Dufil G, Bernacka-Wojcik I, Armada-Moreira A, Stavrinidou E. Plant Bioelectronics and Biohybrids: The Growing Contribution of Organic Electronic and Carbon-Based Materials. Chem Rev 2022; 122:4847-4883. [PMID: 34928592 PMCID: PMC8874897 DOI: 10.1021/acs.chemrev.1c00525] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Life in our planet is highly dependent on plants as they are the primary source of food, regulators of the atmosphere, and providers of a variety of materials. In this work, we review the progress on bioelectronic devices for plants and biohybrid systems based on plants, therefore discussing advancements that view plants either from a biological or a technological perspective, respectively. We give an overview on wearable and implantable bioelectronic devices for monitoring and modulating plant physiology that can be used as tools in basic plant science or find application in agriculture. Furthermore, we discuss plant-wearable devices for monitoring a plant's microenvironment that will enable optimization of growth conditions. The review then covers plant biohybrid systems where plants are an integral part of devices or are converted to devices upon functionalization with smart materials, including self-organized electronics, plant nanobionics, and energy applications. The review focuses on advancements based on organic electronic and carbon-based materials and discusses opportunities, challenges, as well as future steps.
Collapse
Affiliation(s)
- Gwennaël Dufil
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Iwona Bernacka-Wojcik
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Adam Armada-Moreira
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg
Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
- Umeå
Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Campus Umeå, SE-901 83 Umeå, Sweden
| |
Collapse
|
2
|
Yanagisawa N, Kozgunova E, Grossmann G, Geitmann A, Higashiyama T. Microfluidics-Based Bioassays and Imaging of Plant Cells. PLANT & CELL PHYSIOLOGY 2021; 62:1239-1250. [PMID: 34027549 PMCID: PMC8579190 DOI: 10.1093/pcp/pcab067] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 05/03/2023]
Abstract
Many plant processes occur in the context of and in interaction with a surrounding matrix such as soil (e.g. root growth and root-microbe interactions) or surrounding tissues (e.g. pollen tube growth through the pistil), making it difficult to study them with high-resolution optical microscopy. Over the past decade, microfabrication techniques have been developed to produce experimental systems that allow researchers to examine cell behavior in microstructured environments that mimic geometrical, physical and/or chemical aspects of the natural growth matrices and that cannot be generated using traditional agar plate assays. These microfabricated environments offer considerable design flexibility as well as the transparency required for high-resolution, light-based microscopy. In addition, microfluidic platforms have been used for various types of bioassays, including cellular force assays, chemoattraction assays and electrotropism assays. Here, we review the recent use of microfluidic devices to study plant cells and organs, including plant roots, root hairs, moss protonemata and pollen tubes. The increasing adoption of microfabrication techniques by the plant science community may transform our approaches to investigating how individual plant cells sense and respond to changes in the physical and chemical environment.
Collapse
Affiliation(s)
- Naoki Yanagisawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Elena Kozgunova
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Schänzlestr. 1, Freiburg, Baden-Württemberg 79104, Germany
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf 40225, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Baden-Württemberg 69120, Germany
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Québec H9X 3V9, Canada
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Maltodextrin-modified graphene oxide for improved enantiomeric separation of six basic chiral drugs by open-tubular capillary electrochromatography. Mikrochim Acta 2019; 187:55. [DOI: 10.1007/s00604-019-4037-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
4
|
Macagno J, Lescano MR, Berli CLA. Milli-channel array for direct and quick reading of root elongation bioassays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:51-57. [PMID: 30991247 DOI: 10.1016/j.ecoenv.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
A novel platform to perform systematic analysis and direct reading of root elongation bioassays is presented. The device was designed to include multiplexed microenvironments for the germination and growth of individual seeds, which allows observation by the naked eye or by optical systems, notably cellphone cameras. Prototypes were fabricated by laser micromachining on a highly transparent material that is fully compatible with biological systems. The effectiveness of the milli-channel array was verified against the conventional system (Petri dish). Lactuca sativa was chosen as a model species and glyphosate as a typical toxic agent. All tests were run according to standardized procedures and data analysis was carried out through different statistical indicators such as the root elongation and germination indexes. Results attained in the milli-channel array were identical to those in Petri dish, with the remarkable benefit that several steps required in the conventional system were avoided, which enormously decreases the operation time and the possibility of experimental errors. Further advantages of the milli-channel array are also reported, such as the capability to achieve live imaging of plant organs growth through a simple experiment. The developed device has been proven to be effective, versatile, easy-to-use, and integrable to cellphones, which naturally provide facilities for data recording, analysis, and networking. These improvements open the route to novel applications of bioassays in the wide field of ecotoxicology and environmental studies.
Collapse
Affiliation(s)
- Joana Macagno
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Maia R Lescano
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina
| | - Claudio L A Berli
- INTEC (Universidad Nacional del Litoral-CONICET), Predio CCT-CONICET, RN 168, 3000, Santa Fe, Argentina.
| |
Collapse
|
5
|
Fromm H. Root Plasticity in the Pursuit of Water. PLANTS (BASEL, SWITZERLAND) 2019; 8:E236. [PMID: 31336579 PMCID: PMC6681320 DOI: 10.3390/plants8070236] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/22/2023]
Abstract
One of the greatest challenges of terrestrial vegetation is to acquire water through soil-grown roots. Owing to the scarcity of high-quality water in the soil and the environment's spatial heterogeneity and temporal variability, ranging from extreme flooding to drought, roots have evolutionarily acquired tremendous plasticity regarding their geometric arrangement of individual roots and their three-dimensional organization within the soil. Water deficiency has also become an increasing threat to agriculture and dryland ecosystems due to climate change. As a result, roots have become important targets for genetic selection and modification in an effort to improve crop resilience under water-limiting conditions. This review addresses root plasticity from different angles: Their structures and geometry in response to the environment, potential genetic control of root traits suitable for water-limiting conditions, and contemporary and future studies of the principles underlying root plasticity post-Darwin's 'root-brain' hypothesis. Our increasing knowledge of different disciplines of plant sciences and agriculture should contribute to a sustainable management of natural and agricultural ecosystems for the future of mankind.
Collapse
Affiliation(s)
- Hillel Fromm
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Khan Z, Karamahmutoğlu H, Elitaş M, Yüce M, Budak H. THROUGH THE LOOKING GLASS: Real-Time Imaging in Brachypodium Roots and Osmotic Stress Analysis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E14. [PMID: 30625995 PMCID: PMC6358813 DOI: 10.3390/plants8010014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/23/2018] [Accepted: 01/04/2019] [Indexed: 01/01/2023]
Abstract
To elucidate dynamic developmental processes in plants, live tissues and organs must be visualised frequently and for extended periods. The development of roots is studied at a cellular resolution not only to comprehend the basic processes fundamental to maintenance and pattern formation but also study stress tolerance adaptation in plants. Despite technological advancements, maintaining continuous access to samples and simultaneously preserving their morphological structures and physiological conditions without causing damage presents hindrances in the measurement, visualisation and analyses of growing organs including plant roots. We propose a preliminary system which integrates the optical real-time visualisation through light microscopy with a liquid culture which enables us to image at the tissue and cellular level horizontally growing Brachypodium roots every few minutes and up to 24 h. We describe a simple setup which can be used to track the growth of the root as it grows including the root tip growth and osmotic stress dynamics. We demonstrate the system's capability to scale down the PEG-mediated osmotic stress analysis and collected data on gene expression under osmotic stress.
Collapse
Affiliation(s)
- Zaeema Khan
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Hande Karamahmutoğlu
- Mechatronics Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Meltem Elitaş
- Mechatronics Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul 34956, Turkey.
| | - Hikmet Budak
- Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
7
|
Zhang Q, Sito L, Mao M, He J, Zhang YS, Zhao X. Current advances in skin-on-a-chip models for drug testing. ACTA ACUST UNITED AC 2018; 2. [PMID: 33521629 DOI: 10.21037/mps.2018.08.01] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin-on-a-chip models are highly desirable in drug testing compared to conventional 2D cell culture and animal models as they can replicate organ-specific 3D structural organization and physiological functions at a relatively low cost. To engineer a physiologically relevant skin model, human skin structures have been integrated onto microfluidic platforms to construct skin-on-a-chip systems that can mimic the complex in vivo situation. In this mini-review, we first briefly introduce some critical technologies employed to develop in vitro skin-on-a-chip models. We then review the applications of the state-of-the-art skin-on-a-chip models in drug testing, with a focus on using models of full-thickness skin equivalents (FTSEs), skin models with additional components such as vasculature, immune cells and hair follicles as well as multi-organ-on-a-chip models. Finally, we discuss some current challenges and future directions of development of complex, and in vivo-like skin-on-a-chip models.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Linda Sito
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Mao Mao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.,State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| |
Collapse
|