1
|
Cheranyova AM, Zelenkov LE, Baykov SV, Izotova YA, Ivanov DM, Bokach NA, Kukushkin VY. Intermolecular Metal-Involving Pnictogen Bonding: The Case of σ-(Sb III)-Hole···d z2[Pt II] Interaction. Inorg Chem 2024; 63:14943-14957. [PMID: 39066736 DOI: 10.1021/acs.inorgchem.4c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cocrystallizations of trans-[PtX'2(NCNR2)2] (R2 = Me2, X' = Cl 1a, Br 1b, I 1c; R2 = (CH2)5, X' = I 2c) with SbX3 (X = Cl, Br, I) gave 1:2 cocrystals 1a·2SbCl3, 1b·2SbBr3, 1c·2SbCl3, 1c·2SbBr3, 1c·2SbI3, and 2c·2SbI3. In all six X-ray structures, the association of the molecular coformers is achieved mainly by SbIII···dz2[PtII] metal-involving intermolecular pnictogen bonding. Density functional theory (DFT) calculations (based on experimentally determined geometries) using both gas-phase and solid-state approximations revealed that a σ-(Sb)-hole interacts with an area of negative potential associated with the dz2-orbital of the positively charged platinum(II) sites, thus forming a pnictogen bond whose energy falls in the range between -7.3 and -16.9 kcal/mol.
Collapse
Affiliation(s)
- Anna M Cheranyova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Lev E Zelenkov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Sergey V Baykov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Yulia A Izotova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
2
|
Rowland S, Aghakhani A, Whalley RD, Ferreira AM, Kotov N, Gentile P. Layer-by-Layer Nanoparticle Assembly for Biomedicine: Mechanisms, Technologies, and Advancement via Acoustofluidics. ACS APPLIED NANO MATERIALS 2024; 7:15874-15902. [PMID: 39086513 PMCID: PMC11287493 DOI: 10.1021/acsanm.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The deposition of thin films plays a crucial role in surface engineering, tailoring structural modifications, and functionalization across diverse applications. Layer-by-layer self-assembly, a prominent thin-film deposition method, has witnessed substantial growth since its mid-20th-century inception, driven by the discovery of eligible materials and innovative assembly technologies. Of these materials, micro- and nanoscopic substrates have received far less interest than their macroscopic counterparts; however, this is changing. The catalogue of eligible materials, including nanoparticles, quantum dots, polymers, proteins, cells and liposomes, along with some well-established layer-by-layer technologies, have combined to unlock impactful applications in biomedicine, as well as other areas like food fortification, and water remediation. To access these fields, several well-established technologies have been used, including tangential flow filtration, fluidized bed, atomization, electrophoretic assembly, and dielectrophoresis. Despite the invention of these technologies, the field of particle layer-by-layer still requires further technological development to achieve a high-yield, automatable, and industrially ready process, a requirement for the diverse, reactionary field of biomedicine and high-throughput pharmaceutical industry. This review provides a background on layer-by-layer, focusing on how its constituent building blocks and bonding mechanisms enable unmatched versatility. The discussion then extends to established and recent technologies employed for coating micro- and nanoscopic matter, evaluating their drawbacks and advantages, and highlighting promising areas in microfluidic approaches, where one distinctly auspicious technology emerges, acoustofluidics. The review also explores the potential and demonstrated application of acoustofluidics in layer-by-layer technology, as well as analyzing existing acoustofluidic technologies beyond LbL coating in areas such as cell trapping, cell sorting, and multidimensional particle manipulation. Finally, the review concludes with future perspectives on layer-by-layer nanoparticle coating and the potential impact of integrating acoustofluidic methods.
Collapse
Affiliation(s)
- Seth Rowland
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Amirreza Aghakhani
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
- Institute
for Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Richard D. Whalley
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Ana Marina Ferreira
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| | - Nicholas Kotov
- Department
of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Piergiorgio Gentile
- School
of Engineering, Newcastle University, Newcastle-upon-Tyne NE1
7RU, United Kingdom
| |
Collapse
|
3
|
Zhang L, Shen Z, Zeng Y, Li X, Zhang X. Insight into the Metal-Involving Chalcogen Bond in the Pd II/Pt II-Based Complexes: Comparison with the Conventional Chalcogen Bond. J Phys Chem A 2024; 128:5567-5577. [PMID: 39003760 DOI: 10.1021/acs.jpca.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The metal-involving Ch···M chalcogen bond and the conventional Ch···O chalcogen bond between ChX2 (Ch = Se, Te; X = CCH, CN) acting as a Lewis acid and M(acac)2 (M = Pd, Pt; Hacac = acetylacetone) acting as a Lewis base were studied by density functional theory calculations. It has been observed that the nucleophilicity of the PtII complexes is higher than that of the corresponding PdII complexes. As a result, the PtII complexes tend to exhibit a more negative interaction energy and larger orbital interaction. The strength of the chalcogen bond increases with the increase of the chalcogen atom and the electronegativity of the substituent on the Lewis acid and vice versa. The metal-involving chalcogen bond shows a typical weak closed-shell noncovalent interaction in the (HCC)2Ch···M(acac)2 complexes, while it exhibits a partially covalent nature in the (NC)2Ch···M(acac)2 complexes. The conventional Ch···O chalcogen bond displays the character of a weak noncovalent interaction, and its strength is generally weaker than that of metal-involving Ch···M interactions. It could be argued that the metal-involving chalcogen bond is primarily determined by the correlation term, whereas the conventional chalcogen bond is mainly governed by the electrostatic interaction.
Collapse
Affiliation(s)
- Lili Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zixuan Shen
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| | - Xueying Zhang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
- Hebei Key Laboratory of Inorganic Nano-materials, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
4
|
Burguera S, Bauzá A, Frontera A. Tuning the Nucleophilicity and Electrophilicity of Group 10 Elements through Substituent Effects: A DFT Study. Int J Mol Sci 2023; 24:15597. [PMID: 37958580 PMCID: PMC10648789 DOI: 10.3390/ijms242115597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, a series of electron donor (-NH2, -NMe2 and -tBu) and electron-withdrawing substituents (-F, -CN and -NO2) were used to tune the nucleophilicity or electrophilicity of a series of square planar Ni2+, Pd2+ and Pt2+ malonate coordination complexes towards a pentafluoroiodobenzene and a pyridine molecule. In addition, Bader's theory of atoms in molecules (AIM), noncovalent interaction plot (NCIplot), molecular electrostatic potential (MEP) surface and natural bond orbital (NBO) analyses at the PBE0-D3/def2-TZVP level of theory were carried out to characterize and discriminate the role of the metal atom in the noncovalent complexes studied herein. We hope that the results reported herein may serve to expand the current knowledge regarding these metals in the fields of crystal engineering and supramolecular chemistry.
Collapse
Affiliation(s)
| | | | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Ctra. de Valldemossa Km 7.5, 07122 Palma, Baleares, Spain; (S.B.); (A.B.)
| |
Collapse
|
5
|
Zierkiewicz W, Kizior B, Michalczyk M, Jezierska A, Scheiner S. Pd and Pt metal atoms as electron donors in σ-hole bonded complexes. Phys Chem Chem Phys 2023; 25:26172-26184. [PMID: 37740339 DOI: 10.1039/d3cp03171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Quantum calculations provide a systematic assessment of the ability of Group 10 transition metals M = Pd and Pt to act as an electron donor within the context of pnicogen, chalcogen, and halogen bonds. These M atoms are coordinated in a square planar geometry, attached to two N atoms of a modified phenanthrene unit, as well as two ligand atoms Cl, Br, or I. As the Lewis acid, a series of AFn molecules were chosen, which could form a pnicogen bond (A = P, As, Sb), chalcogen bond (A = S, Se, Te) or halogen bond (A = Cl, Br, I) with M. These noncovalent bonds are fairly strong, varying between 6 and 20 kcal mol-1, with the occupied dz2 orbital of M acting as the origin of charge transferred to the acid. Pt forms somewhat stronger bonds than Pd, and the bond strength rises with the size of the A atom of the acid. Within the context of smaller A atoms, the bond strength rises in the order pnicogen < chalcogen < halogen, but this distinction vanishes for the fifth-row A atoms. The nature of the ligand atoms on M has little bearing on the bond strength. Based on the Harmonic Oscillator Model of Aromaticity (HOMA) index, the ZB, YB and XB bonds were shown to have only a subtle effect on the ring electronic structures.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Beata Kizior
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mariusz Michalczyk
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Aneta Jezierska
- University of Wroclaw, Faculty of Chemistry, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Steve Scheiner
- Utah State University Logan, Department of Chemistry and Biochemistry, Utah 84322-0300, USA.
| |
Collapse
|
6
|
Michalczyk M, Zierkiewicz W, Scheiner S. Crystal Structure Survey and Theoretical Analysis of Bifurcated Halogen Bonds. CRYSTAL GROWTH & DESIGN 2022; 22:6521-6530. [PMID: 36345386 PMCID: PMC9634799 DOI: 10.1021/acs.cgd.2c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The possibility that two Lewis bases can share a single halogen atom within the context of a bifurcated halogen bond (XB) is explored first by a detailed examination of the CSD. Of the more than 22,000 geometries that fit the definition of an XB (with X = Cl, Br, I), less than 2% are bifurcated. There is a heavy weighting of I in such bifurcated arrangements as opposed to Br, which prefers monofurcated bonds. The conversion from mono to bifurcated is associated with a smaller number of short contact distances, as well as a trend toward lesser linearity. The two XBs within a bifurcated system are somewhat symmetrical: the two lengths generally differ by less than 0.05 Å, and the two XB angles are within several degrees of one another. Quantum calculations of model systems reflect the patterns observed in crystals and reinforce the idea that the negative cooperativity within a bifurcated XB weakens and lengthens each individual bond.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department
of Chemistry and Biochemistry, Utah State
University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
7
|
|
8
|
Metal Coordination Enhances Chalcogen Bonds: CSD Survey and Theoretical Calculations. Int J Mol Sci 2022; 23:ijms23084188. [PMID: 35457005 PMCID: PMC9030556 DOI: 10.3390/ijms23084188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
In this study the ability of metal coordinated Chalcogen (Ch) atoms to undergo Chalcogen bonding (ChB) interactions has been evaluated at the PBE0-D3/def2-TZVP level of theory. An initial CSD (Cambridge Structural Database) inspection revealed the presence of square planar Pd/Pt coordination complexes where divalent Ch atoms (Se/Te) were used as ligands. Interestingly, the coordination to the metal center enhanced the σ-hole donor ability of the Ch atom, which participates in ChBs with neighboring units present in the X-ray crystal structure, therefore dictating the solid state architecture. The X-ray analyses were complemented with a computational study (PBE0-D3/def2-TZVP level of theory), which shed light into the strength and directionality of the ChBs studied herein. Owing to the new possibilities that metal coordination offers to enhance or modulate the σ-hole donor ability of Chs, we believe that the findings presented herein are of remarkable importance for supramolecular chemists as well as for those scientists working in the field of solid state chemistry.
Collapse
|
9
|
Benito I, Gomila RM, Frontera A. On the energetic stability of halogen bonds involving metals: implications in crystal engineering. CrystEngComm 2022. [DOI: 10.1039/d2ce00545j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a combined computational and experimental analysis of the ability of square planar d8 transition metal complexes to establish unconventional halogen bonding interactions with chloro-, bromo- and iodopentafluorobenzene...
Collapse
|
10
|
Blasi D, Nicolai V, Gomila RM, Mercandelli P, Frontera A, Carlucci L. Unprecedented {dz2-CuIIO4}···π-hole interactions: the case of a cocrystal of Cu(II) bis-β-diketonate complex with 1,4-diiodotetrafluoro-benzene. Chem Commun (Camb) 2022; 58:9524-9527. [DOI: 10.1039/d2cc03457c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of bis[1-(4-pyridyl)butane-1,3-dionato]copper(II) (1) complex and 1,4-diiodoperfluorobenzene in the presence of pyridine yields to a 1:1 cocrystal where both the σ and π-holes of 1,4-diiodoperfluorobenzene play a role. The crystal...
Collapse
|
11
|
Escobar C, Artigas V, Bacho M, Trujillo A. π-halogen interaction on the crystalline packing of 1,3,5-tris(4-bromophenyl)-1,3,5-triazine-2,4,6-trione·[solvate]. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Zelenkov LE, Eliseeva AA, Baykov S, Ivanov DM, Sumina AI, Gomila RM, Frontera A, Kukushkin VY, Bokach NA. Inorganic–Organic {dz2-MIIS4}···π-Hole Stacking in Reverse Sandwich Structures. The Case of Cocrystals of Group 10 Metal Dithiocarbamates with Electron-deficient Arenes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00438k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization of the dithiocarbamate complexes [M(S2CNEt2)2] (M = Ni 1, Pd 2, Pt 3) and X-substituted perfluoroarenes (X = I, Br; 1,2-dibromoperfluorobenzene FBrB and 1,2-diiodoperfluorobenzene FIB) gives isomorphous cocrystals of...
Collapse
|
13
|
Bulatov E, Eskelinen T, Ivanov AY, Tolstoy PM, Kalenius E, Hirva P, Haukka M. Noncovalent Axial I⋅⋅⋅Pt⋅⋅⋅I Interactions in Platinum(II) Complexes Strengthen in the Excited State. Chemphyschem 2021; 22:2044-2049. [PMID: 34328257 PMCID: PMC8596824 DOI: 10.1002/cphc.202100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Indexed: 11/18/2022]
Abstract
Coordination compounds of platinum(II) participate in various noncovalent axial interactions involving metal center. Weakly bound axial ligands can be electrophilic or nucleophilic; however, interactions with nucleophiles are compromised by electron density clashing. Consequently, simultaneous axial interaction of platinum(II) with two nucleophilic ligands is almost unprecedented. Herein, we report structural and computational study of a platinum(II) complex possessing such intramolecular noncovalent I⋅⋅⋅Pt⋅⋅⋅I interactions. Structural analysis indicates that the two iodine atoms approach the platinum(II) center in a "side-on" fashion and act as nucleophilic ligands. According to computational studies, the interactions are dispersive, weak and anti-cooperative in the ground electronic state, but strengthen substantially and become partially covalent and cooperative in the lowest excited state. Strengthening of I⋅⋅⋅Pt⋅⋅⋅I contacts in the excited state is also predicted for the sole previously reported complex with analogous axial interactions.
Collapse
Affiliation(s)
- Evgeny Bulatov
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Toni Eskelinen
- Department of ChemistryUniversity of Eastern FinlandP.O. Box 11180101JoensuuFinland
| | - Alexander Yu. Ivanov
- Center for Magnetic ResonanceSt. Petersburg State University198504St. PetersburgRussia
| | - Peter M. Tolstoy
- Center for Magnetic ResonanceSt. Petersburg State University198504St. PetersburgRussia
| | - Elina Kalenius
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Pipsa Hirva
- Department of ChemistryUniversity of Eastern FinlandP.O. Box 11180101JoensuuFinland
| | - Matti Haukka
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| |
Collapse
|
14
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
15
|
Li D, Xia T, Feng W, Cheng L. Revisiting the covalent nature of halogen bonding: a polarized three-center four-electron bond. RSC Adv 2021; 11:32852-32860. [PMID: 35493597 PMCID: PMC9042191 DOI: 10.1039/d1ra05695f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
As an important intermolecular interaction, halogen bonding has been studied extensively, but its nature still suffers from controversy without one uniform essence. Electrostatics, charge transfer, polarization and dispersion are emphasized, but the covalent nature is usually overlooked except for the strong halogen bonding species I3−, which is widely accepted as a result of a three-center four-electron (3c-4e) interaction. In our study, the potential energy surface of I3− has been evaluated to explore the dissociation from I3− to I2⋯I−. We found that different from an equivalent 3c-4e bond in I3−, I2⋯I− can be rationalized by a polarized one. In addition, when the orbitals are polarized, it is exactly what traditional charge transfer or the popular σ-hole picture describes. I3− can be described by the Lewis theory model with the middle I+ cation serving as the Lewis acid and two terminal I− anions acting as Lewis base. Therefore, we further extended this model to a series of I-containing species with chemical composition of L–I+–L, F−–I+–L and H3P–I+–L (L = OH−, F−, Cl−, Br−, I−, PH3, NH3, H2S, HI, H2O, HBr and HCl) to explore the nature of halogen bonding. When the forces of two bases around I+ are the same, it corresponds to an equivalent 3c-4e bond, such as I3−. Otherwise, it is a polarized multicenter bond, such as I2⋯I−. This work gives a new insight into the nature of halogen bonding compounds: besides the well-known I3−, the nature of the other species is also a multicenter bond, existing as equivalent and polarized 3c-4e bonds, respectively. The halogen bond could be described with a polarized 3c-4e bond.![]()
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Tao Xia
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Wanwan Feng
- Department of Chemistry, Anhui University Hefei 230601 PR China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University Hefei 230601 PR China .,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education Hefei 230601 PR China
| |
Collapse
|
16
|
Rozhkov AV, Katlenok EA, Zhmykhova MV, Ivanov AY, Kuznetsov ML, Bokach NA, Kukushkin VY. Metal-Involving Chalcogen Bond. The Case of Platinum(II) Interaction with Se/Te-Based σ-Hole Donors. J Am Chem Soc 2021; 143:15701-15710. [PMID: 34529411 DOI: 10.1021/jacs.1c06498] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum(II) complexes exhibiting an expressed dz2-nucleophilicity of the positively charged metal centers, namely, [Pt(ppy)(acac)] (1; acacH is acetylacetone; ppyH is 2-Ph-pyridine) and [Pt(ppy)(tmhd)] (2; tmhdH is 2,2,6,6-tetramethylheptanedione-3,5), were cocrystallized with the chalcogen bond donors (4-NC5F4)2Ch (Ch = Se, Te) to form two isostructural cocrystals 1·1/2(4-NC5F4)2Ch, and 2·2/3(4-NC5F4)2Se and 2·(4-NC5F4)2Te. The X-ray data for these cocrystals and appropriate theoretical DFT calculations (PBE0-D3BJ) allowed the recognition of the metal-involving chalcogen bond, namely, Ch···dz2-PtII (its energy spans from -7 to -12 kcal/mol). In 1·1/2(4-NC5F4)2Ch, Ch···dz2-PtII bonding is accompanied by the C···dz2-PtII interaction, representing a three-center bifurcate, whereas in 2·(4-NC5F4)2Te the chalcogen bond Te···dz2-PtII is purely two-centered and is stronger than that in 1·1/2(4-NC5F4)2Ch because of more efficient orbital overlap. The association of 2 with (4-NC5F4)2Te and the structure of the formed adduct in CDCl3 solutions was studied by using 1H, 13C, 19F, 195Pt, 125Te NMR, 19F-1H HOESY, and diffusion NMR methods. The 195Pt and 125Te NMR titration and the isothermal titration calorimetry results revealed a 1:1 association of 2 with (4-NC5F4)2Te.
Collapse
Affiliation(s)
- Anton V Rozhkov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Eugene A Katlenok
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Margarita V Zhmykhova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Alexander Yu Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, 656049 Barnaul, Russian Federation
| |
Collapse
|
17
|
Bulatova M, Ivanov DM, Rautiainen JM, Kinzhalov MA, Truong KN, Lahtinen M, Haukka M. Studies of Nature of Uncommon Bifurcated I-I···( I- M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals. Inorg Chem 2021; 60:13200-13211. [PMID: 34357775 PMCID: PMC8424624 DOI: 10.1021/acs.inorgchem.1c01591] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/03/2022]
Abstract
Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal-iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed by weaker I···M interaction. The electrophilic and nucleophilic nature of atoms participating in I···M interaction was studied with ED/ESP minima analysis. In trans-[PtI2(CNXyl)2]·I2 cocrystal, Pt atoms act as weak nucleophiles in I···Pt interaction. In the case of trans-[PdI2(CNXyl)2]·I2 cocrystal, electrophilic/nucleophilic roles of Pd and I are not clear, and thus the quasimetallophilic nature of the I···Pd interaction was suggested.
Collapse
Affiliation(s)
- Margarita Bulatova
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Daniil M. Ivanov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - J. Mikko Rautiainen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Mikhail A. Kinzhalov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Khai-Nghi Truong
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Manu Lahtinen
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
18
|
Tetrabromoethane as σ-Hole Donor toward Bromide Ligands: Halogen Bonding between C2H2Br4 and Bromide Dialkylcyanamide Platinum(II) Complexes. CRYSTALS 2021. [DOI: 10.3390/cryst11070835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The complexes trans-[PtBr2(NCNR2)2] (R2 = Me21, (CH2)52) were cocrystallized with 1,1,2,2-tetrabromoethane (tbe) in CH2Cl2 forming solvates 1·tbe and 2·tbe, respectively. In both solvates, tbe involved halogen bonding, viz. the C–Br···Br–Pt interactions, were detected by single-crystal X-ray diffractions experiments. Appropriate density functional theory calculations (M06/def2-TZVP) performed for isolated molecules and complex-tbe clusters, where the existence of the interactions and their noncovalent nature were confirmed by electrostatic potential surfaces (ρ = 0.001 a.u.) for isolated molecules, topology analysis of electron density, electron localization function and HOMO-LUMO overlap projections for clusters.
Collapse
|
19
|
Ivakhnenko EP, Knyazev PA, Vitkovskaya YG, Popov LD, Lyssenko KA, Demidov OP, Starikov AG, Borodkin GS, Minkin VI. Synthesis, Staructure and Redox Properties of Cu(II) Chelate Complexes on the Basis of 2‐(Hydroxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl Phenol Ligands. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugeny P. Ivakhnenko
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Pavel A. Knyazev
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Yulia G. Vitkovskaya
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Leonid D. Popov
- Chemistry Department Southern Federal University 7 Zorge st. Rostov-on-Don 344090 Russian Federation
| | - Konstantin A. Lyssenko
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 28 Vavilov st. Moscow 119991 Russian Federation
| | - Oleg P. Demidov
- North Caucasus Federal University 1 Pushkin st. Stavropol 355017 Russian Federation
| | - Andrey G. Starikov
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Gennady S. Borodkin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| | - Vladimir I. Minkin
- Institute of Physical and Organic Chemistry Southern Federal University 194/2 Stachki st. Rostov-on-Don 344090 Russian Federation
| |
Collapse
|
20
|
Kuznetsov ML. Strength of the [Z-I···Hal] - and [Z-Hal···I] - Halogen Bonds: Electron Density Properties and Halogen Bond Length as Estimators of Interaction Energy. Molecules 2021; 26:2083. [PMID: 33916483 PMCID: PMC8038634 DOI: 10.3390/molecules26072083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
Bond energy is the main characteristic of chemical bonds in general and of non-covalent interactions in particular. Simple methods of express estimates of the interaction energy, Eint, using relationships between Eint and a property which is easily accessible from experiment is of great importance for the characterization of non-covalent interactions. In this work, practically important relationships between Eint and electron density, its Laplacian, curvature, potential, kinetic, and total energy densities at the bond critical point as well as bond length were derived for the structures of the [Z-I···Hal]- and [Z-Hal···I]- types bearing halogen bonds and involving iodine as interacting atom(s) (totally 412 structures). The mean absolute deviations for the correlations found were 2.06-4.76 kcal/mol.
Collapse
Affiliation(s)
- Maxim L. Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal; ; Tel.: +351-218-419-236
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
21
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
22
|
Eliseeva A, Ivanov DM, Rozhkov AV, Ananyev IV, Frontera A, Kukushkin VY. Bifurcated Halogen Bonding Involving Two Rhodium(I) Centers as an Integrated σ-Hole Acceptor. JACS AU 2021; 1:354-361. [PMID: 34467299 PMCID: PMC8395620 DOI: 10.1021/jacsau.1c00012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/13/2023]
Abstract
The complexes [RhX(COD)]2 (X = Cl, Br; COD = 1,5-cyclooctadiene) form cocrystals with σ-hole iodine donors. X-ray diffraction studies and extensive theoretical considerations indicate that the d z 2-orbitals of two positively charged rhodium(I) centers provide sufficient nucleophilicity to form a three-center halogen bond (XB) with the σ-hole donors. The two metal centers function as an integrated XB acceptor, providing assembly via a metal-involving XB.
Collapse
Affiliation(s)
- Anastasiya
A. Eliseeva
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Daniil M. Ivanov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Anton V. Rozhkov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Ivan V. Ananyev
- A.
N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km. 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Vadim Yu. Kukushkin
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Laboratory
of Crystal Engineering of Functional Materials, South Ural State University, Lenin Av. 76, 454080 Chelyabinsk, Russian Federation
| |
Collapse
|
23
|
Sivchik V, Kochetov A, Eskelinen T, Kisel KS, Solomatina AI, Grachova EV, Tunik SP, Hirva P, Koshevoy IO. Modulation of Metallophilic and π-π Interactions in Platinum Cyclometalated Luminophores with Halogen Bonding. Chemistry 2021; 27:1787-1794. [PMID: 32970903 DOI: 10.1002/chem.202003952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .
Collapse
Affiliation(s)
- Vasily Sivchik
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Aleksandr Kochetov
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Toni Eskelinen
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Kristina S Kisel
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Anastasia I Solomatina
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Elena V Grachova
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Sergey P Tunik
- Institute of Chemistry, St. Petersburg State University, Universitetskiy pr. 26, Petergof, St. Petersburg, Russia
| | - Pipsa Hirva
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, 80101, Joensuu, Finland
| |
Collapse
|
24
|
Scheiner S. Comparison of Bifurcated Halogen with Hydrogen Bonds. Molecules 2021; 26:molecules26020350. [PMID: 33445461 PMCID: PMC7827642 DOI: 10.3390/molecules26020350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 01/30/2023] Open
Abstract
Bifurcated halogen bonds are constructed with FBr and FI as Lewis acids, paired with NH3 and NCH bases. The first type considered places two bases together with a single acid, while the reverse case of two acids sharing a single base constitutes the second type. These bifurcated systems are compared with the analogous H-bonds wherein FH serves as the acid. In most cases, a bifurcated system is energetically inferior to a single linear bond. There is a larger energetic cost to forcing the single σ-hole of an acid to interact with a pair of bases, than the other way around where two acids engage with the lone pair of a single base. In comparison to FBr and FI, the H-bonding FH acid is better able to participate in a bifurcated sharing with two bases. This behavior is traced to the properties of the monomers, in particular the specific shape of the molecular electrostatic potential, the anisotropy of the orbitals of the acid and base that interact directly with one another, and the angular extent of the total electron density of the two molecules.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
25
|
Zelenkov LE, Eliseeva AA, Baykov SV, Suslonov VV, Galmés B, Frontera A, Kukushkin VY, Ivanov DM, Bokach NA. Electron belt-to-σ-hole switch of noncovalently bound iodine(i) atoms in dithiocarbamate metal complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00314c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nature of metals in the isostructural series of dithiocarbamate complexes affects the electron belt-to-σ-hole switch of noncovalently bound iodine(i) leading to either semicoordination, or halogen bonding.
Collapse
Affiliation(s)
- Lev E. Zelenkov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Department of Physics and Engineering
| | - Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Sergey V. Baykov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Bartomeu Galmés
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
- Laboratory of Crystal Engineering of Functional Materials
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Saint Petersburg
- Russian Federation
| |
Collapse
|
26
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
27
|
Yunusova SN, Bolotin DS, Vovk MA, Tolstoy PM, Kukushkin VY. Tetrabromomethane as an Organic Catalyst: a Kinetic Study of CBr
4
‐Catalyzed Schiff Condensation. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sevilya N. Yunusova
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg Russian Federation
| | - Dmitrii S. Bolotin
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg Russian Federation
| | - Mikhail A. Vovk
- Center for Magnetic Resonance Saint Petersburg State University Saint Petersburg Russian Federation
| | - Peter M. Tolstoy
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry Saint Petersburg State University Universitetskaya Nab. 7/9 Saint Petersburg Russian Federation
- Laboratory of Crystal Engineering of Functional Materials South Ural State University 76, Lenin Av. 454080 Chelyabinsk Russian Federation
| |
Collapse
|
28
|
Torubaev YV, Skabitsky IV. Halogen bonding in crystals of free 1,2-diiodo-ethene (C2H2I2) and its π-complex [CpMn(CO)2](π-C2H2I2). Z KRIST-CRYST MATER 2020. [DOI: 10.1515/zkri-2020-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
1,2-trans-diiodo-ethene (C2H2I2) – is an overlooked halogen bond donor, which demonstrate the distinct similarity of the geometry and directionality of I···I halogen bonds around the iodine atoms in its native and CpMn(CO)2(C2H2I2) π-complex crystals. Distortion of the planar geometry of C2H2I2 upon the π-coordination result the distortion of the native planar layered geometry of C2H2I2, so that [CpMn(CO)2](π-C2H2I2) features more complex I···I XB assisted 3D network. Unusual structural parallels between the native C2H2I2 crystals and solid iodine are discussed.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| | - Ivan V. Skabitsky
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences , Moscow , Russia
| |
Collapse
|
29
|
|
30
|
Matsuo K, Yamaguchi E, Itoh A. In Situ-Generated Halogen-Bonding Complex Enables Atom Transfer Radical Addition (ATRA) Reactions of Olefins. J Org Chem 2020; 85:10574-10583. [DOI: 10.1021/acs.joc.0c01135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kazuki Matsuo
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4, Daigaku-Nishi, Gifu, Gifu 501-1196, Japan
| |
Collapse
|
31
|
Abstract
The problem of non-covalent interactions in coordination and organometallic compounds is a hot topic in modern chemistry, material science, crystal engineering and related fields of knowledge. Researchers in various fields of chemistry and other disciplines (physics, crystallography, computer science, etc.) are welcome to submit their works on this topic for our Special Issue “Non-Covalent Interactions in Coordination and Organometallic Chemistry”. The aim of this Special Issue is to highlight and overview modern trends and draw the attention of the scientific community to various types of non-covalent interactions in coordination and organometallic compounds. In this editorial, I would like to briefly highlight the main successes of our research group in the field of the fundamental study of non-covalent interactions in coordination and organometallic compounds over the past 5 years.
Collapse
|
32
|
Mikherdov AS, Novikov AS, Boyarskiy VP, Kukushkin VY. The halogen bond with isocyano carbon reduces isocyanide odor. Nat Commun 2020; 11:2921. [PMID: 32523100 PMCID: PMC7286913 DOI: 10.1038/s41467-020-16748-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Predominantly, carbon atoms of various species function as acceptors of noncovalent interactions when they are part of a π-system. Here, we report on the discovery of a halogen bond involving the isocyano carbon lone pair. The co-crystallization or mechanochemical liquid-assisted grinding of model mesityl isocyanide with four iodoperfluorobenezenes leads to a series of halogen-bonded adducts with isocyanides. The obtained adducts were characterized by single-crystal and powder X-ray diffraction, solid-state IR and 13C NMR spectroscopies, and also by thermogravimetric analysis. The formation of the halogen bond with the isocyano group leads to a strong reduction of the isocyanide odor (3- to 46-fold gas phase concentration decrease). This manipulation makes isocyanides more suitable for laboratory storage and usage while preserving their reactivity, which is found to be similar between the adducts and the parent isocyanide in some common transformations, such as ligation to metal centers and the multi-component Ugi reaction. Carbon atoms of various species typically function as acceptors of noncovalent interactions when they are part of a π-system. Here, the authors report their discovery of a noncovalent halogen bond involving the isocyano carbon lone pair, which results in adducts with strongly reduced isocyanide odor.
Collapse
Affiliation(s)
- Alexander S Mikherdov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| | - Alexander S Novikov
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim P Boyarskiy
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation.
| |
Collapse
|
33
|
Ananyev IV, Bokach NA, Kukushkin VY. Structure-directing sulfur...metal noncovalent semicoordination bonding. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:436-449. [PMID: 32831262 DOI: 10.1107/s2052520620005685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The abundance and geometric features of nonbonding contacts between metal centers and `soft' sulfur atoms bound to a non-metal substituent R were analyzed by processing data from the Cambridge Structural Database. The angular arrangement of M, S and R atoms with ∠(R-S...M) down to 150° was a common feature of the late transition metal complexes exhibiting shortened R-S...M contacts. Several model nickel(II), palladium(II), platinum(II) and gold(I) complexes were chosen for a theoretical analysis of R-S...M interactions using the DFT method applied to (equilibrium) isolated systems. A combination of the real-space approaches, such as Quantum Theory of Atoms in Molecules (QTAIM), noncovalent interaction index (NCI), electron localization function (ELF) and Interacting Quantum Atoms (IQA), and orbital (Natural Bond Orbitals, NBO) methods was used to provide insights into the nature and energetics of R-S...M interactions with respect to the metal atom identity and its coordination environment. The explored features of the R-S...M interactions support the trends observed by inspecting the CSD statistics, and indicate a predominant contribution of semicoordination bonds between nucleophilic sites of the sulfur atom and electrophilic sites of the metal. A contribution of chalcogen bonding (that is formally opposite to semicoordination) was also recognized, although it was significantly smaller in magnitude. The analysis of R-S...M interaction strengths was performed and the structure-directing role of the intramolecular R-S...M interactions in stabilizing certain conformations of metal complexes was revealed.
Collapse
Affiliation(s)
- Ivan V Ananyev
- Laboratory of X-ray Structural Studies, Institute of Organoelement Compounds (INEOS) of RAS, Vavilova Str., 28, Moscow, 119991, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg, Russian Federation
| |
Collapse
|
34
|
Katlenok EA, Haukka M, Levin OV, Frontera A, Kukushkin VY. Supramolecular Assembly of Metal Complexes by (Aryl)I⋅⋅⋅d[PtII] Halogen Bonds. Chemistry 2020; 26:7692-7701. [DOI: 10.1002/chem.202001196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Eugene A. Katlenok
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Matti Haukka
- Department of ChemistryUniversity of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Oleg V. Levin
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Antonio Frontera
- Department de QuímicaUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma, de Mallorca Baleares Spain
| | - Vadim Yu. Kukushkin
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- South Ural State University Lenin Av. 76 454080 Chelyabinsk Russian Federation
| |
Collapse
|
35
|
Exploring the Halogen-Bonded Cocrystallization Potential of a Metal-Organic Unit Derived from Copper(ii) Chloride and 4-Aminoacetophenone. MATERIALS 2020; 13:ma13102385. [PMID: 32455896 PMCID: PMC7288111 DOI: 10.3390/ma13102385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
In this work, we describe a novel halogen-bonded metal-organic cocrystal involving a square-planar Cu(ii) complex and 1,4-diiodotetrafluorobenzene (14tfib) by utilizing an amine ligand whose pendant acetyl group enables halogen bonding. The cocrystal was prepared by both mechanochemical synthesis (liquid-assisted grinding) and the conventional solution-based method. Crystal structure determination by single crystal X-ray diffraction revealed that the dominant supramolecular interactions are the I···O halogen bond between 14tfib and CuCl2(aap)2 building blocks, and the N–H···Cl hydrogen bonds between CuCl2(aap)2 molecules. The combination of halogen and hydrogen bonding leads to the formation of a 2D network. Overall, this work showcases an example of the possibility for extending the complexity of metal-organic crystal structures by using halogen bonding in a way that does not affect other hydrogen bonding synthons.
Collapse
|
36
|
Adonin SA, Novikov AS, Smirnova YK, Tushakova ZR, Fedin VP. Heteroligand Cu(II) Complexes with 2-Halogenopyridines: Crystal Structure and Features of Halogen⋯Halogen Contacts in the Solid State. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620050066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Adonin SA, Novikov AS, Fedin VP. Heteroleptic Binuclear Iodoacetate Copper(II) Complexes with 3-Bromopyridine and 4-Ethylpyridine: Crystal Structures and Peculiarities of Contacts Halogen···Halogen. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420020013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Bonfant G, Melegari M, Balestri D, Mezzadri F, Marzaroli V, Bassanetti I, Marchiò L. Supramolecular Assemblies in Silver Complexes: Phase Transitions and the Role of the Halogen Bond. Inorg Chem 2020; 59:4140-4149. [PMID: 32141298 DOI: 10.1021/acs.inorgchem.0c00256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Weak interactions (hydrogen bonds, halogen bonds, CH···π and π-π stacking) can play a significant role in the formation of supramolecular assemblies with desired structural features. In this contribution, we report a systematic investigation on how a halogen bond (XB) can modulate the structural arrangement of silver supramolecular complexes. The complexes are composed of X-phenyl(bispyrazolyl)methane (X = Br, I) and I-alkynophenyl(bispyrazolyl)methane ligands functionalized in meta (L3Br, L3I) and para (L4Br, L4I, L4CCI) positions on a phenyl ring with the purpose of providing different directionalities of the X function with respect to the N,N coordination system. The obtained [Ag(L)2]+ moieties show remarkable geometric similarities, and the L4Br, L4I, and L4CCI ligands exhibit the most conserved types of supramolecular arrangement that are sustained by XB. The increased σ-hole in L4CCI with respect to L4I leads to an occurrence of short (and strong) XB interactions with the anions. [Ag(L4I)2]PF6 and [Ag(L4I)2]CF3SO3 are characterized by the presence of three different phases, and the single-crystal evolution from phase-1 (a honeycomb structure with large 1D cavities) to phase-3 (solventless) occurs by a stepwise decrease in the crystallization solvent content, which promotes an increase in XB interactions in the lattice. The present paper aims to provide useful tools for the selection of appropriate components for the use of coordination compounds to build supramolecular systems based on the halogen bond.
Collapse
Affiliation(s)
- Giulia Bonfant
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Matteo Melegari
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Davide Balestri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Francesco Mezzadri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Vittoria Marzaroli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Irene Bassanetti
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| | - Luciano Marchiò
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale (Chemistry Unit), Università di Parma, 43124 Parma, Italy
| |
Collapse
|
39
|
Abstract
In this review, we provide a consistent description of noncovalent interactions, covering most groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover, the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds, the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered. Research and applications of σ-hole and π-hole interactions involving the p-block element is growing exponentially. The important applications include supramolecular chemistry, crystal engineering, catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the fact that this review is not intended to be comprehensive, a number of representative works for each type of interaction is provided. The possibility of modeling the dissociation energies of the complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.
Collapse
|
40
|
Efimenko ZM, Novikov AS, Ivanov DM, Piskunov AV, Vereshchagin AA, Levin OV, Bokach NA, Kukushkin VY. The (Dioximate)Ni II/I 2 System: Ligand Oxidation and Binding Modes of Triiodide Species. Inorg Chem 2020; 59:2316-2327. [PMID: 32027131 DOI: 10.1021/acs.inorgchem.9b03132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reinvestigation of (o-benzoquinonedioximate)2Ni/I2 systems demonstrated that the reaction itself and also the crystallization conditions dramatically affect the identity of generated species. Crystallization (CHCl3, 20-25 °C) of the nickel(II) dioximate complex [Ni(bqoxH)2] (bqoxH2 = o-benzoquinonedioxime) with I2 in the 1:(1-10) molar ratios of the reactants led to several (o-benzoquinonedioximate)2Ni derivatives and/or iodine adducts [Ni(I)(bqoxH)(bqoxH2)]·3/2I2, [Ni(I3)(bqoxH)(bqoxH2)]·[Ni(bqoxH)2], and [Ni(I3)(bqox•-)(bqoxH2)]·I2; the latter one, featuring the anion-radical bqox•- ligand, is derived from the formal (-2H+/1e-)-oxidation of bqoxH2. In these three adducts, various types of noncovalent interactions were identified experimentally and their existence was supported theoretically. The [Ni(I3)(bqox•-)(bqoxH2)]·I2 adduct exhibits simultaneous semicoordination and coordination patterns of the triiodide ligand; this is the first recognition of the semicoordination of any polyiodide ligand to a metal center. The semicoordination noncovalent contact Ni···I3 (3.7011(10) Å) is substantially longer that the Ni-I3 coordination bond (2.8476(9) Å), and the difference in energies between these two types of linkages is 8-12 kcal/mol.
Collapse
Affiliation(s)
- Zarina M Efimenko
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Alexandr V Piskunov
- G.A. Razuvaev Institute of Organometallic Chemistry , Russian Academy of Sciences , Tropinina Str. 49 , 603950 Nizhny Novgorod , Russian Federation
| | - Anatoly A Vereshchagin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Oleg V Levin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry , Saint Petersburg State University , Universitetskaya Nab. 7/9 , 199034 Saint Petersburg , Russian Federation
| |
Collapse
|
41
|
Bartashevich EV, Matveychuk YV, Mukhitdinova SE, Sobalev SA, Khrenova MG, Tsirelson VG. The common trends for the halogen, chalcogen, and pnictogen bonds via sorting principles and local bonding properties. Theor Chem Acc 2020. [DOI: 10.1007/s00214-019-2534-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Ciancaleoni G, Nunzi F, Belpassi L. Charge Displacement Analysis-A Tool to Theoretically Characterize the Charge Transfer Contribution of Halogen Bonds. Molecules 2020; 25:molecules25020300. [PMID: 31940866 PMCID: PMC7024339 DOI: 10.3390/molecules25020300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Theoretical bonding analysis is of prime importance for the deep understanding of the various chemical interactions, covalent or not. Among the various methods that have been developed in the last decades, the analysis of the Charge Displacement function (CD) demonstrated to be useful to reveal the charge transfer effects in many contexts, from weak hydrogen bonds, to the characterization of σ hole interactions, as halogen, chalcogen and pnictogen bonding or even in the decomposition of the metal-ligand bond. Quite often, the CD analysis has also been coupled with experimental techniques, in order to give a complete description of the system under study. In this review, we focus on the use of CD analysis on halogen bonded systems, describing the most relevant literature examples about gas phase and condensed phase systems. Chemical insights will be drawn about the nature of halogen bond, its cooperativity and its influence on metal-ligand bond components.
Collapse
Affiliation(s)
- Gianluca Ciancaleoni
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
- Correspondence: ; Tel.: +39-050-221-9351
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy;
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del CNR (SCITEC-CNR), via Elce di Sotto 8, I-06123 Perugia, Italy;
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” del CNR (SCITEC-CNR), via Elce di Sotto 8, I-06123 Perugia, Italy;
| |
Collapse
|
43
|
Gorokh ID, Adonin SA, Usoltsev AN, Novikov AS, Samsonenko DG, Zakharov SV, Sokolov MN, Fedin VP. Bromide complexes of bismuth with 4-bromobenzyl-substituted cations of pyridinium family. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.126955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Sharutin VV, Sharutina OK, Novikov AS, Adonin SA. Substituent-dependent reactivity of triarylantimony(iii) toward I2: isolation of [Ar3SbI]+ salt. NEW J CHEM 2020. [DOI: 10.1039/d0nj02774j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The outcome of reactions of triarylantimony (Ar3Sb) with diiodine in benzene is strongly affected by the identity of the substituents.
Collapse
Affiliation(s)
| | | | - Alexander S. Novikov
- Saint Petersburg State University
- Institute of Chemistry
- 199034 Saint Petersburg
- Russia
| | - Sergey A. Adonin
- South Ural State University
- 454080 Chelyabinsk
- Russia
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
| |
Collapse
|
45
|
Eliseeva AA, Ivanov DM, Novikov AS, Rozhkov AV, Kornyakov IV, Dubovtsev AY, Kukushkin VY. Hexaiododiplatinate(ii) as a useful supramolecular synthon for halogen bond involving crystal engineering. Dalton Trans 2020; 49:356-367. [DOI: 10.1039/c9dt04221k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
By performing combined XRD and theoretical studies, we established the modes of REWGI⋯I–Pt XBs with [Pt2(μ-I)2I4]2−acting as an XB acceptor.
Collapse
Affiliation(s)
- Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Anton V. Rozhkov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Ilya V. Kornyakov
- Institute of Earth Sciences
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexey Yu. Dubovtsev
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
- Institute of Macromolecular Compounds
| |
Collapse
|
46
|
Roca S, Hok L, Vianello R, Borovina M, Đaković M, Karanović L, Vikić-Topić D, Popović Z. The role of non-covalent intermolecular interactions on the diversity of crystal packing in supramolecular dihalopyridine–silver( i) nitrate complexes. CrystEngComm 2020. [DOI: 10.1039/d0ce01257b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structures of six novel Ag+ complexes with NO3− and dihalopyridines revealed intriguing differences that were interpreted by DFT calculations.
Collapse
Affiliation(s)
| | | | | | - Mladen Borovina
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| | - Marijana Đaković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| | - Ljiljana Karanović
- Laboratory for Crystallography
- Faculty of Mining and Geology
- University of Belgrade
- Belgrade
- Serbia
| | - Dražen Vikić-Topić
- Ruđer Bošković Institute
- Zagreb
- Croatia
- Juraj Dobrila University of Pula
- Pula
| | - Zora Popović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Zagreb
- Croatia
| |
Collapse
|
47
|
Rozhkov AV, Ivanov DM, Novikov AS, Ananyev IV, Bokach NA, Kukushkin VY. Metal-involving halogen bond Ar–I⋯[dz2PtII] in a platinum acetylacetonate complex. CrystEngComm 2020. [DOI: 10.1039/c9ce01568j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The observed and confirmed theoretically metal-involving halogen bond Ar–I⋯[dz2PtII] provides experimental evidence favoring a XB formation step upon oxidative addition of ArI to PtII.
Collapse
Affiliation(s)
- Anton V. Rozhkov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
- Institute of Macromolecular Compounds
| |
Collapse
|
48
|
Setter CJ, Whittaker JJ, Brock AJ, Athukorala Arachchige KS, McMurtrie JC, Clegg JK, Pfrunder MC. Straightening out halogen bonds. CrystEngComm 2020. [DOI: 10.1039/d0ce00176g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new parameter is proposed to quantify the linearity of halogen bonds.
Collapse
Affiliation(s)
- Caitlin J. Setter
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Jacob J. Whittaker
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Aidan J. Brock
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane QLD 4000
- Australia
| | | | - John C. McMurtrie
- School of Chemistry and Physics
- Queensland University of Technology
- Brisbane QLD 4000
- Australia
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
| | - Michael C. Pfrunder
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St Lucia QLD 4072
- Australia
- School of Chemistry and Physics
| |
Collapse
|
49
|
Suslonov VV, Eliseeva AA, Novikov AS, Ivanov DM, Dubovtsev AY, Bokach NA, Kukushkin VY. Tetrachloroplatinate(ii) anion as a square-planar tecton for crystal engineering involving halogen bonding. CrystEngComm 2020. [DOI: 10.1039/d0ce00576b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tetrachloroplatinate(ii) anion behaves as a useful XB-accepting tecton toward sigma-hole-donating organohalide species.
Collapse
Affiliation(s)
- Vitalii V. Suslonov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Anastasiya A. Eliseeva
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Alexey Yu. Dubovtsev
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- Universitetskaya Nab. 7/9
- Saint Petersburg
- Russian Federation
| |
Collapse
|
50
|
Usoltsev AN, Adonin SA, Novikov AS, Abramov PA, Sokolov MN, Fedin VP. Chlorotellurate(iv) supramolecular associates with “trapped” Br2: features of non-covalent halogen⋯halogen interactions in crystalline phases. CrystEngComm 2020. [DOI: 10.1039/c9ce01820d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of chlorotellurates(iv) and Br2 afford formation of supramolecular complexes Cat2{[TeCl6](Br2)} (Cat = Me3N+ (1), PyH+ (2), 4-MePyH+ (3) and 1-MePy+ (4)) where dibromine fragments are “trapped” by [TeCl6]3−via Br⋯Cl halogen bonding.
Collapse
Affiliation(s)
- Andrey N. Usoltsev
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
| | - Sergey A. Adonin
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Alexander S. Novikov
- Saint Petersburg State University
- Institute of Chemistry
- 199034 Saint Petersburg
- Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|