1
|
Wang YF, Wang YX, Yang QQ, Yin B. Auxiliary Rather Than Dominant. The Role of Direct Dy-S Coordination in Single-Molecule Magnet Unveiled via ab initio Study. J Phys Chem A 2024; 128:5285-5297. [PMID: 38950340 DOI: 10.1021/acs.jpca.4c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The role of Dy-S coordination in a single-molecule magnet (SMM) is investigated via an ab initio study in a group of mononuclear structures. The SMM performance of this group is well interpreted via a concise criterion consisting of long quantum tunneling of magnetization (QTM) time τQTM and high effective barrier for magnetic reversal Ueff. The best SMMs in the selected group, i.e., 1Dy (CCDC refcode: PUKFAF) and 2Dy (CCDC refcode: NIKSEJ), are just those holding the longest τQTM and the highest Ueff simultaneously. Further analysis based on the crystal field model and ab initio magneto-structural exploration indicates that the influence of Dy-S coordination on the SMM performance of 1Dy is weaker than that of axial Dy-O coordination. Thus, Dy-S coordination is more likely to play an auxiliary role rather than a dominant one. However, if placed at the suitable equatorial position, Dy-S coordination could provide important support for good SMM performance. Consequently, starting from 1Dy, we built two new structures where Dy-S coordination only exists at the equatorial position and two axial positions are occupied by strong Dy-O/Dy-F coordination. Compared to 1Dy and 2Dy, these new ones are predicted to have significantly longer τQTM and higher Ueff, as well as a nearly doubled blocking temperature TB. Thus, they are probable candidates of SMM having clearly improved performance.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an 710127 P. R. China
| |
Collapse
|
2
|
Panja A, Paul S, Moreno-Pineda E, Herchel R, Jana NC, Brandão P, Novitchi G, Wernsdorfer W. Insight into ferromagnetic interactions in Cu II-Ln III dimers with a compartmental ligand. Dalton Trans 2024; 53:2501-2511. [PMID: 38205580 PMCID: PMC10845014 DOI: 10.1039/d3dt03557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In the last two decades, efforts have been devoted to obtaining insight into the magnetic interactions between CuII and LnIII utilizing experimental and theoretical means. Experimentally, it has been observed that the exchange coupling (J) in CuII-LnIII systems is often found to be ferromagnetic for ≥4f7 metal ions. However, exchange interactions at sub-Kelvin temperatures between CuII and the anisotropic/isotropic LnIII ions are not often explored. In this report, we have synthesized a series of heterobimetallic [CuLn(HL)(μ-piv)(piv)2] complexes (LnIII = Gd (1), Tb (2), Dy (3) and Er (4)) from a new compartmental Schiff base ligand, N,N'-bis(3-methoxy-5-methylsalicylidene)-1,3-diamino-2-propanol (H3L). X-ray crystallographic analysis reveals that all four complexes are isostructural and isomorphous. Magnetic susceptibility measurements reveal a ferromagnetic coupling between the CuII ion and its respective LnIII ion for all the complexes, as often observed. Moreover, μ-SQUID studies, at sub-Kelvin temperatures, show S-shaped hysteresis loops indicating the presence of antiferromagnetic coupling in complexes 1-3. The antiferromagnetic interaction is explained by considering the shortest Cu⋯Cu distance in the crystal structure. The nearly closed loops for 1-3 highlight their fast relaxation characteristics, while the opened loops for 4 might arise from intermolecular ordering. CASSCF calculations allow the quantitative assessment of the interactions, which are further supported by BS-DFT calculations.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata-700020, India.
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Sagar Paul
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.
| | - Eufemio Moreno-Pineda
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Depto. de Química-Física, 0824 Panamá, Panama
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Grupo de Investigación de Materiales, 0824 Panamá, Panama
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ghenadie Novitchi
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble-Alpes, B.P. 166, 38042 Grenoble Cedex 9, France
| | - Wolfgang Wernsdorfer
- Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.
- Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen D-76344, Germany
| |
Collapse
|
3
|
Yang QQ, Wang YF, Wang YX, Tang MJ, Yin B. Ab initio prediction of key parameters and magneto-structural correlation of tetracoordinated lanthanide single-ion magnets. Phys Chem Chem Phys 2023. [PMID: 37401358 DOI: 10.1039/d3cp01766d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Single-molecule magnets (SMMs) have great potential in becoming revolutionary materials for micro-electronic devices. As one type of SMM and holding the performance record, lanthanide single-ion magnets (Ln-SIMs) stand at the forefront of the family. Lowering the coordination number (CN) is an important strategy to improve the performance of Ln-SIMs. Here, we report a theoretical study on a typical group of low-CN Ln-SIMs, i.e., tetracoordinated structures. Our results are consistent with those of experiments and they identify the same three best Ln-SIMs via a concise criterion, i.e., the co-existence of long τQTM and high Ueff. Compared to the record-holding dysprosocenium systems, the best SIMs here possess τQTM values that are shorter by several orders of magnitude and Ueff values that are lower by ∼1000 Kelvin (K). These are important reasons for the fact that the tetracoordinated Ln-SIMs are clearly inferior to dysprosocenium. A simple but intuitive crystal-field analysis leads to several routes to improve the performance of a given Ln-SIM, including compression of the axial bond length, widening the axial bond angle, elongation of the equatorial bond length and usage of weaker equatorial donor ligands. Although these routes are not brand-new, the most efficient option and the degree of improvement resulting from it are not known in advance. Consequently, a theoretical magneto-structural study, covering various routes, is carried out for the best Ln-SIM here and the most efficient route is shown to be widening the axial ∠O-Dy-O angle. The most optimistic case, having a ∠O-Dy-O of 180°, could have a τQTM (up to 103 s) and Ueff (∼2400 K) close to those of the record-holders. Subsequently, a blocking temperature (TB) of 64 K is predicted to be possible for it. A more practical case, with ∠O-Dy-O being 160°, could have a τQTM of up to 400 s, Ueff of around 2200 K and the possibility of a TB of 57 K. Although having an inherent precision limit, these predictions provide a guide to performance improvement, starting from an existing system.
Collapse
Affiliation(s)
- Qi-Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Fei Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Yu-Xi Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Ming-Jing Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism (LTMM), College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
4
|
Luo S, Shen X, Gao P, Tu T, Sun X. Magneto-structural maps and bridged-ligand effect for dichloro-bridged dinuclear copper(ii) complexes: a theoretical perspective. RSC Adv 2023; 13:12430-12437. [PMID: 37091610 PMCID: PMC10116190 DOI: 10.1039/d3ra00585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Theoretical understanding of magneto-structural correlations in dichloro-bridged dicopper(ii) complexes can guide the design of magnetic materials having broad-scale applications. However, previous reports suggest these correlations are complicated and unclear. To clarify possible correlations, magnetic coupling constants (J calc) of variants of a representative {Cu-(μ-Cl)2-Cu} complex A were calculated through BS-DFT. The variation of the Cu-(μ-Cl)-Cu angle (α), Cu⋯Cu distance (R 0), and Cu-Cl-Cu-Cl dihedral angle (τ) followed by structural optimization and calculation of the magnetic coupling constant (J calc) revealed several trends. J calc increased linearly with R 0 and τ, and initially increased and then decreased with α. Further, bridging ligand effects on J calc for dicopper(ii) complexes were evaluated through BS-DFT; the results revealed that J calc increased with increasing ligand field strength (I- < Br- < Cl- < N3 - < F-). Furthermore, a linear relationship was found between the spin density of the bridging ligand and J calc.
Collapse
Affiliation(s)
- Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands Bijie 551700 People's Republic of China
| | - Xianwei Shen
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Peng Gao
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Ting Tu
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| | - Xiaoyuan Sun
- College of Chemical Engineering, Guizhou University of Engineering Science Bijie 551700 People's Republic of China
- The Coal Chemical Engineering, 2011 Collaborative Innovation Center of Guizhou Province Bijie 551700 People's Republic of China
| |
Collapse
|
5
|
Shiga T, Miyamoto H, Okamoto Y, Oshio H, Mihara N, Nihei M. Tetranuclear [Cu 3Ln] complexes derived from a tetraketone-type ligand. Dalton Trans 2023; 52:3947-3953. [PMID: 36779535 DOI: 10.1039/d2dt03892g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
A series of tetranuclear [Cu3Ln] complexes, [Cu3Gd(L)3(NO3)2(H2O)3](NO3)·H2O (1), [Cu3Tb(L)3(NO3)2(H2O)3](NO3) (2) and [Cu3Dy(L)3(NO3)3(H2O)2]·1.5(H2O) (3), were synthesized by a one-pot reaction using a simple tetraketone-type ligand (H2L = (3Z,5Z)-4,5-dihydroxy-3,5-octadiene-2,7-dione). X-ray structural analyses revealed that each complex has a planar tetranuclear core of [Cu3Ln] (Ln = Gd, Tb, and Dy), in which the Ln ion is accommodated in the centre of a Cu3O6 metallocycle. A cryomagnetic study revealed that all complexes show intramolecular ferromagnetic interactions between Cu(II) and Ln(III) ions. The [Cu3Gd] complex (1) has an ST = 5 spin ground state and shows a magneto-caloric effect with a maximum magnetic entropy change (-ΔSm) of 16.4 J kg-1 K-1 (5 T, 2.4 K). On the other hand, the [Cu3Tb] complex (2) shows a slow magnetic relaxation behavior under a zero magnetic field. The analysis of an Arrhenius plot reveals that the effective energy barrier of spin reversal is 13.1 K. The [Cu3Dy] complex (3) also shows a slow magnetic relaxation under 1300 Oe dc magnetic field with an effective energy barrier of 6.82 K.
Collapse
Affiliation(s)
- Takuya Shiga
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Haruka Miyamoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yukiko Okamoto
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Hiroki Oshio
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Nozomi Mihara
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masayuki Nihei
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
6
|
Kotaru S, Kähler S, Alessio M, Krylov AI. Magnetic exchange interactions in binuclear and tetranuclear iron(III) complexes described by spin-flip DFT and Heisenberg effective Hamiltonians. J Comput Chem 2023; 44:367-380. [PMID: 35699152 PMCID: PMC10084445 DOI: 10.1002/jcc.26941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/07/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022]
Abstract
Low-energy spectra of single-molecule magnets (SMMs) are often described by Heisenberg Hamiltonians. Within this formalism, exchange interactions between magnetic centers determine the ground-state multiplicity and energy separation between the ground and excited states. In this contribution, we extract exchange coupling constants (J) for a set of iron (III) binuclear and tetranuclear complexes from all-electron calculations using non-collinear spin-flip time-dependent density functional theory (NC-SF-TDDFT). For 12 binuclear complexes with J-values ranging from -6 to -132 cm-1 , our benchmark calculations using the short-range hybrid ωPBEh functional and 6-31G(d,p) basis set agree well with the experimentally derived values (mean absolute error of 4.7 cm-1 ). For the tetranuclear SMMs, the computed J constants are within 6 cm-1 from the experimentally derived values. We explore the range of applicability of the Heisenberg model by analyzing bonding patterns in these Fe(III) complexes using natural orbitals (NO), their occupations, and the number of effectively unpaired electrons. The results illustrate the efficiency of the spin-flip protocol for computing the exchange couplings and the utility of the NO analysis in assessing the validity of effective spin Hamiltonians.
Collapse
Affiliation(s)
- Saikiran Kotaru
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Sven Kähler
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Maristella Alessio
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Anna I. Krylov
- Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia
| |
Collapse
|
7
|
Luo S, Zhang L, Zhai X, Yang X, Sun X. Magneto-structural correlations of dinickel(II) complexes with phenoxido/azido coligands: A theoretical investigation. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Effect of para substituents on magnetic properties of azido-Cu(II) complexes with benzoate/azide coligands: A theoretical perspective. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Rubín J, Arauzo A, Bartolomé E, Sedona F, Rancan M, Armelao L, Luzón J, Guidi T, Garlatti E, Wilhelm F, Rogalev A, Amann A, Spagna S, Bartolomé J, Bartolomé F. Origin of the Unusual Ground-State Spin S = 9 in a Cr 10 Single-Molecule Magnet. J Am Chem Soc 2022; 144:12520-12535. [PMID: 35759747 PMCID: PMC9979690 DOI: 10.1021/jacs.2c05453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular wheel [Cr10(OMe)20(O2CCMe3)10], abbreviated {Cr10}, with an unusual intermediate total spin S = 9 and non-negligible cluster anisotropy, D/kB = -0.045(2) K, is a rare case among wheels based on an even number of 3d-metals, which usually present an antiferromagnetic (AF) ground state (S = 0). Herein, we unveil the origin of such a behavior. Angular magnetometry measurements performed on a single crystal confirmed the axial anisotropic behavior of {Cr10}. For powder samples, the temperature dependence of the susceptibility plotted as χT(T) showed an overall ferromagnetic (FM) behavior down to 1.8 K, whereas the magnetization curve M(H) did not saturate at the expected 30 μB/fu for 10 FM coupled 3/2 spin Cr3+ ions, but to a much lower value, corresponding to S = 9. In addition, the X-ray magnetic circular dichroism (XMCD) measured at high magnetic field (170 kOe) and 7.5 K showed the polarization of the cluster moment up to 23 μB/fu. The magnetic results can be rationalized within a model, including the cluster anisotropy, in which the {Cr10} wheel is formed by two semiwheels, each with four Cr3+ spins FM coupled (JFM/kB = 2.0 K), separated by two Cr3+ ions AF coupled asymmetrically (J23/kB = J78/kB = -2.0 K; J34/kB = J89/kB = -0.25 K). Inelastic neutron scattering and heat capacity allowed us to confirm this model leading to the S = 9 ground state and first excited S = 8. Single-molecule magnet behavior with an activation energy of U/kB = 4.0(5) K in the absence of applied field was observed through ac susceptibility measurements down to 0.1 K. The intriguing magnetic behavior of {Cr10} arises from the detailed asymmetry in the molecule interactions produced by small-angle distortions in the angles of the Cr-O-Cr alkoxy bridges coupling the Cr3+ ions, as demonstrated by ab initio and density functional theory calculations, while the cluster anisotropy can be correlated to the single-ion anisotropies calculated for each Cr3+ ion in the wheel.
Collapse
Affiliation(s)
- Javier Rubín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain,Departamento
de Ciencia y Tecnología de Materiales y Fluidos, Universidad de Zaragoza, 50018 Zaragoza, Spain,
| | - Ana Arauzo
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain,Servicio
de Medidas Físicas, Universidad de
Zaragoza, Pedro Cerbuna
12, 50009 Zaragoza, Spain,Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Elena Bartolomé
- Escola
Universitària Salesiana de Sarrià (EUSS), Passeig Sant Joan Bosco 74, 08017 Barcelona, Spain,
| | - Francesco Sedona
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marzio Rancan
- Institute
of Condensed Matter Chemistry and Technologies for Energy (ICMATE),
National Research Council (CNR), c/o Department of Chemistry, University of Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Lidia Armelao
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy,Department
of Chemical Sciences and Materials Technologies (DSCTM), National Research Council (CNR), Piazzale A. Moro 7, 00185 Roma, Italy
| | - Javier Luzón
- Academia
General Militar, Centro Universitario de
la Defensa, 50090 Zaragoza, Spain
| | - Tatiana Guidi
- Physics
Division, School of Science and Technology, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy,ISIS
Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, Oxfordshire, U.K.
| | - Elena Garlatti
- Dipartimento
di Science Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Fabrice Wilhelm
- ESRF − The European Synchrotron Radiation Facility, 71 Avenue des Martyrs CS40220, F-38043 Grenoble Cedex 09, France
| | - Andrei Rogalev
- ESRF − The European Synchrotron Radiation Facility, 71 Avenue des Martyrs CS40220, F-38043 Grenoble Cedex 09, France
| | - Andreas Amann
- Quantum Design Inc., San Diego, California 92121, United States
| | - Stefano Spagna
- Quantum Design Inc., San Diego, California 92121, United States
| | - Juan Bartolomé
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain,Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Fernando Bartolomé
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain,Departamento
de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain,
| |
Collapse
|
10
|
Liu H, Li JF, Yin B. The coexistence of long τQTM and high Ueff as a concise criterion for a good single-molecule magnet: a theoretical case study of square antiprism dysprosium single-ion magnets. Phys Chem Chem Phys 2022; 24:11729-11742. [PMID: 35506508 DOI: 10.1039/d2cp00776b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic theoretical study is performed on a group of 16 square antiprism dysprosium single-ion magnets. Based on ab initio calculations, the quantum tunneling of magnetization (QTM) time, i.e., τQTM, and effective barrier of magnetic reversal, Ueff, are theoretically predicted. The theoretical τQTM is able to identify the ones with the longest QTM time with small numerical deviations. Similar results occur with respect to Ueff too. The systems possessing the best single-molecule magnet (SMM) properties here are just the ones having both the longest τQTM and the highest Ueff, from either experiment or theory. Thus, our results suggest the coexistence of long τQTM and high Ueff to be a criterion for high-performance SMMs. Although having its own limits, this criterion is easy to be applied in a large number of systems since both τQTM and Ueff could be predicted by theory with satisfactory efficiency and reliability. Therefore, this concise criterion could provide screened candidates for high-performance SMMs quickly and, hence, ease the burden of further exploration aiming for a higher degree of precision. This screening is important since the further exploration could easily demand tens or even hundreds of ab initio calculations for a single SMM. A semi-quantitative crystal field (CF) analysis is performed and shown here to be capable of indicating the general trends in a more chemically intuitive way. This analysis could help to identify the most important coordinating atoms for both diagonal and non-diagonal CF components. Thus, it could give some direct clues for improving the SMM properties: reducing the distance of the axial atom to the central ion, rotating the axial atom closer to the easy axis or increasing the amount of its negative charge. Correspondingly, opposite operations on the equatorial atom could give the same result.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Jin-Feng Li
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, P. R. China
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Lab of Theoretical Molecular Magnetism, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
11
|
Roy S, Shukla P, Prakash Sahu P, Sun Y, Ahmed N, Chandra Sahoo S, Wang X, Kumar Singh S, Das S. Zero‐field Slow Magnetic Relaxation Behavior of Dy
2
in a Series of Dinuclear {Ln
2
} (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Prem Prakash Sahu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Naushad Ahmed
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | | | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Saurabh Kumar Singh
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| |
Collapse
|
12
|
Luo S, Su Y, Wang Y, Sun X. Theoretical studies on dicopper(II) complexes of phenoxido-bridged ligands: Magneto-structural correlations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Wu X, Li J, Yin B. The interpretation and prediction of lanthanide single-ion magnet from ab initio electronic structure calculation: The capability and limit. Dalton Trans 2022; 51:14793-14816. [DOI: 10.1039/d2dt01507b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnet (SMM) is a fascinating system holding the potential of being revolutionary micro-electronic device in information technology. However current SMMs are still far away from real-life application due to...
Collapse
|
14
|
Kumar P, Flores Gonzalez J, Sahu PP, Ahmed N, Acharya J, Kumar V, Cador O, Pointillart F, Singh SK, Chandrasekhar V. Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of a series of rare peroxide-assisted tetranuclear lanthanide assemblies revealed both significant magnetocaloric effect and slow magnetic relaxation.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| |
Collapse
|
15
|
Chakrabarty A, Ahmed N, Ali J, MOORTHY SHRUTI, Goura J, Singh SKK, Rogez G, Chandrasekhar V. Exchange-Driven Slow Relaxation of Magnetization in NiII2LnIII2 (LnIII = Y, Gd, Tb and Dy) Butterfly complexes: Experimental and Theoretical Studies. Dalton Trans 2022; 51:14721-14733. [DOI: 10.1039/d2dt00237j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetranuclear NiII2LnIII2 complexes, [{L′2{Ni(MeOH)(μ-OAc)}2(μ3-MeO)2Ln2}; LnIII = YIII (1), GdIII (2), TbIII (3), DyIII (4)] were prepared using a Schiff base ligand, H3L [H3L = 3-((2-hydroxy-3-methoxybenzylidene)amino)-2-(2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one, whereas {L′}3- is the...
Collapse
|
16
|
Wilson LRB, Coletta M, Jose R, Rajaraman G, Dalgarno SJ, Brechin EK. Oxidation state variation in bis-calix[4]arene supported decametallic Mn clusters. Dalton Trans 2021; 50:17566-17572. [PMID: 34816846 DOI: 10.1039/d1dt03410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of MnCl2·4H2O, H8L (2,2'-bis-p-tBu-calix[4]arene) and NEt3 in a dmf/MeOH solvent mixture results in the formation of a mixed valent decametallic cluster of formula [MnII6MnIII4(L)2(μ3-OH)4(μ-OH)4(MeOH)4(dmf)4(MeCN)2]·MeCN (3). Complex 3 crystallises in the monoclinic space group P21/n with the asymmetric unit comprising half of the compound. Structure solution reveals that the bis-calix[4]arene ligands are arranged such that one TBC[4] moiety in each has undergone inversion in order to accommodate a [MnIII4MnII6] metallic skeleton that describes three vertex-sharing [MnIII2MnII2] butterflies. The structure is closely related to the species [MnIII6MnII4(L)2(μ3-O)2(μ3-OH)2(μ-OMe)4(H2O)4(dmf)8]·4dmf (4), the major difference being the oxidation level of the Mn ions in the core of the compound. DFT calculations on the full structures reveal that replacing the MnIII ions in 4 for MnII ions in 3 results in a significant decrease in the magnitude of some antiferromagnetic exchange contributions, a switch from ferromagnetic to antiferromagnetic in others, and the loss of significant spin frustration.
Collapse
Affiliation(s)
- Lucinda R B Wilson
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| | - Marco Coletta
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| | - Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland, EH14 4AS, UK.
| | - Euan K Brechin
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| |
Collapse
|
17
|
Swain A, Sen A, Rajaraman G. Are lanthanide-transition metal direct bonds a route to achieving new generation {3d-4f} SMMs? Dalton Trans 2021; 50:16099-16109. [PMID: 34647556 DOI: 10.1039/d1dt02256c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lanthanide based single-molecule magnets are gaining wide attention due to their potential applications in emerging technologies. One of the main challenges in this area is quenching quantum tunnelling of magnetisation (QTM), which often undercuts the magnetisation reversal barrier. Among the several strategies employed, enhancing exchange coupling has been studied in detail, with large exchanges resulting in stronger quenching of QTM effects. Lanthanides, however, suffer from weak exchanges offered by the deeply buried 4f orbitals and the numerous attempts to enhance the exchange coupling in the {3d-4f} pairs have not exceeded values larger than 30 cm-1. In this work, using a combination of DFT and the ab initio CASSCF/RASSI-SO method, we have explored lanthanide-transition metal direct bonds as a tool to quench QTM effects. In this direction, we have modelled [PyCp2LnMCp(CO)2] (Ln = Gd(III), Dy(III), and Er(III) and M = V(0), Mn(0), Co(0) and Fe(I) and here PyCp2 = [2,6-(CH2C5H3)2C5H3N]2- using [PyCp2DyFeCp(CO)2] as an example as reported by Nippe et al. (C. P. Burns, X. Yang, J. D. Wofford, N. S. Bhuvanesh, M. B. Hall and M. Nippe, Angew. Chem., Int. Ed. 2018, 57, 8144). Bonding analysis reveals a dative Ln-TM bond with a donation of π(V/Mndxy-π*CO) to 5dz2 (Gd) in the case of Gd-V and Gd-Mn and 4s(Co) to 5dxy/5dyz (Gd) for Gd-Co with the transition metal ion being found in the low-spin S = ½ configurations in all the cases. B3LYP/TZV (Gd;CSDZ) calculations on [PyCp2GdMCp(CO)2] yield JGd-V = -46.1 cm-1, JGd-Mn = -57.1 cm-1, JGd-Co = +55.3 cm-1, JGd-Fe+ = +13.9 cm-1, JGd-Vhs = -162.1 cm-1 and JGd-Mnhs = -343.9 cm-1 and unveiling record-high J values for {3d-4f} complexes. The mechanism of magnetic coupling is developed, which discloses the dominating presence of strong 3d-4f orbital overlaps in most of the cases studied, leading to antiferromagnetic exchange. When these overlaps are weaker and 3d to Gd(5dz2), charge transfer dominates, yielding a ferromagnetic coupling for the Gd-Co/Gd-Fe+ complexes. Calculations performed on the anisotropic Dy(III) and Er(III) complexes reveal that the ground state gzz axis lies along the Cp-Ln-Cp axis and the Ln-TM bonds, respectively. Thus the Ln-TM bond hinders the single-ion anisotropy of Dy(III) by offering equatorial ligation and lowering the mJ = ±½ state energy, and at the same time, helping in enhancing the axiality of Er(III). When strong {3d-4f} exchange couplings are introduced, record-high barrier heights as high as 229 cm-1 were accomplished. Furthermore, the exchange coupling annihilates the QTM effects and suggests the lanthanide-transition metal direct bond as a viable alternative to enhance exchange coupling to bring {3d-4f} complexes back in the race for high-blocking SMMs.
Collapse
Affiliation(s)
- Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India.
| |
Collapse
|
18
|
Luo S, Xiao W, Sun X, Zheng P. Regulation mechanism of the solvent coligands on the magnetic properties of azido-Cu(II) complexes by mixed carboxylate/alkanols ligands: A theoretical exploration. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Wu Y, Xia CC, Wang XY. Syntheses, structures and magnetic properties of a series of lanthanide complexes with reduced nitronyl nitroxide radical ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
|
21
|
Georgiev M, Chamati H. Molecular magnetism in the multi-configurational self-consistent field method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:075803. [PMID: 33152727 DOI: 10.1088/1361-648x/abc802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We develop a structured theoretical framework used in our recent articles (2019 Eur. Phys. J. B 92 93 and 2020 Phys. Rev. B 101 094427) to characterize the unusual behavior of the magnetic spectrum, magnetization and magnetic susceptibility of the molecular magnet Ni4Mo12. The theoretical background is based on the molecular orbital theory in conjunction with the multi-configurational self-consistent field method and results in a post-Hartree-Fock scheme for constructing the corresponding energy spectrum. Furthermore, we construct a bilinear spin-like Hamiltonian involving discrete coupling parameters accounting for the relevant spectroscopic magnetic excitations, magnetization and magnetic susceptibility. The explicit expressions of the eigenenergies of the ensuing Hamiltonian are determined and the physical origin of broadening and splitting of experimentally observed peaks in the magnetic spectra is discussed. To demonstrate the efficiency of our method we compute the spectral properties of a spin-one magnetic dimer. The present approach may be applied to a variety of magnetic units based on transition metals and rare Earth elements.
Collapse
Affiliation(s)
- M Georgiev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| | - H Chamati
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| |
Collapse
|
22
|
Coletta M, Sanz S, Cutler DJ, Teat SJ, Gagnon KJ, Singh MK, Brechin EK, Dalgarno SJ. Magneto-structural studies of an unusual [Mn IIIMn IIGd III(OR) 4] 4- partial cubane from 2,2'-bis- p- tBu-calix[4]arene. Dalton Trans 2020; 49:14790-14797. [PMID: 33052369 DOI: 10.1039/d0dt02731f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reaction of 2,2'-bis-p-tBu-calix[4]arene (H8L) with MnCl2·4H2O, GdCl3·6H2O and 2,6-pyridinedimethanol (H2pdm) affords [MnIIIMnIIGdIII(H3L)(pdmH)(pdm)(MeOH)2(dmf)]·3MeCN·dmf (3·3MeCN·dmf) upon vapour diffusion of MeCN into the basic dmf/MeOH mother liquor. 3 crystallises in the tetragonal space group P41212 with the asymmetric unit comprising the entire cluster. The highly unusual core contains a triangular arrangement of MnIIIMnIIGdIII ions housed within a [MnIIIMnIIGdIII(OR)4]4- partial cubane. Magnetic susceptibility and magnetisation data reveal best fit parameters JMn(II)-Mn(III) = +0.415 cm-1, JMn(III)-Gd(III) = +0.221 cm-1, JMn(II)-Gd(III) = -0.258 cm-1 and DMn(III) = -4.139 cm-1. Theoretically derived magnetic exchange interactions, anisotropy parameters, and magneto-structural correlations for 3 are in excellent agreement with the experimental data.
Collapse
Affiliation(s)
- Marco Coletta
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland EH14 4AS, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
24
|
Damgaard-Møller E, Krause L, Lassen H, Malaspina LA, Grabowsky S, Bamberger H, McGuire J, Miras HN, Sproules S, Overgaard J. Investigating Complex Magnetic Anisotropy in a Co(II) Molecular Compound: A Charge Density and Correlated Ab Initio Electronic Structure Study. Inorg Chem 2020; 59:13190-13200. [PMID: 32869986 DOI: 10.1021/acs.inorgchem.0c01489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding magnetic anisotropy and specifically how to tailor it is crucial in the search for high-temperature single-ion magnets. Herein, we investigate the magnetic anisotropy in a six-coordinated cobalt(II) compound that has a complex geometry and distinct triaxial magnetic anisotropy from the perspective of the electronic structure, using electronic spectra, ab initio calculations, and an experimental charge density, of which the latter two provides insight into the d-orbital splitting. The analysis showed that the d-orbital splitting satisfactorily predicted the complex triaxial magnetic anisotropy exhibited by the compound. Furthermore, a novel method to directly compare the ab initio results and the d-orbital populations obtained from the experimental charge density was developed, while a topological analysis of the density provided insights into the metal-ligand bonding. This work thus further establishes the validity of using d-orbitals for predicting magnetic anisotropy in transition metal compounds while also pointing out the need for a more frequent usage of the term triaxial anisotropy in the field of single-molecule magnetism.
Collapse
Affiliation(s)
- Emil Damgaard-Møller
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lennard Krause
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Helene Lassen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lorraine A Malaspina
- Department 2-Biology/Chemistry, University of Bremen, Leobener Str. 3, 28359 Bremen, Germany
| | - Simon Grabowsky
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Heiko Bamberger
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Jake McGuire
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Glasgow, United Kingdom
| | - Jacob Overgaard
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Kowalkowska-Zedler D, Nedelko N, Kazimierczuk K, Aleshkevych P, Łyszczek R, Ślawska-Waniewska A, Pladzyk A. Novel tetrahedral cobalt(ii) silanethiolates: structures and magnetism. RSC Adv 2020; 10:29100-29108. [PMID: 35521135 PMCID: PMC9055939 DOI: 10.1039/d0ra06036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Three heteroleptic complexes of Co(ii) tri-tert-butoxysilanethiolates have been synthesized with piperidine [Co{SSi(OtBu)3}2(ppd)2] 1, piperazine [Co{SSi(OtBu)3}2(NH3)]2(μ-ppz)·2CH3CN 2, and N-ethylimidazole [Co{SSi(OtBu)3}2(etim)2] 3. The complexes have been characterized by a single-crystal X-ray, revealing their tetrahedral geometry on Co(ii) coordinated by two nitrogen and two sulfur atoms. Complexes 1 and 3 are mononuclear, whereas 2 is binuclear. The spectral properties and thermal properties of 1-3 complexes were established by FTIR spectroscopy for solid samples and TGA. The magnetic properties of complexes 1, 2, and 3 have been investigated by static magnetic measurements and X-band EPR spectroscopy. These studies have shown that 1 and 3, regardless of the similarity in structure of CoN2S2 cores, demonstrate different types of local magnetic anisotropy. Magnetic investigations of 2 reveal the presence of weak antiferromagnetic intra-molecular Co(ii)-Co(ii) interactions that are strongly influenced by the local magnetic anisotropy of individual Co(ii) ions.
Collapse
Affiliation(s)
- Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Natalia Nedelko
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Katarzyna Kazimierczuk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| | - Pavlo Aleshkevych
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Renata Łyszczek
- Department of Coordination and General Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin M.C. Skłodowska Sq. 2 20-031 Lublin Poland
| | - Anna Ślawska-Waniewska
- Institute of Physics, Polish Academy of Sciences Aleja Lotników 32/46 02-668 Warsaw Poland
| | - Agnieszka Pladzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology Narutowicza Str. 11/12 80-233 Gdańsk Poland
| |
Collapse
|
26
|
Effects of carboxylic acid auxiliary ligands on the magnetic properties of azido-Cu(II) complexes: A density functional theory study. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Chakraborty A, Acharya J, Chandrasekhar V. Ferrocene-Supported Compartmental Ligands for the Assembly of 3d/4f Complexes. ACS OMEGA 2020; 5:9046-9054. [PMID: 32363256 PMCID: PMC7191595 DOI: 10.1021/acsomega.0c00654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Site-specific coordination ligands, also known as compartmental ligands, have been used for the preparation of heterometallic complexes. These ligands, by virtue of possessing specific binding sites, can encapsulate different metal ions in their coordination pockets. Such compartmental ligands have been widely used for the preparation of heterometallic 3d/4f complexes which have applications in molecular magnetism. This Review summarizes our efforts in the use of ferrocene-based compartmental ligands for the preparation of heterometallic 3d/4f complexes, some of which are single-molecule or single-ion magnets.
Collapse
Affiliation(s)
- Amit Chakraborty
- Tata
Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal,
Ranga Reddy District, Hyderabad 500107, India
| | - Joydev Acharya
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| | - Vadapalli Chandrasekhar
- Tata
Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal,
Ranga Reddy District, Hyderabad 500107, India
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, India
| |
Collapse
|
28
|
Singh MK. Probing the strong magnetic exchange behaviour of transition metal–radical complexes: a DFT case study. Dalton Trans 2020; 49:4539-4548. [DOI: 10.1039/d0dt00262c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alteration of the structural parameters of metal–radical complexes may pave the way forward for fine tuning the magnetic exchange coupling value as high as >−500 cm−1 – a much sought-after parameter in the area of SMMs.
Collapse
|
29
|
Yang LL, Zhou J, Zou HH, Hu F, Zhao JW. A series of new polynuclear lanthanide(III) clusters prepared in alkylol amine. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Hay MA, Sarkar A, Craig GA, Marriott KER, Wilson C, Rajaraman G, Murrie M. A large axial magnetic anisotropy in trigonal bipyramidal Fe(ii). Chem Commun (Camb) 2020; 56:6826-6829. [DOI: 10.1039/d0cc02382e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Minimising geometric distortion in the first coordination sphere generates a large axial magnetic anisotropy in trigonal bipyramidal Fe(ii) and rare slow magnetic relaxation.
Collapse
Affiliation(s)
- Moya A. Hay
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Arup Sarkar
- Department of Chemistry
- Institute of Technology Bombay
- Mumbai
- India
| | | | | | | | | | - Mark Murrie
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
31
|
Díaz-Ortega IF, Herrera JM, Dey S, Nojiri H, Rajaraman G, Colacio E. The effect of the electronic structure and flexibility of the counteranions on magnetization relaxation in [Dy(L)2(H2O)5]3+ (L = phosphine oxide derivative) pentagonal bipyramidal SIMs. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01412h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of the electronic structure and flexibility of triflate anions in a new high-Ueff TBPY-7 SMM, [Dy(OPCy3)2(H2O)5](CF3SO3)3·2OPCy3, have been analyzed.
Collapse
Affiliation(s)
- Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| | - Juan Manuel Herrera
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| | - Sourav Dey
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Hiroyuki Nojiri
- Institute for Materials Research
- Tohoku University
- Sendai
- Japan
| | - Gopalan Rajaraman
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Enrique Colacio
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- Granada
- Spain
| |
Collapse
|
32
|
Azido-cobalt(II) coordination polymers exhibiting slow magnetic relaxation and metamagnetic transition. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Vignesh KR, Martin RB, Miller G, Rajaraman G, Murray KS, Langley SK. {MnIII2LnIII2} (Ln = Gd, La or Y) butterfly complexes: Ferromagnetic exchange observed between bis-μ-alkoxo bridged manganese(III) ions. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.05.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Hay MA, Sarkar A, Marriott KER, Wilson C, Rajaraman G, Murrie M. Investigation of the magnetic anisotropy in a series of trigonal bipyramidal Mn(ii) complexes. Dalton Trans 2019; 48:15480-15486. [PMID: 31282505 DOI: 10.1039/c9dt02187f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding how the magnetic anisotropy in simple coordination complexes can be manipulated is instrumental to the development of single-molecule magnets (SMMs). Clear strategies can then be designed to control both the axial and transverse contributions to the magnetic anisotropy in such compounds, and allow them to reach their full potential. Here we show a strategy for boosting the magnetic anisotropy in a series of trigonal bipyramidal Mn(ii) complexes - [MnCl3(HDABCO)(DABCO)] (1), [MnCl3(MDABCO)2]·[ClO4] (2), and [MnCl3(H2O)(MDABCO)] (3). These have been successfully synthesised using the monodentate [DABCO] and [MDABCO]+ ligands. Through static (DC) magnetic measurements and detailed theoretical investigation using ab initio methods, the magnetic anisotropy of each system has been studied. The calculations reveal that the rhombic zero-field splitting (ZFS) term (E) can be tuned as the symmetry around the Mn(ii) ion is changed. Furthermore, an in silico investigation reveals a strategy to increase the axial ZFS parameter (D) of trigonal bipyramidal Mn(ii) by an order of magnitude.
Collapse
Affiliation(s)
- Moya A Hay
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Arup Sarkar
- Department of Chemistry, Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India.
| | - Katie E R Marriott
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Gopalan Rajaraman
- Department of Chemistry, Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400 076, India.
| | - Mark Murrie
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
35
|
Peng Y, Singh MK, Mereacre V, Anson CE, Rajaraman G, Powell AK. Mechanism of magnetisation relaxation in {MIII2DyIII2} (M = Cr, Mn, Fe, Al) "Butterfly" complexes: how important are the transition metal ions here? Chem Sci 2019; 10:5528-5538. [PMID: 31293737 PMCID: PMC6552965 DOI: 10.1039/c8sc05362f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/04/2019] [Indexed: 11/21/2022] Open
Abstract
We describe the synthesis, characterisation and magnetic studies of four tetranuclear, isostructural "butterfly" heterometallic complexes: [MIII2LnIII2(μ3-OH)2(p-Me-PhCO2)6(L)2] (H2L = 2,2'-((pyridin-2-ylmethyl)azanediyl)bis(ethan-1-ol), M = Cr, Ln = Dy (1), Y (2), M = Mn, Ln = Dy (3), Y (4)), which extend our previous study on the analogous 5 {Fe2Dy2}, 6 {Fe2Y2} and 7 {Al2Dy2} compounds. We also present data on the yttrium diluted 7 {Al2Dy2}: 8 {Al2Dy0.18Y1.82}. Compounds dc and ac magnetic susceptibility data reveal single-molecule magnet (SMM) behaviour for complex 3 {Mn2Dy2}, in the absence of an external magnetic field, with an anisotropy barrier U eff of 19.2 K, while complex 1 {Cr2Dy2}, shows no ac signals even under applied dc field, indicating absence of SMM behaviour. The diluted sample 8 {Al2Dy0.18Y1.82} shows field induced SMM behaviour with an anisotropy barrier U eff of 69.3 K. Furthermore, the theoretical magnetic properties of [MIII2LnIII2(μ3-OH)2(p-Me-PhCO2)6(L)2] (M = Cr, 1 or Mn, 3) and their isostructural complexes: [MIII2DyIII2(μ3-OH)2(p-Me-PhCO2)6(L)2] (M = Fe, 5 or Al, 7) are discussed and compared. To understand the experimental observations for this family, DFT and ab initio CASSCF + RASSI-SO calculations were performed. The experimental and theoretical calculations suggest that altering the 3dIII ions can affect the single-ion properties and the nature and the magnitude of the 3dIII-3dIII, 3dIII-DyIII and DyIII-DyIII magnetic coupling, thus quenching the quantum tunneling of magnetisation (QTM) significantly, thereby improving the SMM properties within this motif. This is the first systematic study looking at variation and therefore role of trivalent transition metal ions, as well as the diamgnetic AlIII ion, on slow relaxation of magnetisation within a series of isostructural 3d-4f butterfly compounds.
Collapse
Affiliation(s)
- Yan Peng
- Institute of Inorganic Chemistry , Karlsruhe Institute of Technology , Engesserstrasse 15 , 76131 Karlsruhe , Germany .
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Postfach 3640 , 76021 Karlsruhe , Germany
| | - Mukesh Kumar Singh
- IITB-Monash Research Academy , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India .
| | - Valeriu Mereacre
- Institute of Inorganic Chemistry , Karlsruhe Institute of Technology , Engesserstrasse 15 , 76131 Karlsruhe , Germany .
| | - Christopher E Anson
- Institute of Inorganic Chemistry , Karlsruhe Institute of Technology , Engesserstrasse 15 , 76131 Karlsruhe , Germany .
| | - Gopalan Rajaraman
- IITB-Monash Research Academy , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , India .
| | - Annie K Powell
- Institute of Inorganic Chemistry , Karlsruhe Institute of Technology , Engesserstrasse 15 , 76131 Karlsruhe , Germany .
- Institute of Nanotechnology , Karlsruhe Institute of Technology , Postfach 3640 , 76021 Karlsruhe , Germany
| |
Collapse
|
36
|
Singh MK, Rajaraman G. Theoretical Studies on Hexanuclear [M 3(μ 3-O/OH)] 2 (M = Fe(III), Mn(III), and Ni(II)) Clusters: Magnetic Exchange, Magnetic Anisotropy, and Magneto-Structural Correlations. Inorg Chem 2019; 58:3175-3188. [PMID: 30741554 DOI: 10.1021/acs.inorgchem.8b03257] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling spin Hamiltonian parameters such as magnetic exchange and magnetic anisotropy of polynuclear clusters is of great interest in the area of single molecule magnets (SMMs). Among large polynuclear clusters, hexanuclear clusters offer the best compromise in terms of size as they are often rigid, solution stable, and chemically amenable. The {M6O2} core is one of the common architectures known for many hexanuclear clusters and generally reported to possess a diamagnetic ST = 0 spin ground state, barring a few exceptions. In these clusters, there are several open questions that are poorly understood: (a) What controls the nature of magnetic exchange, which in turn dictates the ground state spin values? (b) For clusters possessing a nonzero spin ground state, what dictates the magnetic anisotropy? Here, using density functional methods, we have attempted to shed light on these two question by evaluating the exchange coupling constants in [Fe6IIIO2(OH)2{(C4N2H2SMe)2C(OH)O}2( tBuCO2)10] (1), [Fe6III(O)2(O2CH2)(O2CCH2 tBu)12(py)2] (2), [Fe6III(O2)(O)2(O2CCMe3)12(py)2] (3), [FeIII6O3(O2CMe)9(OEt)2(bpy)2]ClO4 (4), [MnIII6O2(O2CH2)(O2CPe t)11(HO2CPe t)2(O2CMe)] (5), and [NiII6(OH)4(O2C tBu)8( tBuCO2H)4] (6) complexes. We have estimated all the eight near-neighbor exchange coupling constants in these clusters. Our calculations not only agree with the experimental results but also offer insight on the origin of the spin ground state. Extensive magneto-structural correlations developed by varying M-O-M angles and M-O distances reveal that J values are extremely sensitive to small structural distortions. Correlations developed indicate that both the parameters are important for Fe(III), but for Mn(III) and Ni(II), the angles were found to play a dominant role. Quite interestingly, the computed zero-field splitting parameter D S=5 of complex 1 reveals that the exchange contribution to the anisotropy controls the sign of the ground state D value-an observation which differs from the general perception that the ground state D is controlled by the single-ion zero-field splitting parameter.
Collapse
Affiliation(s)
- Mukesh Kumar Singh
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai , Maharashtra , India - 400076
| | - Gopalan Rajaraman
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai , Maharashtra , India - 400076
| |
Collapse
|
37
|
Zhang K, Li GP, Montigaud V, Cador O, Le Guennic B, Tang J, Wang YY. Tetranuclear dysprosium single-molecule magnets: tunable magnetic interactions and magnetization dynamics through modifying coordination number. Dalton Trans 2019; 48:2135-2141. [PMID: 30667435 DOI: 10.1039/c8dt05004j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study of mononuclear lanthanide-based systems, where the observed Single Molecule Magnets (SMMs) properties originate from the local magnetic anisotropy of the single lanthanide ion, has been extensively investigated in the literature. The case for polynuclear lanthanide SMMs becomes more challenging both experimentally and theoretically due to the complexity of such architectures involving interactions between the magnetic centers. Much interest was devoted to the study of the structural effect on the magnetic interactions and relaxation dynamics. However, the understanding of the structural influence on those two factors remains a difficult task. To address this issue, a system containing two structurally related tetranuclear Dy(iii) SMMs, namely [Dy4(L)4(OH)2(DMF)4(NO3)2]·2(DMF)·(H2O) (1) and [Dy4(L)4(OH)2(DMF)2(NO3)2] (2) (H2L = 2-(2-hydroxy-3-methoxybenzylideneamino)phenol), is introduced and investigated. Through modifying the ligands on the changeable coordination sites, the intramolecular magnetic interactions and relaxation dynamics in these two Dy(iii)4 SMMs can be tuned. Both complexes exhibit slow relaxation of their magnetization with a relaxation barrier of 114 K for complex 2 while a blocking temperature below 2 K is observed for complex 1. Ab initio calculations reveal that changes in coordination numbers and geometries on the Dy(iii) sites can significantly affect the magnetic interactions as well as single-ion anisotropy. The combination of experimental work and ab initio calculations offers insight into the relationship between structures and magnetic properties and sheds light on the rational design of future polynuclear lanthanide SMMs with enhanced magnetic properties.
Collapse
Affiliation(s)
- Kun Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, 710048, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Świtlicka A, Palion-Gazda J, Machura B, Cano J, Lloret F, Julve M. Field-induced slow magnetic relaxation in pseudooctahedral cobalt(ii) complexes with positive axial and large rhombic anisotropy. Dalton Trans 2019; 48:1404-1417. [DOI: 10.1039/c8dt03965h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation, X-ray crystal structure, spectroscopic and variable-temperature dc and ac magnetic properties of two six-coordinate cobalt(ii) complexes of formula [Co(bim)4(tcm)2] (1) and [Co(bmim)4(tcm)2] (2) are reported.
Collapse
Affiliation(s)
- Anna Świtlicka
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joanna Palion-Gazda
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Barbara Machura
- Department of Crystallography
- Institute of Chemistry
- University of Silesia
- 40-006 Katowice
- Poland
| | - Joan Cano
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
- Fundació General de la Universitat de València (FGUV)
| | - Francesc Lloret
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| | - Miguel Julve
- Department of Química Inorgànica/Instituto de Ciencia Molecular (ICMol)
- Facultat de Quimica de la Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|
39
|
Gupta T, Rajaraman G. Magnetic Anisotropy, Magneto-Structural Correlations and Mechanism of Magnetic Relaxation in {DyIII
N8
} Complexes: A Theoretical Perspective. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tulika Gupta
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai, Mumbai India
| |
Collapse
|
40
|
Hu P, Wang XN, Jiang CG, Yu F, Li B, Zhuang GL, Zhang T. Nanosized Chiral [Mn6Ln2] Clusters Modeled by Enantiomeric Schiff Base Derivatives: Synthesis, Crystal Structures, and Magnetic Properties. Inorg Chem 2018; 57:8639-8645. [DOI: 10.1021/acs.inorgchem.8b01423] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Peng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Xiao-ning Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Cheng-gang Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Fan Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, Hubei 430056, People’s Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| | - Gui-lin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, People’s Republic of China
| | - Tianle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic of China
| |
Collapse
|
41
|
Fraser HWL, Smythe L, Dey S, Nichol GS, Piligkos S, Rajaraman G, Brechin EK. A simple methodology for constructing ferromagnetically coupled Cr(iii) compounds. Dalton Trans 2018; 47:8100-8109. [PMID: 29877529 DOI: 10.1039/c8dt01963k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large family of chromium(iii) dimers has been synthesised and magneto-structurally characterised using a combination of carboxylate and diethanolamine type ligands. The compounds have the general formula [Cr2(R1-deaH)2(O2CR2)Cl2]Cl where R1 = Me and R2 = H (1), Me (2), CMe3 (3), Ph (4), 3,5-(Cl)2Ph (5), (Me)5Ph (6), R1 = Et and R2 = H (7), Ph (8). The compound [Cr2(Me-deaH)2Cl4] (9) was synthesised in order to study the effect of removing/adding the carboxylate bridge on the observed magnetic behaviour. Direct current (DC) magnetic susceptibility measurements showed ferromagnetic (FM) exchange interactions between the Cr(iii) centres in the carboxylate bridged family with coupling constants in the range +0.37 < J < +8.02 cm-1. Removal of the carboxylate to produce the dialkoxide-bridged compound 9 resulted in antiferromagnetic (AFM) exchange between the Cr(iii) ions. DFT calculations reveal the ferromagnetic exchange is the result of an orbital counter-complementarity effect occuring upon introduction of the bridging carboxylate.
Collapse
Affiliation(s)
- Hector W L Fraser
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ Scotland, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Clayton JA, Keller K, Qi M, Wegner J, Koch V, Hintz H, Godt A, Han S, Jeschke G, Sherwin MS, Yulikov M. Quantitative analysis of zero-field splitting parameter distributions in Gd(iii) complexes. Phys Chem Chem Phys 2018; 20:10470-10492. [PMID: 29617015 DOI: 10.1039/c7cp08507a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The magnetic properties of paramagnetic species with spin S > 1/2 are parameterized by the familiar g tensor as well as "zero-field splitting" (ZFS) terms that break the degeneracy between spin states even in the absence of a magnetic field. In this work, we determine the mean values and distributions of the ZFS parameters D and E for six Gd(iii) complexes (S = 7/2) and critically discuss the accuracy of such determination. EPR spectra of the Gd(iii) complexes were recorded in glassy frozen solutions at 10 K or below at Q-band (∼34 GHz), W-band (∼94 GHz) and G-band (240 GHz) frequencies, and simulated with two widely used models for the form of the distributions of the ZFS parameters D and E. We find that the form of the distribution of the ZFS parameter D is bimodal, consisting roughly of two Gaussians centered at D and -D with unequal amplitudes. The extracted values of D (σD) for the six complexes are, in MHz: Gd-NO3Pic, 485 ± 20 (155 ± 37); Gd-DOTA/Gd-maleimide-DOTA, -714 ± 43 (328 ± 99); iodo-(Gd-PyMTA)/MOMethynyl-(Gd-PyMTA), 1213 ± 60 (418 ± 141); Gd-TAHA, 1361 ± 69 (457 ± 178); iodo-Gd-PCTA-[12], 1861 ± 135 (467 ± 292); and Gd-PyDTTA, 1830 ± 105 (390 ± 242). The sign of D was adjusted based on the Gaussian component with larger amplitude. We relate the extracted P(D) distributions to the structure of the individual Gd(iii) complexes by fitting them to a model that superposes the contribution to the D tensor from each coordinating atom of the ligand. Using this model, we predict D, σD, and E values for several additional Gd(iii) complexes that were not measured in this work. The results of this paper may be useful as benchmarks for the verification of quantum chemical calculations of ZFS parameters, and point the way to designing Gd(iii) complexes for particular applications and estimating their magnetic properties a priori.
Collapse
Affiliation(s)
- Jessica A Clayton
- University of California, Santa Barbara, Department of Physics, Santa Barbara, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Van Stappen C, Lehnert N. Mechanism of N–N Bond Formation by Transition Metal–Nitrosyl Complexes: Modeling Flavodiiron Nitric Oxide Reductases. Inorg Chem 2018; 57:4252-4269. [DOI: 10.1021/acs.inorgchem.7b02333] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
44
|
|
45
|
Hänninen MM, Mota AJ, Sillanpää R, Dey S, Velmurugan G, Rajaraman G, Colacio E. Magneto-Structural Properties and Theoretical Studies of a Family of Simple Heterodinuclear Phenoxide/Alkoxide Bridged MnIIILnIII Complexes: On the Nature of the Magnetic Exchange and Magnetic Anisotropy. Inorg Chem 2018; 57:3683-3698. [DOI: 10.1021/acs.inorgchem.7b02917] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikko M. Hänninen
- Department of Chemistry, University of Jyväskylä, P.O. Box
35, FIN-40014 Jyväskylä, Finland
| | - Antonio J. Mota
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. de Fuentenueva s/n, 18071 Granada, Spain
| | - Reijo Sillanpää
- Department of Chemistry, University of Jyväskylä, P.O. Box
35, FIN-40014 Jyväskylä, Finland
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gunasekaran Velmurugan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
46
|
Kozłowski P, Notario-Estévez A, de Graaf C, López X, Yu Monakhov K. Reconciling the valence state with magnetism in mixed-valent polyoxometalates: the case of a {VO 2F 2@V 22O 54} cluster. Phys Chem Chem Phys 2018; 19:29767-29771. [PMID: 29087415 DOI: 10.1039/c7cp06390c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The electronic structure and magnetism of the recently synthesised mixed-valent {VVO2F2@VO54} (1) host-guest polyoxovanadate envisaged as a potential building block of a molecule-based quantum computer are analysed using density functional theory (DFT) and effective Hamiltonian calculations. The form of the t-J like effective Hamiltonian has been inspired by the acquired DFT data, and the valence state used in DFT calculations has been suggested by the fits to the experimental magnetic data with the effective Hamiltonian. This self-consistent approach breaks through the magnetochemical limitations of vanadium-oxo cluster 1, giving results fully concordant with the experiment and allowing us to determine the valence state of 1, which contrary to other members of this host-guest family appears to feature 9 valence electrons.
Collapse
Affiliation(s)
- Piotr Kozłowski
- Faculty of Physics, Adam Mickiewicz University in Poznań, ul. Umultowska 85, 61-614 Poznań, Poland.
| | - Almudena Notario-Estévez
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Coen de Graaf
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain and ICREA, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Xavier López
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Kirill Yu Monakhov
- Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
47
|
Singh MK, Rajaraman G. Acquiring a record barrier height for magnetization reversal in lanthanide encapsulated fullerene molecules using DFT and ab initio calculations. Chem Commun (Camb) 2018; 52:14047-14050. [PMID: 27854369 DOI: 10.1039/c6cc08232g] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ab initio calculations performed on a series of lanthanide encapsulated fullerenes reveal {DyOSc}@C82 to be one of the best host-guest pairs to offer a barrier height exceeding 1400 cm-1. The high-symmetry environment preserved inside the cage quenches the QTM effects up to third-excited states leading to very larger barrier heights and this opens up a new possibility of obtaining attractive SMMs based on lanthanide based endohedral metallo-fullerenes (EMFs).
Collapse
Affiliation(s)
- Mukesh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
48
|
Gorczyński A, Marcinkowski D, Kubicki M, Löffler M, Korabik M, Karbowiak M, Wiśniewski P, Rudowicz C, Patroniak V. New field-induced single ion magnets based on prolate Er(iii) and Yb(iii) ions: tuning the energy barrierUeffby the choice of counterions within an N3-tridentate Schiff-base scaffold. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00727b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counterions modulate the structure and magnetic properties of rarely observed high-coordinate SIM species.
Collapse
Affiliation(s)
- Adam Gorczyński
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | | | - Maciej Kubicki
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | - Marta Löffler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Maria Korabik
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | | - Piotr Wiśniewski
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Czesław Rudowicz
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
| | | |
Collapse
|
49
|
Gupta T, Singh MK, Rajaraman G. Role of Ab Initio Calculations in the Design and Development of Lanthanide Based Single Molecule Magnets. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
50
|
Vignesh KR, Langley SK, Murray KS, Rajaraman G. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TM III4 Dy III4 } (TM=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling. Chemistry 2017; 23:1654-1666. [PMID: 27859837 DOI: 10.1002/chem.201604835] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 02/03/2023]
Abstract
We report the synthesis, structural characterisation, magnetic properties and provide an ab initio analysis of the magnetic behaviour of two new heterometallic octanuclear coordination complexes containing CoIII and DyIII ions. Single-crystal X-ray diffraction studies revealed molecular formulae of [CoIII4 DyIII4 (μ-OH)4 (μ3 -OMe)4 {O2 CC(CH3 )3 }4 (tea)4 (H2 O)4 ]⋅4 H2 O (1) and [CoIII4 DyIII4 (μ-F)4 (μ3 -OH)4 (o-tol)8 (mdea)4 ]⋅ 3 H2 O⋅EtOH⋅MeOH (2; tea3- =triply deprotonated triethanolamine; mdea2- =doubly deprotonated N-methyldiethanolamine; o-tol=o-toluate), and both complexes display an identical metallic core topology. Furthermore, the theoretical, magnetic and SMM properties of the isostructural complex, [CrIII4 DyIII4 (μ-F4 )(μ3 -OMe)1.25 (μ3 -OH)2.75 (O2 CPh)8 (mdea)4 ] (3), are discussed and compared with a structurally similar complex, [CrIII4 DyIII4 (μ3 -OH)4 (μ-N3 )4 (mdea)4 (O2 CC(CH3 )3 )4 ] (4). DC and AC magnetic susceptibility data revealed single-molecule magnet (SMM) behaviour for 1-4. Each complex displays dynamic behaviour, highlighting the effect of ligand and transition metal ion replacement on SMM properties. Complexes 2, 3 and 4 exhibited slow magnetic relaxation with barrier heights (Ueff ) of 39.0, 55.0 and 10.4 cm-1 respectively. Complex 1, conversely, did not exhibit slow relaxation of magnetisation above 2 K. To probe the variance in the observed Ueff values, calculations by using CASSCF, RASSI-SO and POLY_ANISO routine were performed on these complexes to estimate the nature of the magnetic coupling and elucidate the mechanism of magnetic relaxation. Calculations gave values of JDy-Dy as -1.6, 1.6 and 2.8 cm-1 for complexes 1, 2 and 3, respectively, whereas the JDy-Cr interaction was estimated to be -1.8 cm-1 for complex 3. The developed mechanism for magnetic relaxation revealed that replacement of the hydroxide ion by fluoride quenched the quantum tunnelling of magnetisation (QTM) significantly, and led to improved SMM properties for complex 2 compared with 1. However, the tunnelling of magnetisation at low-lying excited states was still operational for 2, which led to low-temperature QTM relaxation. Replacement of the diamagnetic CoIII ions with paramagnetic CrIII led to CrIII ⋅⋅⋅DyIII coupling, which resulted in quenching of QTM at low temperatures for complexes 3 and 4. The best example was found if both CrIII and fluoride were present, as seen for complex 3, for which both factors additively quenched QTM and led to the observation of highly coercive magnetic hysteresis loops above 2 K. Herein, we propose a synthetic strategy to quench the QTM effects in lanthanide-based SMMs. Our strategy differs from existing methods, in which parameters such as magnetic coupling are difficult to control, and it is likely to have implications beyond the DyIII SMMs studied herein.
Collapse
Affiliation(s)
| | - Stuart K Langley
- School of Science and the Environment, Division of chemistry, Manchester Metropolitan University, Manchester, UK
| | - Keith S Murray
- School of Chemistry, Monash University Clayton, Victoria, 3800, Australia
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India), Fax: (+91) 22-2576-7152
| |
Collapse
|