1
|
Lallouet M, Olçomendy L, Gaitan J, Montiège K, Monchablon M, Pirog A, Chapeau D, Puginier E, Renaud S, Raoux M, Lang J. A microfluidic twin islets-on-chip device for on-line electrophysiological monitoring. LAB ON A CHIP 2025; 25:1831-1841. [PMID: 40042033 DOI: 10.1039/d4lc00967c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pancreatic islets play a major role in glucose homeostasis as well as in diabetes, and islets-on-chip devices have been mainly developed using optical means for on-line monitoring. In contrast, no well-characterized electrophysiological platform for on-line analysis with unrivalled temporal resolution has been reported. Extracellular electrophysiology monitors two crucial parameters, islet β-cell activity and β-to-β-cell coupling, does not require chemical or genetic probes with inherent potential bias, is non-invasive and permits repetitive long-term monitoring. We have now developed and characterized a microfluidic islets-on-chip for combined electrophysiology (on-line) and hormone monitoring (off-line) with two chambers for concomitant monitoring. Fabrication of the device, based on commercial or easily manufacturable components, is within the reach of non-specialized laboratories. The chip permits convenient loading as well as long-term culture with comparable glucose kinetics and low shear stress in both chambers. An optimized flow rate did not alter islet β-cell electrical activity or coupling in response to glucose. Culturing for up to 8 days did not change islet survival as well as glucose-induced electrical or secretory kinetics of islet β-cells. The addition of a physiological amino acid mix, in the presence of elevated glucose, made a considerable change in the functional organisation of islet β-cell activity in terms of frequency and coupling, which explains the ensuing strong increase in insulin secretion. This device thus allows reliable long-term multiparametric on-line monitoring in two islet populations. The ease of fabrication, assembly and handling should permit widespread long-term on-line monitoring of islet activity in native micro-organs (e.g. controls/mutants), pseudo-islets or stem-cell-derived islet-like organoids.
Collapse
Affiliation(s)
- Marie Lallouet
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Loic Olçomendy
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Julien Gaitan
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Killian Montiège
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Marie Monchablon
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Antoine Pirog
- Junia, Electronics-Physics-Acoustics Department, F-59000 Lille, France
| | - Dorian Chapeau
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Emilie Puginier
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Sylvie Renaud
- Univ. Bordeaux, CNRS, Bordeaux INP, Integration from Material to System, IMS, UMR 5218, F-33400 Talence, France
| | - Matthieu Raoux
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| | - Jochen Lang
- Univ. Bordeaux, CNRS, Bordeaux INP, Institute of Chemistry and Biology of Membranes, CBMN, UMR 5248, Pessac, France.
| |
Collapse
|
2
|
Adeoye DI, Masitas RA, Thornham J, Meng X, Steyer DJ, Roper MG. Droplet-based fluorescence anisotropy insulin immunoassay. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7908-7914. [PMID: 39431529 PMCID: PMC11492383 DOI: 10.1039/d4ay01511h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Over the last several decades, multiple microfluidic platforms have been used for measurement of hormone secretion from islets of Langerhans. Most have used continuous flow systems where mixing of hormones with assay reagents is governed by diffusion, leading to long mixing times, especially for biomolecules like peptides and proteins which have large diffusion coefficients. Consequently, dispersion of rapidly changing signals can occur, reducing temporal resolution. Droplet microfluidic systems can be used to capture reagents into individual reactors, limiting dispersion and improving temporal resolution. In this study, we integrated a fluorescence anisotropy (FA) immunoassay (IA) for insulin into a droplet microfluidic system. Insulin IA reagents were mixed online with insulin and captured quickly into droplets prior to passing through a 200 mm incubation channel. Double etching of the glass device was used to increase the depth of the incubation channel compared to the IA channels to maintain proper flow of reagents. The droplet system produced highly precise FA results with relative standard deviations < 2% at all insulin concentrations tested, whereas the absolute fluorescence intensity precisions ranged between 5 and 6%. A limit of detection of 3 nM for insulin was obtained, similar to those found in conventional flow systems. The advantage of the system was in the increased temporal resolution using the droplet system where a 9.8 ± 2.6 s response time was obtained, faster than previously reported continuous flow systems. The improved temporal resolution aligns with continued efforts to resolve rapid signaling events in pancreatic islet biology.
Collapse
Affiliation(s)
- Damilola I Adeoye
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Rafael A Masitas
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - James Thornham
- Program in Molecular Biophysics, Florida State University, USA
| | - Xiangyue Meng
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Daniel J Steyer
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
- Program in Molecular Biophysics, Florida State University, USA
| |
Collapse
|
3
|
Thornham J, Bertram R, Roper MG. Unveiling islet heterogeneity using an automated microfluidic imaging system. Sci Rep 2024; 14:24707. [PMID: 39433829 PMCID: PMC11493968 DOI: 10.1038/s41598-024-75340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Islets of Langerhans are a therapeutic target for diabetes and prediabetes. Measurements of therapeutic inhibitory or excitatory concentrations are often performed using large groups of islets, however, the population heterogeneity cannot be observed when examining the ensemble response. Normal islet function and islet response to therapeutic treatment can be affected by islet heterogeneity, influencing the progression of diabetes mellitus. To identify heterogeneity in an islet population, we developed a simple microfluidic device capable of delivering a stimulant to four independent chambers, allowing measurements of individual responses from a population of 20-25 islets. The device enabled accurate delivery of the same stimulant concentration to all four chambers, with an error <1% between chambers. To demonstrate the capability of this system, ensemble and individual EC/IC[Formula: see text] measurements of glucose and diazoxide were performed on murine islets. Results showed little heterogeneity of glucose EC[Formula: see text] values with all 21 islets within ± 0.6 mM of the ensemble value of 7.4 mM. In contrast, application of diazoxide to 24 islets in the presence of 20 mM glucose resulted in 37% of islets having an IC[Formula: see text] greater than 10% from the ensemble value of 10.2 μM. The simple system developed here is amenable to further studies on islet heterogeneity, and is applicable to investigate heterogeneity in other cell types.
Collapse
Affiliation(s)
- James Thornham
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA
| | - Richard Bertram
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
- Program of Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael G Roper
- Program in Molecular Biophysics, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32304, USA.
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
4
|
Wang Y, Skinner EL, Roper MG. Comparison between capillary electrophoresis and fluorescence anisotropy competitive immunoassay for glucagon. Electrophoresis 2024; 45:1692-1700. [PMID: 38984929 PMCID: PMC11502243 DOI: 10.1002/elps.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Glucagon plays a crucial role in regulating glucose homeostasis; unfortunately, the mechanisms controlling its release are still unclear. Capillary electrophoresis (CE)- and fluorescence anisotropy (FA)-immunoassays (IA) have been used for online measurements of hormone secretion on microfluidic platforms, although their use in glucagon assays is less common. We set out to compare a glucagon-competitive IA using these two techniques. Theoretical calibration curves were generated for both CE- and FA-IA and results indicated that CE-IA provided higher sensitivity than FA-IA. These results were confirmed in an experiment where both assays showed limits of detection (LOD) of 30 nM, but the CE-IA had ∼300-fold larger sensitivity from 0 to 200 nM glucagon. However, in online experiments where reagents were mixed within the device, the sensitivity of the CE-IA was reduced ∼3-fold resulting in a higher LOD of 70 nM, whereas the FA-IA remained essentially unchanged. This lowered sensitivity in the online CE-IA was likely due to poor sampling by electroosmotic flow from the high salt solution necessary in online experiments, whereas pressure-based sampling used in FA-IA was not affected. We conclude that FA-IA, despite lowered sensitivity, is more suitable for online mixing scenarios due to the ability to use pressure-driven flow and other practical advantages such as the use of larger channels.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Emily L. Skinner
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306
| |
Collapse
|
5
|
de Hoyos-Vega JM, Gonzalez-Suarez AM, Cedillo-Alcantar DF, Stybayeva G, Matveyenko A, Malhi H, Garcia-Cordero JL, Revzin A. Microfluidic 3D hepatic cultures integrated with a droplet-based bioanalysis unit. Biosens Bioelectron 2024; 248:115896. [PMID: 38176252 PMCID: PMC10916504 DOI: 10.1016/j.bios.2023.115896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
A common challenge in microfluidic cell cultures has to do with analysis of cell function without replacing a significant fraction of the culture volume and disturbing local concentration gradients of signals. To address this challenge, we developed a microfluidic cell culture device with an integrated bioanalysis unit to enable on-chip analysis of picoliter volumes of cell-conditioned media. The culture module consisted of an array of 140 microwells with a diameter of 300 m which were made low-binding to promote organization of cells into 3D spheroids. The bioanalysis module contained a droplet generator unit, 15 micromechanical valves and reservoirs loaded with reagents. Each 0.8 nL droplet contained an aliquot of conditioned media mixed with assay reagents. The use of microvalves allowed us to load enzymatic assay and immunoassay into sequentially generated droplets for detection of glucose and albumin, respectively. As a biological application of the microfluidic device, we evaluated hormonal stimulation and glucose consumption of hepatic spheroids. To mimic physiological processes occurring during feeding and fasting, hepatic spheroids were exposed to pancreatic hormones, insulin or glucagon. The droplet-based bioanalysis module was used to measure uptake or release of glucose upon hormonal stimulation. In the future, we intend to use this microfluidic device to mimic and measure pathophysiological processes associated with hepatic insulin resistance and diabetes in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Jose M de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | - Diana F Cedillo-Alcantar
- Laboratory of Microtechnologies Applied to Biomedicine, Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, MN, USA
| | - Jose L Garcia-Cordero
- Laboratory of Microtechnologies Applied to Biomedicine, Centro de Investigación y de Estudios Avanzados (Cinvestav), Monterrey, NL, Mexico
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Regeenes R, Rocheleau JV. Twenty years of islet-on-a-chip: microfluidic tools for dissecting islet metabolism and function. LAB ON A CHIP 2024; 24:1327-1350. [PMID: 38277011 DOI: 10.1039/d3lc00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Pancreatic islets are metabolically active micron-sized tissues responsible for controlling blood glucose through the secretion of insulin and glucagon. A loss of functional islet mass results in type 1 and 2 diabetes. Islet-on-a-chip devices are powerful microfluidic tools used to trap and study living ex vivo human and murine pancreatic islets and potentially stem cell-derived islet organoids. Devices developed over the past twenty years offer the ability to treat islets with controlled and dynamic microenvironments to mimic in vivo conditions and facilitate diabetes research. In this review, we explore the various islet-on-a-chip devices used to immobilize islets, regulate the microenvironment, and dynamically detect islet metabolism and insulin secretion. We first describe and assess the various methods used to immobilize islets including chambers, dam-walls, and hydrodynamic traps. We subsequently describe the surrounding methods used to create glucose gradients, enhance the reaggregation of dispersed islets, and control the microenvironment of stem cell-derived islet organoids. We focus on the various methods used to measure insulin secretion including capillary electrophoresis, droplet microfluidics, off-chip ELISAs, and on-chip fluorescence anisotropy immunoassays. Additionally, we delve into the various multiparametric readouts (NAD(P)H, Ca2+-activity, and O2-consumption rate) achieved primarily by adopting a microscopy-compatible optical window into the devices. By critical assessment of these advancements, we aim to inspire the development of new devices by the microfluidics community and accelerate the adoption of islet-on-a-chip devices by the wider diabetes research and clinical communities.
Collapse
Affiliation(s)
- Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Departments of Medicine and Physiology, University of Toronto, ON, Canada
| |
Collapse
|
7
|
Wang Y, Regeenes R, Memon M, Rocheleau JV. Insulin C-peptide secretion on-a-chip to measure the dynamics of secretion and metabolism from individual islets. CELL REPORTS METHODS 2023; 3:100602. [PMID: 37820726 PMCID: PMC10626205 DOI: 10.1016/j.crmeth.2023.100602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/16/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
First-phase glucose-stimulated insulin secretion is mechanistically linked to type 2 diabetes, yet the underlying metabolism is difficult to discern due to significant islet-to-islet variability. Here, we miniaturize a fluorescence anisotropy immunoassay onto a microfluidic device to measure C-peptide secretion from individual islets as a surrogate for insulin (InsC-chip). This method measures secretion from up to four islets at a time with ∼7 s resolution while providing an optical window for real-time live-cell imaging. Using the InsC-chip, we reveal two glucose-dependent peaks of insulin secretion (i.e., a double peak) within the classically defined 1st phase (<10 min). By combining real-time secretion and live-cell imaging, we show islets transition from glycolytic to oxidative phosphorylation (OxPhos)-driven metabolism at the nadir of the peaks. Overall, these data validate the InsC-chip to measure glucose-stimulated insulin secretion while revealing new dynamics in secretion defined by a shift in glucose metabolism.
Collapse
Affiliation(s)
- Yufeng Wang
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Romario Regeenes
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Mahnoor Memon
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Jonathan V Rocheleau
- Advanced Diagnostics, Toronto General Hospital Research Institute, Toronto, ON M5G 1L7, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Departments of Medicine and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
8
|
Thoduvayil S, Weerakkody JS, Sundaram RVK, Topper M, Bera M, Coleman J, Li X, Mariappan M, Ramakrishnan S. Rapid Quantification of First and Second Phase Insulin Secretion Dynamics using an In vitro Platform for Improving Insulin Therapy. Cell Calcium 2023; 113:102766. [PMID: 37295201 PMCID: PMC10450995 DOI: 10.1016/j.ceca.2023.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
High-throughput quantification of the first- and second-phase insulin secretion dynamics is intractable with current methods. The fact that independent secretion phases play distinct roles in metabolism necessitates partitioning them separately and performing high-throughput compound screening to target them individually. We developed an insulin-nanoluc luciferase reporter system to dissect the molecular and cellular pathways involved in the separate phases of insulin secretion. We validated this method through genetic studies, including knockdown and overexpression, as well as small-molecule screening and their effects on insulin secretion. Furthermore, we demonstrated that the results of this method are well correlated with those of single-vesicle exocytosis experiments conducted on live cells, providing a quantitative reference for the approach. Thus, we have developed a robust methodology for screening small molecules and cellular pathways that target specific phases of insulin secretion, resulting in a better understanding of insulin secretion, which in turn will result in a more effective insulin therapy through the stimulation of endogenous glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Sikha Thoduvayil
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Mackenzie Topper
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Xia Li
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Malaiyalam Mariappan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520 USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516 USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
9
|
Adeoye DI, Wang Y, Davis JJ, Roper MG. Automated cellular stimulation with integrated pneumatic valves and fluidic capacitors. Analyst 2023; 148:1227-1234. [PMID: 36786685 PMCID: PMC10023383 DOI: 10.1039/d2an01985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Microfluidic technologies have proven to be a reliable tool in profiling dynamic insulin secretion from islets of Langerhans. Most of these systems rely on external pressure sources to induce flow, leading to difficulties moving to more elaborate systems. To reduce complexity, a microfluidic system was developed that used a single vacuum source at the outlet to drive fluidic transport of immunoassay reagents and stimulation solutions throughout the device. A downside to this approach is the lack of flow control over the reagents delivered to the islet chamber. To address this challenge, 4-layer pneumatic valves were integrated into the perfusion lines to automate and control the delivery of stimulants; however, it was found that as the valves closed, spikes in the flow would lead to abnormal insulin secretion profiles. Fluidic capacitors were then incorporated after the valves and found to remove the spikes. The combination of the valves and capacitors resulted in automated collection of insulin secretion profiles from single murine islets that were similar to those previously reported in the literature. In the future, these integrated fluidic components may enable more complex channel designs to be used with a relatively simple flow control solution.
Collapse
Affiliation(s)
- Damilola I Adeoye
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Yao Wang
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Joshua J Davis
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA.
| | - Michael G Roper
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA. .,Program in Molecular Biophysics, Florida State University, 95 Chieftain Way, Tallahassee, FL 32306, USA
| |
Collapse
|
10
|
Shinde A, Illath K, Kasiviswanathan U, Nagabooshanam S, Gupta P, Dey K, Chakrabarty P, Nagai M, Rao S, Kar S, Santra TS. Recent Advances of Biosensor-Integrated Organ-on-a-Chip Technologies for Diagnostics and Therapeutics. Anal Chem 2023; 95:3121-3146. [PMID: 36716428 DOI: 10.1021/acs.analchem.2c05036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Uvanesh Kasiviswanathan
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Shalini Nagabooshanam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Koyel Dey
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pulasta Chakrabarty
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Suresh Rao
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srabani Kar
- Department of Physics, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
11
|
Li W, Peng YF. Advances in microfluidic chips based on islet hormone-sensing techniques. World J Diabetes 2023; 14:17-25. [PMID: 36684385 PMCID: PMC9850799 DOI: 10.4239/wjd.v14.i1.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/11/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetes mellitus is a global health problem resulting from islet dysfunction or insulin resistance. The mechanisms of islet dysfunction are still under investigation. Islet hormone secretion is the main function of islets, and serves an important role in the homeostasis of blood glucose. Elucidating the detailed mechanism of islet hormone secretome distortion can provide clues for the treatment of diabetes. Therefore, it is crucial to develop accurate, real-time, labor-saving, high-throughput, automated, and cost-effective techniques for the sensing of islet secretome. Microfluidic chips, an elegant platform that combines biology, engineering, computer science, and biomaterials, have attracted tremendous interest from scientists in the field of diabetes worldwide. These tiny devices are miniatures of traditional experimental systems with more advantages of time-saving, reagent-minimization, automation, high-throughput, and online detection. These features of microfluidic chips meet the demands of islet secretome analysis and a variety of chips have been designed in the past 20 years. In this review, we present a brief introduction of microfluidic chips, and three microfluidic chips-based islet hormone sensing techniques. We focus mainly on the theory of these techniques, and provide detailed examples based on these theories with the hope of providing some insights into the design of future chips or whole detection systems.
Collapse
Affiliation(s)
- Wei Li
- Department of Endocrinology, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
| | - You-Fan Peng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Lapizco-Encinas BH, Zhang YV. Microfluidic systems in clinical diagnosis. Electrophoresis 2023; 44:217-245. [PMID: 35977346 DOI: 10.1002/elps.202200150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/01/2023]
Abstract
The use of microfluidic devices is highly attractive in the field of biomedical and clinical assessments, as their portability and fast response time have become crucial in providing opportune therapeutic treatments to patients. The applications of microfluidics in clinical diagnosis and point-of-care devices are continuously growing. The present review article discusses three main fields where miniaturized devices are successfully employed in clinical applications. The quantification of ions, sugars, and small metabolites is examined considering the analysis of bodily fluids samples and the quantification of this type of analytes employing real-time wearable devices. The discussion covers the level of maturity that the devices have reached as well as cost-effectiveness. The analysis of proteins with clinical relevance is presented and organized by the function of the proteins. The last section covers devices that can perform single-cell metabolomic and proteomic assessments. Each section discusses several strategically selected recent reports on microfluidic devices successfully employed for clinical assessments, to provide the reader with a wide overview of the plethora of novel systems and microdevices developed in the last 5 years. In each section, the novel aspects and main contributions of each reviewed report are highlighted. Finally, the conclusions and future outlook section present a summary and speculate on the future direction of the field of miniaturized devices for clinical applications.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, New York, USA
| | - Yan Victoria Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Increasing insulin measurement throughput by fluorescence anisotropy imaging immunoassays. Anal Chim Acta 2022; 1212:339942. [DOI: 10.1016/j.aca.2022.339942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
|
14
|
Moser MR, Smith CM, Gutierrez GG, Baker CA. 3D Printed Instrument for Taylor Dispersion Analysis with Two-Point Laser-Induced Fluorescence Detection. Anal Chem 2022; 94:6089-6096. [PMID: 35417141 DOI: 10.1021/acs.analchem.1c04566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precisely controlling the size of engineered biomolecules and pharmaceutical compounds is often critical to their function. Standard methods for size characterization, such as dynamic light scattering or size exclusion chromatography, can be sample intensive and may not provide the sensitivity needed for mass- or concentration-limited biological systems. Taylor dispersion analysis (TDA) is a proven analytical method for direct, calibration-free size determination which utilizes only nL-pL sample volumes. In TDA, diffusion coefficients, which are mathematically transformed to hydrodynamic radii, are determined by characterizing band broadening of an analyte under well-controlled laminar flow conditions. Here, we describe the design and development of a 3D printed instrument for TDA, which is the first such instrument to offer dual-point laser-induced fluorescence (LIF) detection. The instrument utilized a fully 3D printed eductor as a vacuum source for precise and stable pressure-driven flow within a capillary, evidenced by a linear response in generated static pressure to applied gas pressure (R2 = 0.997) and a 30-fold improvement in stability of static pressure (0.05% RSD) as compared to a standard mechanical pump (1.53%). Design aspects of the LIF detection system were optimized to maximize S/N for excitation and emission optical axes, and high sensitivity was achieved as evidenced by an 80 pM limit of detection for the protein R-Phycoerythrin and low nM limits of detection for three additional fluorophores. The utility of the instrument was demonstrated via sizing of R-Phycoerythrin at pM concentrations.
Collapse
Affiliation(s)
- Meagan R Moser
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States.,Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, New Mexico 88003, United States
| | - Claire M Smith
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, New Mexico 88003, United States
| | - Genoveve G Gutierrez
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, New Mexico 88003, United States
| | - Christopher A Baker
- Department of Chemistry and Biochemistry, New Mexico State University, MSC 3C, P.O. Box 30001, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
15
|
Shi Y, Ye P, Yang K, Meng J, Guo J, Pan Z, Bayin Q, Zhao W. Application of Microfluidics in Immunoassay: Recent Advancements. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:2959843. [PMID: 34326976 PMCID: PMC8302407 DOI: 10.1155/2021/2959843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
In recent years, point-of-care testing has played an important role in immunoassay, biochemical analysis, and molecular diagnosis, especially in low-resource settings. Among various point-of-care-testing platforms, microfluidic chips have many outstanding advantages. Microfluidic chip applies the technology of miniaturizing conventional laboratory which enables the whole biochemical process including reagent loading, reaction, separation, and detection on the microchip. As a result, microfluidic platform has become a hotspot of research in the fields of food safety, health care, and environmental monitoring in the past few decades. Here, the state-of-the-art application of microfluidics in immunoassay in the past decade will be reviewed. According to different driving forces of fluid, microfluidic platform is divided into two parts: passive manipulation and active manipulation. In passive manipulation, we focus on the capillary-driven microfluidics, while in active manipulation, we introduce pressure microfluidics, centrifugal microfluidics, electric microfluidics, optofluidics, magnetic microfluidics, and digital microfluidics. Additionally, within the introduction of each platform, innovation of the methods used and their corresponding performance improvement will be discussed. Ultimately, the shortcomings of different platforms and approaches for improvement will be proposed.
Collapse
Affiliation(s)
- Yuxing Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Peng Ye
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kuojun Yang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jie Meng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiuchuan Guo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhixiang Pan
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qiaoge Bayin
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
16
|
Ortega MA, Rodríguez-Comas J, Yavas O, Velasco-Mallorquí F, Balaguer-Trias J, Parra V, Novials A, Servitja JM, Quidant R, Ramón-Azcón J. In Situ LSPR Sensing of Secreted Insulin in Organ-on-Chip. BIOSENSORS-BASEL 2021; 11:bios11050138. [PMID: 33924867 PMCID: PMC8144989 DOI: 10.3390/bios11050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/10/2023]
Abstract
Organ-on-a-chip (OOC) devices offer new approaches for metabolic disease modeling and drug discovery by providing biologically relevant models of tissues and organs in vitro with a high degree of control over experimental variables for high-content screening applications. Yet, to fully exploit the potential of these platforms, there is a need to interface them with integrated non-labeled sensing modules, capable of monitoring, in situ, their biochemical response to external stimuli, such as stress or drugs. In order to meet this need, we aim here to develop an integrated technology based on coupling a localized surface plasmon resonance (LSPR) sensing module to an OOC device to monitor the insulin in situ secretion in pancreatic islets, a key physiological event that is usually perturbed in metabolic diseases such as type 2 diabetes (T2D). As a proof of concept, we developed a biomimetic islet-on-a-chip (IOC) device composed of mouse pancreatic islets hosted in a cellulose-based scaffold as a novel approach. The IOC was interfaced with a state-of-the-art on-chip LSPR sensing platform to monitor the in situ insulin secretion. The developed platform offers a powerful tool to enable the in situ response study of microtissues to external stimuli for applications such as a drug-screening platform for human models, bypassing animal testing.
Collapse
Affiliation(s)
- María A. Ortega
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Ozlem Yavas
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
| | - Ferran Velasco-Mallorquí
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Jordina Balaguer-Trias
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Victor Parra
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
| | - Anna Novials
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Joan M. Servitja
- Diabetes and Obesity Research Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.N.); (J.M.S.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - Romain Quidant
- Plasmon Nano-Optics Group, ICFO-Institute for Photonics Sciences, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain; (O.Y.); (R.Q.)
- Nanophotonic Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac, 10-12, 08028 Barcelona, Spain; (M.A.O.); (J.R.-C.); (F.V.-M.); (J.B.-T.); (V.P.)
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
17
|
Lewis PL, Wells JM. Engineering-inspired approaches to study β-cell function and diabetes. Stem Cells 2021; 39:522-535. [PMID: 33497522 DOI: 10.1002/stem.3340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 12/21/2022]
Abstract
Strategies to mitigate the pathologies from diabetes range from simply administering insulin to prescribing complex drug/biologic regimens combined with lifestyle changes. There is a substantial effort to better understand β-cell physiology during diabetes pathogenesis as a means to develop improved therapies. The convergence of multiple fields ranging from developmental biology to microfluidic engineering has led to the development of new experimental systems to better study complex aspects of diabetes and β-cell biology. Here we discuss the available insulin-secreting cell types used in research, ranging from primary human β-cells, to cell lines, to pluripotent stem cell-derived β-like cells. Each of these sources possess inherent strengths and weaknesses pertinent to specific applications, especially in the context of engineered platforms. We then outline how insulin-expressing cells have been used in engineered platforms and how recent advances allow for better mimicry of in vivo conditions. Chief among these conditions are β-cell interactions with other endocrine organs. This facet is beginning to be thoroughly addressed by the organ-on-a-chip community, but holds enormous potential in the development of novel diabetes therapeutics. Furthermore, high throughput strategies focused on studying β-cell biology, improving β-cell differentiation, or proliferation have led to enormous contributions in the field and will no doubt be instrumental in bringing new diabetes therapeutics to the clinic.
Collapse
Affiliation(s)
- Phillip L Lewis
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
19
|
Hendrickson OD, Taranova NA, Zherdev AV, Dzantiev BB, Eremin SA. Fluorescence Polarization-Based Bioassays: New Horizons. SENSORS (BASEL, SWITZERLAND) 2020; 20:E7132. [PMID: 33322750 PMCID: PMC7764623 DOI: 10.3390/s20247132] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
Fluorescence polarization holds considerable promise for bioanalytical systems because it allows the detection of selective interactions in real time and a choice of fluorophores, the detection of which the biosample matrix does not influence; thus, their choice simplifies and accelerates the preparation of samples. For decades, these possibilities were successfully applied in fluorescence polarization immunoassays based on differences in the polarization of fluorophore emissions excited by plane-polarized light, whether in a free state or as part of an immune complex. However, the results of recent studies demonstrate the efficacy of fluorescence polarization as a detected signal in many bioanalytical methods. This review summarizes and comparatively characterizes these developments. It considers the integration of fluorescence polarization with the use of alternative receptor molecules and various fluorophores; different schemes for the formation of detectable complexes and the amplification of the signals generated by them. New techniques for the detection of metal ions, nucleic acids, and enzymatic reactions based on fluorescence polarization are also considered.
Collapse
Affiliation(s)
- Olga D. Hendrickson
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Nadezhda A. Taranova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
| | - Sergei A. Eremin
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.D.H.); (N.A.T.); (B.B.D.); (S.A.E.)
- Department of Chemical Enzymology, Chemical Faculty, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
20
|
Sokolowska P, Janikiewicz J, Jastrzebska E, Brzozka Z, Dobrzyn A. Combinations of regenerative medicine and Lab-on-a-chip systems: New hope to restoring the proper function of pancreatic islets in diabetes. Biosens Bioelectron 2020; 167:112451. [DOI: 10.1016/j.bios.2020.112451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
|
21
|
Adablah JE, Wang Y, Donohue M, Roper MG. Profiling Glucose-Stimulated and M3 Receptor-Activated Insulin Secretion Dynamics from Islets of Langerhans Using an Extended-Lifetime Fluorescence Dye. Anal Chem 2020; 92:8464-8471. [PMID: 32429660 PMCID: PMC7304439 DOI: 10.1021/acs.analchem.0c01226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Pulsatile insulin
from pancreatic islets is crucial for glucose
homeostasis, but the mechanism behind coordinated pulsatility is still
under investigation. One hypothesis suggests that cholinergic stimulation
of islets by pancreatic ganglia resets these endocrine units, producing
synchronization. Previously, it was shown that intracellular Ca2+ oscillations within islets can be entrained by pulses of
a cholinergic agonist, carbachol (CCh). Although these proxy measurements
of Ca2+ provided insight into the synchronization mechanism,
measurement of insulin output would be more direct evidence. To this
end, a fluorescence anisotropy competitive immunoassay for online
insulin detection from single and grouped islets in a microfluidic
system was developed using a piezoelectric pressure-driven fluid delivery
system and a squaraine rotaxane fluorophore, SeTau-647, as the fluorescent
label for insulin. Due to SeTau-647 having a longer lifetime and higher
brightness compared to the previously used Cy5 fluorophore, a 45%
increase in the anisotropy range was observed with enhanced signal-to-noise
ratio (S/N) of the measurements. This new system was tested by measuring
glucose-stimulated insulin secretion from single and groups of murine
and human islets. Distinct islet entrainment of groups of murine islets
by pulses of CCh was also observed, providing further evidence for
the hypothesis that pulsatile output from the ganglia can synchronize
islet behavior. We expect that this relatively straightforward, homogeneous
assay can be widely used for examining not only insulin secretion
but other secreted factors from different tissues.
Collapse
Affiliation(s)
- Joel E Adablah
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Yao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Matthew Donohue
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
22
|
Wei X, Lu Y, Zhang X, Chen ML, Wang JH. Recent advances in single-cell ultra-trace analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Hackler AL, FitzGerald FG, Dang VQ, Satz AL, Paegel BM. Off-DNA DNA-Encoded Library Affinity Screening. ACS COMBINATORIAL SCIENCE 2020; 22:25-34. [PMID: 31829554 DOI: 10.1021/acscombsci.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.
Collapse
Affiliation(s)
| | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel Hoffman-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
24
|
Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, Schrell AM, Mukhitov N, Shores KL, Tepole AB, Melton DA, Roper MG, Parker KK. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. LAB ON A CHIP 2019; 19:2993-3010. [PMID: 31464325 PMCID: PMC6814249 DOI: 10.1039/c9lc00253g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic β cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Controlling the excess and shortage of energy is a fundamental task for living organisms. Diabetes is a representative metabolic disease caused by the malfunction of energy homeostasis. The islets of Langerhans in the pancreas release long-range messengers, hormones, into the blood to regulate the homeostasis of the primary energy fuel, glucose. The hormone and glucose levels in the blood show rhythmic oscillations with a characteristic period of 5-10 min, and the functional roles of the oscillations are not clear. Each islet has [Formula: see text] and [Formula: see text] cells that secrete glucagon and insulin, respectively. These two counter-regulatory hormones appear sufficient to increase and decrease glucose levels. However, pancreatic islets have a third cell type, [Formula: see text] cells, which secrete somatostatin. The three cell populations have a unique spatial organization in islets, and they interact to perturb their hormone secretions. The mini-organs of islets are scattered throughout the exocrine pancreas. Considering that the human pancreas contains approximately a million islets, the coordination of hormone secretion from the multiple sources of islets and cells within the islets should have a significant effect on human physiology. In this review, we introduce the hierarchical organization of tripartite cell networks, and recent biophysical modeling to systematically understand the oscillations and interactions of [Formula: see text], [Formula: see text], and [Formula: see text] cells. Furthermore, we discuss the functional roles and clinical implications of hormonal oscillations and their phase coordination for the diagnosis of type II diabetes.
Collapse
Affiliation(s)
- Taegeun Song
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | |
Collapse
|
26
|
Abstract
In vivo levels of insulin are oscillatory with a period of ~5-10 minutes, indicating that the islets of Langerhans within the pancreas are synchronized. While the synchronizing factors are still under investigation, one result of this behavior is expected to be coordinated and oscillatory intracellular factors, such as intracellular Ca2+ levels, throughout the islet population. In other cell types, oscillatory intracellular signals, like intracellular Ca2+, have been shown to affect specific gene expression. To test how the gene expression landscape may differ between a synchronized islet population with its reproducible intracellular oscillations and an unsynchronized islet population with heterogeneous oscillations, gene set enrichment analysis (GSEA) was used to compare an islet population that had been synchronized using a glucose wave with a 5-min period, and an unsynchronized islet population. In the population exposed to the glucose wave, 58/62 islets showed synchronization as evidenced by coordinated intracellular Ca2+ oscillations with an average oscillation period of 5.1 min, while in the unsynchronized population 29/62 islets showed slow oscillations with an average period of 5.2 min. The synchronized islets also had a significantly smaller drift of their oscillation period during the experiment as compared to the unsynchronized population. GSEA indicated that the synchronized population had reduced expression of gene sets related to protein translation, protein turnover, energy expenditure, and insulin synthesis, while those that were related to maintenance of cell morphology were increased.
Collapse
Affiliation(s)
- Nikita Mukhitov
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL
| | - Joel E. Adablah
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL
| | - Michael G. Roper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL
- CONTACT Michael G. Roper Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, FL, 32306
| |
Collapse
|
27
|
Li X, Hu J, Easley CJ. Automated microfluidic droplet sampling with integrated, mix-and-read immunoassays to resolve endocrine tissue secretion dynamics. LAB ON A CHIP 2018; 18:2926-2935. [PMID: 30112543 PMCID: PMC6234046 DOI: 10.1039/c8lc00616d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A fully automated droplet generation and analysis device based on pressure driven push-up valves for precise pumping of fluid and volumetric metering has been developed for high resolution hormone secretion sampling and measurement. The device consists of a 3D-printer templated reservoir for single cells or single tissue culturing, a Y-shaped channel for reagents and sample mixing, a T-junction channel for droplet formation, a reference channel to overcome drifts in fluorescence signal, and a long droplet storage channel allowing incubation for homogeneous immunoassays. The droplets were made by alternating peristaltic pumping of aqueous and oil phases. Device operation was automated, giving precise control over several droplet parameters such as size, oil spacing, and ratio of sample and reference droplets. By integrating an antibody-oligonucleotide based homogeneous immunoassay on-chip, high resolution temporal sampling into droplets was combined with separation-free quantification of insulin secretion from single islets of Langerhans using direct optical readout from the droplets. Quantitative assays of glucose-stimulated insulin secretion were demonstrated at 15 second temporal resolution while detecting as low as 10 amol per droplet, revealing fast insulin oscillations that mirror well-known intracellular calcium signals. This droplet sampling and direct optical analysis approach effectively digitizes the secretory time record from cells into droplets, and the system should be generalizable to a variety of cells and tissue types.
Collapse
Affiliation(s)
- Xiangpeng Li
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|
28
|
Vickerman BM, Anttila MM, Petersen BV, Allbritton NL, Lawrence DS. Design and Application of Sensors for Chemical Cytometry. ACS Chem Biol 2018; 13:1741-1751. [PMID: 29376326 DOI: 10.1021/acschembio.7b01009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.
Collapse
Affiliation(s)
- Brianna M. Vickerman
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M. Anttila
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brae V. Petersen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nancy L. Allbritton
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, and North Carolina State University,
Raleigh, North Carolina 27695, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David S. Lawrence
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
29
|
Attenuated Total Reflectance Fourier Transformation Infrared spectroscopy fingerprinted online monitoring of the kinetics of circulating Butyrylcholinesterase enzyme during metabolism of bambuterol. Anal Chim Acta 2018; 1005:70-80. [DOI: 10.1016/j.aca.2017.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/19/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
|
30
|
Sibbitts J, Sellens KA, Jia S, Klasner SA, Culbertson CT. Cellular Analysis Using Microfluidics. Anal Chem 2017; 90:65-85. [DOI: 10.1021/acs.analchem.7b04519] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jay Sibbitts
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kathleen A. Sellens
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Scott A. Klasner
- 12966
South
State Highway 94, Marthasville, Missouri 63357, United States
| | | |
Collapse
|