1
|
Davletbaeva IM, Sazonov OO. Macromolecular Architecture in the Synthesis of Micro- and Mesoporous Polymers. Polymers (Basel) 2024; 16:3267. [PMID: 39684011 DOI: 10.3390/polym16233267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers with micro- and mesoporous structure are promising as materials for gas storage and separation, encapsulating agents for controlled drug release, carriers for catalysts and sensors, precursors of nanostructured carbon materials, carriers for biomolecular immobilization and cellular scaffolds, as materials with a low dielectric constant, filtering/separating membranes, proton exchange membranes, templates for replicating structures, and as electrode materials for energy storage. Sol-gel technologies, track etching, and template synthesis are used for their production, including in micelles of surfactants and microemulsions and sublimation drying. The listed methods make it possible to obtain pores with variable shapes and sizes of 5-50 nm and achieve a narrow pore size distribution. However, all these methods are technologically multi-stage and require the use of consumables. This paper presents a review of the use of macromolecular architecture in the synthesis of micro- and mesoporous polymers with extremely high surface area and hierarchical porous polymers. The synthesis of porous polymer frameworks with individual functional capabilities, the required chemical structure, and pore surface sizes is based on the unique possibilities of developing the architecture of the polymer matrix.
Collapse
Affiliation(s)
- Ilsiya M Davletbaeva
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| | - Oleg O Sazonov
- Technology of Synthetic Rubber Department, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia
| |
Collapse
|
2
|
Willner BJ, Aitchison CM, Podjaski F, Lu W, Tian J, Durrant JR, McCulloch I. Correlation between the Molecular Properties of Semiconducting Polymers of Intrinsic Microporosity and Their Photocatalytic Hydrogen Production. J Am Chem Soc 2024; 146:30813-30823. [PMID: 39475215 PMCID: PMC11565637 DOI: 10.1021/jacs.4c08549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024]
Abstract
Increasing the interface area between organic semiconductor photocatalysts and electrolyte by fabricating nanoparticles has proven to be an effective strategy to increase photocatalytic hydrogen production activity. However, it remains unclear if increasing the internal interface by the introduction of porosity has as clear benefits for activity. To better inform future photocatalyst design, a series of polymers of intrinsic microporosity (PIMs) with the same conjugated backbone were synthesized as a platform to independently modulate the variables of porosity and relative hydrophilicity through the use of hydrophilic alcohol moieties protected by silyl ether protecting groups. When tested in the presence of ascorbic acid and photodeposited Pt, a strong correlation between the wettable porosity and photocatalytic activity was found, with the more wettable analogue of two polymers of almost the same surface area delivering 7.3 times greater activity, while controlling for other variables. Transient absorption spectroscopic (TAS) investigation showed efficient intrinsic charge generation within 10 ps in two of the porous polymers, even without the presence of ascorbic acid or Pt. Detectable hole polarons were found to be immediately extracted by added ascorbic acid, suggesting the generation of reactive charges at regions readily accessible to electrolyte in the porous structures. This study directs organic semiconductor photocatalysts design toward more hydrophilic functionality for addressing exciton and charge recombination bottlenecks and clearly demonstrates the advantages of wettable porosity as a design principle.
Collapse
Affiliation(s)
- Benjamin J. Willner
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Catherine M. Aitchison
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Filip Podjaski
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Wanpeng Lu
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - Junfu Tian
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
| | - James R. Durrant
- Department
of Chemistry and Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12
0BZ, U.K.
| | - Iain McCulloch
- Department
of Chemistry, Chemistry Research Laboratory, Oxford University, 12
Mansfield Road, Oxford OX1 3TA, U.K.
- Andlinger
Center for Energy and the Environment and Department of Electrical
and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Kao JC, Teng TY, Lin HW, Tseng FG, Ting LY, Bhalothia D, Chou HH, Lo YC, Chou JP, Chen TY. Single Atom Ag Bonding Between PF3T Nanocluster and TiO 2 Leads the Ultra-Stable Visible-Light-Driven Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403176. [PMID: 38949041 DOI: 10.1002/smll.202403176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Atomic Ag cluster bonding is employed to reinforce the interface between PF3T nano-cluster and TiO2 nanoparticle. With an optimized Ag loading (Ag/TiO2 = 0.5 wt%), the Ag atoms will uniformly disperse on TiO2 thus generating a high density of intermediate states in the band gap to form the electron channel between the terthiophene group of PF3T and the TiO2 in the hybrid composite (denoted as T@Ag05-P). The former expands the photon absorption band width and the latter facilitates the core-hole splitting by injecting the photon excited electron (from the excitons in PF3T) into the conduction band (CB) of TiO2. These characteristics enable the high efficiency of H2 production to 16 580 µmol h-1 g-1 and photocatalysis stability without degradation under visible light exposure for 96 h. Compared to that of hybrid material without Ag bonding (TiO2@PF3T), the H2 production yield and stability are improved by 4.1 and 18.2-fold which shows the best performance among existing materials in similar component combination and interfacial reinforcement. The unique bonding method offers a new prospect to accelerate the development of photocatalytic hydrogen production technologies.
Collapse
Affiliation(s)
- Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ting-Yu Teng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
4
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
5
|
Kim S, Zhou X, Li Y, Yang Q, Liu X, Graf R, Blom PWM, Ferguson CTJ, Landfester K. Size-Dependent Photocatalytic Reactivity of Conjugated Microporous Polymer Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404054. [PMID: 38925104 DOI: 10.1002/adma.202404054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Particle size is a critical factor for improving photocatalytic reactivity of conjugated microporous polymers (CMPs) as mass transfer in the porous materials is often the rate-limiting step. However, due to the synthetic challenge of controlling the size of CMPs, the impact of particle size is yet to be investigated. To address this problem, a simple and versatile dispersion polymerization route that can synthesize dispersible CMP nanoparticles with controlled size from 15 to 180 nm is proposed. Leveraging the precise control of the size, it is demonstrated that smaller CMP nanoparticles have dramatically higher photocatalytic reactivity in various organic transformations, achieving more than 1000% enhancement in the reaction rates by decreasing the size from 180 to 15 nm. The size-dependent photocatalytic reactivity is further scrutinized using a kinetic model and transient absorption spectroscopy, revealing that only the initial 5 nm-thick surface layer of CMP nanoparticles is involved in the photocatalytic reactions because of internal mass transfer limitations. This finding substantiates the potential of small CMP nanoparticles to efficiently use photo-generated excitons and improve energy-efficiency of numerous photocatalytic reactions.
Collapse
Affiliation(s)
- Seunghyeon Kim
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xin Zhou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yungui Li
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Qiqi Yang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Calum T J Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
6
|
Kim J, Jeon JP, Kim YH, Anh NTD, Chung K, Seo JM, Baek JB. Simple Functionalization of a Donor Monomer to Enhance Charge Transfer in Porous Polymer Networks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319395. [PMID: 38353410 DOI: 10.1002/anie.202319395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Indexed: 02/29/2024]
Abstract
Porous polymer networks (PPNs) are promising candidates as photocatalysts for hydrogen production. Constructing a donor-acceptor structure is known to be an effective approach for improving photocatalytic activity. However, the process of how a functional group of a monomer can ensure photoexcited charges transfer and improve the hydrogen evolution rate (HER) has not yet been studied on the molecular level. Herein, we design and synthesize two kinds of triazatruxene (TAT)-based PPNs: TATR-PPN with a hexyl (R) group and TAT-PPN without the hexyl group, to understand the relationship between the presence of the functional group and charge transfer. The hexyl group on the TAT unit was found to ensure the transfer of photoexcited electrons from a donor unit to an acceptor unit and endowed the TATR-PPN with stable hydrogen production.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Pil Jeon
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Young Hyun Kim
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Nguyen Thi Dieu Anh
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Kunook Chung
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong-Min Seo
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jong-Beom Baek
- Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Han C, Ma J, Ai X, Shi F, Zhang C, Hu D, Jiang JX. Rational design of triazine-based conjugated polymers with enhanced charge separation ability for photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 659:984-992. [PMID: 38219316 DOI: 10.1016/j.jcis.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Triazine-based conjugated polymers (TCPs) are promising organic catalysts for green H2 production, since their photocatalytic performance can be easily regulated via appropriate molecular design. However, apart from weak absorption of visible light, weak charge separation and transport abilities also considerably restrict the photocatalytic performance of TCPs. Herein, we report two novel TCP photocatalysts with donor-acceptor (D-A) and donor-π-acceptor (D-π-A) structures using dibenzo[g,p]chrysene (Dc), thiophene (T), and 2,4,6-triphenyl-1,3,5-triazine (Tz) as the donor, π-spacer, and acceptor, respectively. Compared to Dc-Tz with a D-A structure, Dc-T-Tz exhibits a broader light absorption edge and more efficient charge separation and transmission due to its D-π-A structure and strong dipole effect. These properties enable Dc-T-Tz to display a prominent H2 production rate of 45.13 mmol h-1 g-1 under ultraviolet-visible (UV-Vis) light (λ > 300 nm). Therefore, Dc-T-Tz represents state-of-the-art TCP photocatalysts to date.
Collapse
Affiliation(s)
- Changzhi Han
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Jiaxin Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Xuan Ai
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Feng Shi
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Daodao Hu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan 430056, PR China.
| |
Collapse
|
8
|
Bhauriyal P, Heine T. Tailoring photocatalytic water splitting activity of boron-thiophene polymer through pore size engineering. J Chem Phys 2024; 160:094712. [PMID: 38445742 DOI: 10.1063/5.0197992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024] Open
Abstract
Taking into account the electron-rich and visible light response of thiophene, first-principles calculations have been carried out to explore the photocatalytic activity of donor-acceptor polymers incorporating thiophene and boron. Honeycomb-kagome boron-thiophene (BTP) polymers with varying numbers of thiophene units and fixed B center atoms are direct bandgap semiconductors with tunable bandgaps ranging from 2.41 to 1.88 eV and show high absorption coefficients under the ultraviolet and visible regions of the solar spectrum. Fine-tuning the band edges of the BTP polymer is efficiently achieved by adjusting the pore size through the manipulation of thiophene units between the B centers. This manipulation, achieved without excessive chemical functionalization, facilitates the generation of an appropriate quantity of photoexcited electrons and/or holes to straddle the redox potential of the water. Our study demonstrates that two units between B centers of thiophene in BTP polymers enable overall photocatalytic water splitting, whereas BTP polymers with larger pores solely promote photocatalytic hydrogen reduction. Moreover, the thermodynamics of hydrogen and oxygen reduction reactions either proceed spontaneously or need small additional external biases. Our findings provide the rationale for designing metal-free and single-material polymer photocatalysts based on thiophene, specifically for achieving efficient overall water splitting.
Collapse
Affiliation(s)
- Preeti Bhauriyal
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Bautzner Landstr. 400, 01328 Dresden, Germany
- Center for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry and ibs for Nanomedicine, Yonsei University, Seodaemun-gu, Seoul 120-749, South Korea
| |
Collapse
|
9
|
Han S, Wang Z, Zhu W, Yang H, Yang L, Wang Y, Zou Z. ZIF-derived oxygen vacancy-rich Co 3O 4 for constructing an efficient Z-scheme heterojunction to boost photocatalytic water splitting. Dalton Trans 2024; 53:4737-4752. [PMID: 38363114 DOI: 10.1039/d3dt03706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
With ZIF-67 as the precursor, oxygen vacancy-rich Co3O4 nanoparticles were derived and anchored on the surface of 2D polyimide (PI) to construct a Z-scheme hybrid heterojunction (20ZP) through a simultaneous solvothermal in situ crystallization and polymerization strategy. XRD, XPS and EPR confirmed that both Co(III) and oxygen vacancies are formed during the low temperature conversion of ZIF-67 to Co3O4 nanoparticles that in turn accelerate the polymerization of PI. Synchronous crystallization makes the interfacial architecture intermetal and compact, inducing a strong interfacial electronic interaction between Co3O4 nanoparticles and PI. UV-vis DRS spectra and transient photocurrent response demonstrate that the incorporation of Co3O4 on polyimide not only extends the light absorption in the visible range, but also enhances the charge transfer rate. EIS, TRPL techniques and DFT calculations have confirmed that the photoinduced interfacial charge transfer pathway of this hybrid heterojunction characterized the Z-scheme in which the photoinduced electrons transfer from the conduction band of Co3O4 to the valence band of PI, significantly inhibiting the recombination of electrons and holes within PI. More importantly, the oxygen vacancies located below the conductor band of Co3O4 can deepen the band bending, improve the charge separation efficiency and accelerate electron transfer between Co3O4 and PI. This Z-scheme hybrid heterojunction structure can not only maintain the high reducing capacity of photoinduced electrons on the conductor band of PI, but also enhance the oxidative capacity of the heterojunction composite material, thus promoting the overall progress of the photocatalytic hydrogen release reaction.
Collapse
Affiliation(s)
- Susu Han
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Zejin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Wenbo Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Huaizhi Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Le Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Ying Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Kunshan Innovation Institute of Nanjing University, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
10
|
Zhong Y, Dong W, Ren S, Li L. Oligo(phenylenevinylene)-Based Covalent Organic Frameworks with Kagome Lattice for Boosting Photocatalytic Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308251. [PMID: 37781857 DOI: 10.1002/adma.202308251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Covalent organic frameworks (COFs) have shown great advantages as photocatalysts for hydrogen evolution. However, the effect of linkage geometry and type of linkage on the extent of π-electron conjugation in the plane of the framework and photocatalytic properties of COFs remains a significant challenge. Herein, two Kagome (kgm) topologic oligo(phenylenevinylene)-based COFs are designed and synthesized for boosting photocatalytic hydrogen evolution via a "two in one" strategy. Under visible light irradiation, COF-954 with 5 wt% Pt as cocatalyst exhibits high hydrogen evolution rate (HER) of 137.23 mmol g-1 h-1 , outperforming most reported COF-based photocatalysts. More importantly, even in natural seawater, COF-954 shows an average HER of 191.70 mmol g-1 h-1 under ultraviolet-visible (UV-vis) light irradiation. Additionally, the water-drainage experiments indoors and outdoors demonstrate that 25 and 8 mL hydrogen gas could be produced in 80 min under UV-vis light and natural sunlight, respectively, corresponding to a high HER of 167.41 and 53.57 mmol h-1 g-1 . This work not only demonstrates an effective design strategy toward highly efficient COF-based photocatalysts, but also shows the great potential of using the COF-based photocatalysts for photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Yuelin Zhong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbo Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shijie Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longyu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
11
|
Kao JC, Bhalothia D, Wang ZX, Lin HW, Tseng FG, Ting LY, Chou HH, Lo YC, Chou JP, Chen TY. Electron Injection via Interfacial Atomic Au Clusters Substantially Enhance the Visible-Light-Driven Photocatalytic H 2 Production of the PF3T Enclosed TiO 2 Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303391. [PMID: 37267938 DOI: 10.1002/smll.202303391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/04/2023]
Abstract
A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.
Collapse
Affiliation(s)
- Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Dinesh Bhalothia
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zan-Xiang Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Wu Lin
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Yu Ting
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Tsan-Yao Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
12
|
Zhong Y, Li C, Yang F, Guan L, Jin S. Covalent Pyrimidine Frameworks via a Tandem Polycondensation Method for Photocatalytic Hydrogen Production and Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204515. [PMID: 36635041 DOI: 10.1002/smll.202204515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The development of heteroaromatic conjugated porous polymers (H-CPPs) have received enormous research interests, because of the important functional roles of the heteroatoms in photocatalysis and proton conduction. However, due to the synthetic challenges deriving from the stable structures, the structural diversity and synthetic methods of them are still limited. Herein, a new type of H-CPPs, covalent pyrimidine frameworks (CPFs), via an efficient tandem polycondensation reaction between aldehyde, acetyl, and amidine monomers is reported. The resulting CPFs are bridged by pyrimidine units, rich of nitrogen atoms and can be structurally regulated on demand. The CPFs are shown to be active photocatalysts for hydrogen evolution from methanol via a photo-thermo-catalysis process, achieving an excellent hydrogen evolution rate of 5282.8 µmol h-1 g-1 . The CPFs can be further processed into a mixed matrix membrane, displaying an excellent proton conductivity of 1.30 × 10-2 S cm-1 at 413 K under anhydrous condition.
Collapse
Affiliation(s)
- Yifei Zhong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Chao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Fan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
13
|
Sarkar M, Patra A. N, N'-octyl biphenothiazine and dibenzothiophene dioxide-based soluble porous organic polymer for biphasic photocatalytic hydrogen evolution. Chem Commun (Camb) 2023; 59:2584-2587. [PMID: 36692376 DOI: 10.1039/d2cc06321b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A donor-acceptor-based soluble porous organic polymer (PzDBS) was fabricated using a flexible core composed of N,N'-octyl biphenothiazine and a rigid building unit involving dibenzothiophene dioxide. The soluble porous organic polymer was explored for aqueous-organic biphasic photocatalytic hydrogen evolution, introducing a promising avenue in the domain of porous polymer photocatalysts.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
14
|
Dai L, Dong A, Meng X, Liu H, Li Y, Li P, Wang B. Enhancement of Visible-Light-Driven Hydrogen Evolution Activity of 2D π-Conjugated Bipyridine-Based Covalent Organic Frameworks via Post-Protonation. Angew Chem Int Ed Engl 2023; 62:e202300224. [PMID: 36757154 DOI: 10.1002/anie.202300224] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Photocatalytic hydrogen (H2 ) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g-1 h-1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Lu Dai
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Anwang Dong
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Xiangjian Meng
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Huanyu Liu
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Yueting Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Pengfei Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.,Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, P. R. China
| |
Collapse
|
15
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
16
|
Hillman SAJ, Sprick RS, Pearce D, Woods DJ, Sit WY, Shi X, Cooper AI, Durrant JR, Nelson J. Why Do Sulfone-Containing Polymer Photocatalysts Work So Well for Sacrificial Hydrogen Evolution from Water? J Am Chem Soc 2022; 144:19382-19395. [PMID: 36251010 PMCID: PMC9619400 DOI: 10.1021/jacs.2c07103] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Many of the highest-performing
polymer photocatalysts
for sacrificial
hydrogen evolution from water have contained dibenzo[b,d]thiophene sulfone units in their polymer backbones.
However, the reasons behind the dominance of this building block are
not well understood. We study films, dispersions, and solutions of
a new set of solution-processable materials, where the sulfone content
is systematically controlled, to understand how the sulfone unit affects
the three key processes involved in photocatalytic hydrogen generation
in this system: light absorption; transfer of the photogenerated hole
to the hole scavenger triethylamine (TEA); and transfer of the photogenerated
electron to the palladium metal co-catalyst that remains in the polymer
from synthesis. Transient absorption spectroscopy and electrochemical
measurements, combined with molecular dynamics and density functional
theory simulations, show that the sulfone unit has two primary effects.
On the picosecond timescale, it dictates the thermodynamics of hole
transfer out of the polymer. The sulfone unit attracts water molecules
such that the average permittivity experienced by the solvated polymer
is increased. We show that TEA oxidation is only thermodynamically
favorable above a certain permittivity threshold. On the microsecond
timescale, we present experimental evidence that the sulfone unit
acts as the electron transfer site out of the polymer, with the kinetics
of electron extraction to palladium dictated by the ratio of photogenerated
electrons to the number of sulfone units. For the highest-performing,
sulfone-rich material, hydrogen evolution seems to be limited by the
photogeneration rate of electrons rather than their extraction from
the polymer.
Collapse
Affiliation(s)
- Sam A J Hillman
- Department of Physics, Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.,Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.,Department of Chemistry and Material Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Drew Pearce
- Department of Physics, Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Duncan J Woods
- Department of Chemistry and Material Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Wai-Yu Sit
- Department of Physics, Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Xingyuan Shi
- Department of Physics, Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Andrew I Cooper
- Department of Chemistry and Material Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - James R Durrant
- Department of Chemistry, Centre for Processable Electronics, Imperial College London, 80 Wood Lane, London W12 0BZ, U.K
| | - Jenny Nelson
- Department of Physics, Centre for Processable Electronics, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
17
|
Bai MMG, Bramhaiah K, Bhattacharyya S, Rao RM. Acid‐Modulated Synthesis of Novel π‐Conjugated Microporous Polymers for Efficient Metal‐Free Photocatalytic Hydrogen Evolution. Chemistry 2022; 28:e202202023. [DOI: 10.1002/chem.202202023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Monika M. G. Bai
- Department of Chemistry IIT Dharwad Dharwad Karnataka 580011 India
| | - K. Bramhaiah
- Department of Chemical Sciences IISER Berhampur Transit Campus (Govt. ITI Building) Engg. School Road Berhampur Odisha 760010 India
| | - Santanu Bhattacharyya
- Department of Chemical Sciences IISER Berhampur Transit Campus (Govt. ITI Building) Engg. School Road Berhampur Odisha 760010 India
| | - Rajeswara M. Rao
- Department of Chemistry IIT Dharwad Dharwad Karnataka 580011 India
| |
Collapse
|
18
|
Xu N, Diao Y, Xu Z, Ke H, Zhu X. Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED ENERGY MATERIALS 2022; 5:7473-7478. [DOI: 10.1021/acsaem.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Nanfeng Xu
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| | - Yingxue Diao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Hanzhong Ke
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| |
Collapse
|
19
|
Conjugated Polymer Polypyrrole Nanostructures: Synthesis and Photocatalytic Applications. Top Curr Chem (Cham) 2022; 380:32. [PMID: 35717546 DOI: 10.1007/s41061-022-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
Conjugated polymers (CPs) have been recently widely investigated for their properties and their applications in different fields including photocatalysis. Among the family of CPs, polypyrrole (PPy) has been the most extensively studied owing to its good environmental stability, high electrical conductivity, superior redox properties and easy synthesis. Besides, nanostructured polypyrrole-based nanomaterials are a type of active organic materials for photocatalysis, which is one of their emerging applications. Nanostructuration of polypyrrole can reduce the electron-hole recombination because of short charge transfer distances and reactant adsorption, and product desorption can be enhanced owing to the high surface area offered by nanostructures. This review summarizes synthesis of different nanostructures based on π-conjugated polymer polypyrrole and the latest developments for photocatalytic applications, including degradation of organic pollutants and hydrogen generation.
Collapse
|
20
|
Wang JH, Chang CL, Zhang ZW, EL-Mahdy AFM. Facile metal-free synthesis of pyrrolo[3,2- b]pyrrolyl-based conjugated microporous polymers for high-performance photocatalytic degradation of organic pollutants. Polym Chem 2022. [DOI: 10.1039/d2py00658h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient and metal-free approach to the synthesis of new kinds of CMPs (pyrrolo[3,2-b]pyrrolyl-based CMPs) on a gram scale within a short time has been developed for remarkable adsorbent and photocatalytic degradation of organic pollutants.
Collapse
Affiliation(s)
- Jing Han Wang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chih-Ling Chang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Zhe Wei Zhang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
21
|
Liu L, Kochman MA, Zhao W, Zwijnenburg M, Sprick RS. Linear conjugated polymer photocatalysts with varied linker units for photocatalytic hydrogen evolution from water. Chem Commun (Camb) 2022; 58:10639-10642. [DOI: 10.1039/d2cc03810b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer photocatalysts have shown potential as for light-driven hydrogen evolution from water. Here we studied the relative importance of the linker type in two series of conjugated polymers based on...
Collapse
|
22
|
Nouruzi N, Dinari M, Gholipour B, Mokhtari N, Farajzadeh M, Rostamnia S, Shokouhimehr M. Photocatalytic hydrogen generation using colloidal covalent organic polymers decorated bimetallic Au-Pd nanoalloy (COPs/Pd-Au). MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Yang J, Zhai MM, Qin JJ, Liu YA, Hu WB, Yang H, Wen K. Pyrene- and 1,3,5-triazine-based D–A two-dimensional polymers for sunlight-driven hydrogen evolution: the influence of the linking pattern. Polym Chem 2022. [DOI: 10.1039/d2py00807f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two conjugated organic polymers constructed from electron-rich pyrenes and electron-deficient 2,4,6-triphenyl-1,3,5-triazine demonstrated good photocatalytic hydrogen evolution activity.
Collapse
Affiliation(s)
- Jie Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Ming-Ming Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Jun-Jie Qin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yahu A. Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California, 92127, USA
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Ke Wen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| |
Collapse
|
24
|
Lee TL, Elewa AM, Kotp MG, Chou HH, El-Mahdy AFM. Carbazole- and thiophene-containing conjugated microporous polymers with different planarity for enhanced photocatalytic hydrogen evolution. Chem Commun (Camb) 2021; 57:11968-11971. [PMID: 34704990 DOI: 10.1039/d1cc04551b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the synthesis of two carbazole-thiophene-based conjugated microporous polymers (Cz-3Th and Cz-4Th CMPs) with different degrees of planarity for photocatalytic hydrogen evolution from water. Depending upon the building linker's planarity, we found that the porous structure, hydrogen-evolution rate, and photocatalytic stability of the resultant CMPs varied.
Collapse
Affiliation(s)
- Tsung-Lin Lee
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ahmed M Elewa
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Mohammed G Kotp
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
25
|
Perazio A, Lowe G, Gobetto R, Bonin J, Robert M. Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Song Y, Lan PC, Martin K, Ma S. Rational design of bifunctional conjugated microporous polymers. NANOSCALE ADVANCES 2021; 3:4891-4906. [PMID: 36132340 PMCID: PMC9418725 DOI: 10.1039/d1na00479d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 06/15/2023]
Abstract
Conjugated microporous polymers (CMPs) are an emerging class of porous organic polymers that combine π-conjugated skeletons with permanent micropores. Since their first report in 2007, the enormous exploration of linkage types, building units, and synthetic methods for CMPs have facilitated their potential applications in various areas, from gas separations to energy storage. Owning to their unique construction, CMPs offer the opportunity for the precise design of conjugated skeletons and pore environment engineering, which allow the construction of functional porous materials at the molecular level. The capability to chemically alter CMPs to targeted applications allows for the fine adaptation of functionalities for the ever-changing environments and necessities. Bifunctional CMPs are a branch of functionalized CMPs that have caught the interest of researchers because of their inherent synergistic systems that can expand their applications and optimize their performance. This review discusses the rational design and synthesis of bifunctional CMPs and summarizes their advanced applications. To conclude, our own perspective on the research prospects of these types of materials is outlined.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Pui Ching Lan
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Kyle Martin
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas 1508 W Mulberry St Denton TX 76201 USA
| |
Collapse
|
27
|
Liu Y, Li B, Xiang Z. Pathways towards Boosting Solar-Driven Hydrogen Evolution of Conjugated Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007576. [PMID: 34160904 DOI: 10.1002/smll.202007576] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/16/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic H2 evolution under solar illumination has been considered to be a promising technology for green energy resources. Developing highly efficient photocatalysts for photocatalytic water splitting is long-term desired but still challenging. Conjugated polymers (CPs) have attracted ongoing attention and have been considered to be promising alternatives for solar-driven H2 production due to the excellent merits of the large π-conjugated system, versatile structures, tunable photoelectric properties, and well-defined chemical composites. The excellent merits have offered numerous methods for boosting photocatalytic hydrogen evolution (PHE) of initial CP-based photocatalysts, whose apparent quantum yield is dramatically increased from <1 to >20% in recent five years. According to the photocatalytic mechanism, this review herein systematically summarizes three major strategies for boosting photocatalytic H2 production of CPs: 1) enhancing visible light absorption, 2) suppressing recombination of electron-hole pairs, and 3) boosting surface catalytic reaction, mainly involving eleven methods, that is, copolymerization, modifying cross-linker, constructing a donor-acceptor structure, functionalization, fabricating organic heterojunction, loading cocatalyst, and surface modification. Finally, the perspectives towards the future development of PHE are proposed.
Collapse
Affiliation(s)
- Yaoyao Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bingjie Li
- The First Affiliated Hospital Zhengzhou University, 1 Jianshe Street, Zhengzhou, Henan, 450052, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
28
|
Xu Y, Ju CW, Li B, Ma QS, Chen Z, Zhang L, Chen J. Hydrogen Evolution Prediction for Alternating Conjugated Copolymers Enabled by Machine Learning with Multidimension Fragmentation Descriptors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34033-34042. [PMID: 34269560 DOI: 10.1021/acsami.1c05536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen evolution by alternating conjugated copolymers has attracted much attention in recent years. To study alternating copolymers with data-driven strategies, two types of multidimension fragmentation descriptors (MDFD), structure-based MDFD (SMDFD), and electronic property-based MDFD (EPMDFD), have been developed with machine learning (ML) algorithms for the first time. The superiority of SMDFD-based models has been demonstrated by the highly accurate and universal predictions of electronic properties. Moreover, EPMDFD-based, experimental-parameter-free ML models were developed for the prediction of the hydrogen evolution reaction, displaying excellent accuracy (real-test accuracy = 0.91). The combination of explainable ML approaches and first-principles calculations was employed to explore photocatalytic dynamics, revealing the importance of electron delocalization in the excited state. Virtual designing of high-performance candidates can also be achieved. Our work illustrates the huge potential of ML-based material design in the field of polymeric photocatalysts toward high-performance photocatalysis.
Collapse
Affiliation(s)
- Yuzhi Xu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng-Wei Ju
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Qiu-Shi Ma
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhenyu Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Sheng ZQ, Xing YQ, Chen Y, Zhang G, Liu SY, Chen L. Nanoporous and nonporous conjugated donor-acceptor polymer semiconductors for photocatalytic hydrogen production. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:607-623. [PMID: 34285864 PMCID: PMC8261276 DOI: 10.3762/bjnano.12.50] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers (CPs) as photocatalysts have evoked substantial interest. Their geometries and physical (e.g., chemical and thermal stability and solubility), optical (e.g., light absorption range), and electronic properties (e.g., charge carrier mobility, redox potential, and exciton binding energy) can be easily tuned via structural design. In addition, they are of light weight (i.e., mainly composed of C, N, O, and S). To improve the photocatalytic performance of CPs and better understand the catalytic mechanisms, many strategies with respect to material design have been proposed. These include tuning the bandgap, enlarging the surface area, enabling more efficient separation of electron-hole pairs, and enhancing the charge carrier mobility. In particular, donor-acceptor (D-A) polymers were demonstrated as a promising platform to develop high-performance photocatalysts due to their easily tunable bandgaps, high charge carrier mobility, and efficient intramolecular charge transfer. In this minireview, recent advances of D-A polymers in photocatalytic hydrogen evolution are summarized with a particular focus on modulating the optical and electronic properties of CPs by varying the acceptor units. The challenges and prospects associated with D-A polymer-based photocatalysts are described as well.
Collapse
Affiliation(s)
- Zhao-Qi Sheng
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yu-Qin Xing
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Yan Chen
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Guang Zhang
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Shi-Yong Liu
- College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Long Chen
- Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
30
|
Wang L, Zhang L, Lin B, Zheng Y, Chen J, Zheng Y, Gao B, Long J, Chen Y. Activation of Carbonyl Oxygen Sites in β-Ketoenamine-Linked Covalent Organic Frameworks via Cyano Conjugation for Efficient Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101017. [PMID: 33979001 DOI: 10.1002/smll.202101017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
2D covalent organic frameworks (COFs) are drawing intense attention in heterogenous photocatalysis due to their porous, crystalline, and tailor-made structures. For highly efficient solar-to-chemical energy conversion, revealing and modulating active centers in the skeletons of COFs are of great importance but encounter severe challenges. Herein, it is demonstrated that cyano conjugation on a typical β-ketoenamine-linked COF via aldehyde-imine Schiff-base condensation contributes to an enhanced stable photocatalytic H2 -evolution rate of 1.8 mmol h-1 g-1 (λ > 420 nm) with a superior apparent quantum yield of 2.12% at 420 nm, compared to pristine COFs. Both experimental results and density functional theory calculations disclose that the cyano conjugation can efficiently improve photoinduced charge separation and effectively decrease the energy barrier for H-intermediate generation on the carbonyl oxygen sites of the functionalized COFs. These findings present a precise organic functionalization strategy to optimize active centers on COF-based photocatalysts for the practical applications.
Collapse
Affiliation(s)
- Lvting Wang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Lili Zhang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bizhou Lin
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yanzhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingling Chen
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yun Zheng
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Bifen Gao
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| | - Jinlin Long
- Sate Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| | - Yilin Chen
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing; College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
| |
Collapse
|
31
|
Wei Q, Yao X, Zhang Q, Yan P, Ru C, Li C, Tao C, Wang W, Han D, Han D, Niu L, Qin D, Pan X. Nanostructured Lateral Boryl Substitution Conjugated Donor-Acceptor Oligomers for Visible-Light-Driven Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100132. [PMID: 33891808 DOI: 10.1002/smll.202100132] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Poor charge separation is the main factor that limits the photocatalytic hydrogen generation efficiency of organic conjugated polymers. In this work, a series of linear donor-acceptor (D-A) type oligomers are synthesized by a palladium-catalyzed Sonogashira-Hagihara coupling of electron-deficient diborane unit and different dihalide substitution sulfur functionalized monomers. Such diborane-based A unit exerts great impact on the resulting oligomers, including distinct semiconductor characters with isolated lowest unoccupied molecular orbital (LUMO) orbits locating in diborane-containing fragment, and elevated LUMO level higher than water reduction potential. Relative to A-A type counterpart, the enhanced dipole polarization effect in D-A oligomers facilitates separation of photogenerated charge carriers, as evidenced by notably prolonged electron lifetime. Owing to π-π stacking of rigid backbone, the oligomers can aggregate into an interesting 2D semicrystalline nanosheet (≈2.74 nm), which is rarely reported in linear polymeric photocatalysts prepared by similar carbon-carbon coupling reaction. Despite low surface area (30.3 m2 g-1 ), such ultrathin nanosheet D-A oligomer offers outstanding visible light (λ > 420 nm) hydrogen evolution rate of 833 µmol g-1 h-1 , 14 times greater than its A-A analogue (61 µmol g-1 h-1 ). The study highlights the great potential of using boron element to construct D-A type oligomers for efficient photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Qiuyu Wei
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaoqiang Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Qianqian Zhang
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Pengji Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, Hexi University, Zhangye, 734000, P. R. China
| | - Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Chunfeng Li
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Chunlan Tao
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Wei Wang
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongfang Han
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Li Niu
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongdong Qin
- Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
32
|
Kumar S, Battula VR, Sharma N, Samanta S, Kailasam K. Understanding the role of soft linkers in designing hepatzine-based polymeric frameworks as heterogeneous (photo)catalyst. J Colloid Interface Sci 2021; 588:138-146. [PMID: 33388579 DOI: 10.1016/j.jcis.2020.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022]
Abstract
The emerging class of heptazine-based polymeric materials has shown potential candidature as photocatalyst materials for hydrogen evolution. At the same time, they have shown promising application as solid base materials to catalyse various organic transformations. Thus, the material design rationale needs to be developed around the heptazine-based polymeric frameworks in order to specifically design task specific materials. Herein, we utilised controlled reaction conditions to synthesize the desired polymeric networks with trichloroheptazine as precursor. Material design strategy employed nitrogen rich [tris(2-aminoethylamine) and hydrazine] as soft linkers to understand the effect on band structure of developed heptazine-based polymeric networks. The developed polymeric networks were explored as platform to study systematically the effect on their respective photophysical properties and understand their surface basicity. The framework having aminoalkyl linker showed superior activity in photocatalysis as well as heterogeneous base catalysis. Further, model catalysts revealed the importance of N-atoms as active basic sites in these systems.
Collapse
Affiliation(s)
- Sunil Kumar
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| | - Venugopala Rao Battula
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Neha Sharma
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Soumadri Samanta
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India
| | - Kamalakannan Kailasam
- Advanced Functional Nanomaterials, Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, SAS Nagar 140306, Punjab, India.
| |
Collapse
|
33
|
Huang X, Zhang YB. Covalent Organic Frameworks for Sunlight-driven Hydrogen Evolution. CHEM LETT 2021. [DOI: 10.1246/cl.200834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaofeng Huang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, P. R. China
| |
Collapse
|
34
|
Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101374] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Mitchell E, Law A, Godin R. Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chem Commun (Camb) 2021; 57:1550-1567. [PMID: 33491708 DOI: 10.1039/d0cc06841a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbon nitride (CNx) is an emerging photocatalyst with the potential to efficiently produce solar fuels. CNx heterojunctions often show significant photocatalytic activity improvements. We review the charge carrier dynamics in a range of CNx heterojunctions including carbon-based material, black phosphorus, Ru complexes, molybdenum sulphide and metal phosphides. Time resolved photoluminescence (TRPL) and transient absorption spectroscopy (TAS) were the most common techniques employed for experimental charge carrier dynamics measurements. The low photoluminescence quantum yield of CNx appeared to limit the depth of conclusions from TRPL, with both lengthening and shortening of the TRPL lifetimes observed and attributed to enhanced charge separation. Overall, the charge carrier dynamics studies often showed a relative lifetime change of ∼2-fold and an activity improvement of >10-fold. We highlight the need for the use of a wider range of techniques to monitor the charge carrier dynamics for conclusive determination of photophysics-activity relationships and elucidation of improvement mechanisms.
Collapse
Affiliation(s)
- Emma Mitchell
- Department of Chemistry, The University of British Columbia, 3247 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | | |
Collapse
|
36
|
Recent Developments in the Use of Heterogeneous Semiconductor Photocatalyst Based Materials for a Visible-Light-Induced Water-Splitting System—A Brief Review. Catalysts 2021. [DOI: 10.3390/catal11020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Visible-light-driven photoelectrochemical (PEC) and photocatalytic water splitting systems featuring heterogeneous semiconductor photocatalysts (oxynitrides, oxysulfides, organophotocatalysts) signify an environmentally friendly and promising approach for the manufacturing of renewable hydrogen fuel. Semiconducting electrode materials as the main constituents in the PEC water splitting system have substantial effects on the device’s solar-to-hydrogen (STH) conversion efficiency. Given the complication of the photocatalysis and photoelectrolysis methods, it is indispensable to include the different electrocatalytic materials for advancing visible-light-driven water splitting, considered a difficult challenge. Heterogeneous semiconductor-based materials with narrower bandgaps (2.5 to 1.9 eV), equivalent to the theoretical STH efficiencies ranging from 9.3% to 20.9%, are recognized as new types of photoabsorbents to engage as photoelectrodes for PEC water oxidation and have fascinated much consideration. Herein, we spotlight mainly on heterogenous semiconductor-based photoanode materials for PEC water splitting. Different heterogeneous photocatalysts based materials are emphasized in different groups, such as oxynitrides, oxysulfides, and organic solids. Lastly, the design approach and future developments regarding heterogeneous photocatalysts oxide electrodes for PEC applications and photocatalytic applications are also discussed.
Collapse
|
37
|
Li X, Zou Y, Jia Z, Zhang J, Li Y, Guo X, Zhang M, Li K, Li J, Ma L. A fully conjugated organic polymer via Knoevenagel condensation for fast separation of uranium. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123802. [PMID: 33113739 DOI: 10.1016/j.jhazmat.2020.123802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Design and preparation of a kind of pore-free adsorbent with abundant active sites is favorable for fast separation of uranium. Here, a two-dimensional olefin-linked conjugated organic polymer was prepared via the Knoevenagel condensation reaction. The product owns good stability and excellent fluorescence property due to the fully conjugated skeleton. Moreover, owning to the high content of N atom, it shows excellent performance in adsorption and separation of uranium, and more importantly, it is constructed with nearly pore-free structure because of the irregular staggered stacking, which makes it exhibit fast adsorption behavior towards uranium. These results confirm the feasibility of pore-free material for fast adsorption.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Yingdi Zou
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Zhimin Jia
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Jie Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China; College of Environment and Ecology, Chengdu University of Technology, No.1, Dongsanlu, Erxianqiao, Chengdu 610059, PR China.
| | - Yang Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Xinghua Guo
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Meicheng Zhang
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Kun Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Jing Li
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu 610064, PR China.
| |
Collapse
|
38
|
Wang Y, Yazawa K, Wang Q, Harada T, Shimoda S, Song Z, Bando M, Naga N, Nakano T. Optically active covalent organic frameworks and hyperbranched polymers with chirality induced by circularly polarized light. Chem Commun (Camb) 2021; 57:7681-7684. [PMID: 34254593 DOI: 10.1039/d1cc02671b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Axial chirality was induced by circularly polarized light to covalent organic frameworks as well as hyperbranched polymers composed of bezene-1,3,5-triyl core units and oligo(benzene-1,4-diyl) as linker units where variation in induction efficiency was rationally interpreted in terms of internal rotation dynamics studied through CPMAS 13C NMR experiments including CODEX measurements.
Collapse
Affiliation(s)
- Yuting Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan.
| | - Koji Yazawa
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Qingyu Wang
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan.
| | - Takunori Harada
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, Dannoharu, 700, Oita 870-1192, Japan
| | - Shuhei Shimoda
- Technical Division, Institute for Catalysis, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan
| | - Zhiyi Song
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan.
| | - Masayoshi Bando
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan.
| | - Naofumi Naga
- Department of Applied Chemistry, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Tamaki Nakano
- Institute for Catalysis (ICAT) and Graduate School of Chemical Sciences and Engineering, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan. and Integrated Research Consortium on Chemical Sciences (IRCCS), ICAT, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
39
|
Saber AF, EL-Mahdy AFM. ( E)-1,2-Diphenylethene-based conjugated nanoporous polymers for a superior adsorptive removal of dyes from water. NEW J CHEM 2021. [DOI: 10.1039/d1nj04287d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of (E)-1,2-diphenylethene-based conjugated nanoporous polymers having extraordinary thermal stabilities, high surface areas, and superior adsorptive removal of dyes from water have been developed.
Collapse
Affiliation(s)
- Ahmed F. Saber
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
40
|
Sun Y, Ni C, Zhou Y, Qin Y. Study on the influence of the introduction of the thiophene group on the photocatalytic performance of polymer. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320982357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two novel conjugated organic polymers BTTh-1 and BTTh-2 were designed and synthesized. They were prepared by the reaction of two aldehyde units with melamine. Both aldehyde units were based on benzothiadiazole. The difference between the final aldehyde units was the introduction of thiophene groups in the BTTh-2 aldehyde monomer units. The difference between the two materials in the photocatalytic degradation of tetracycline was discussed in the context of the thiophene unit. The degradation efficiency of tetracycline by BTTh-2 (90.9%) was much higher than that of BTTh-1 (40.7%). The characterization results showed that BTTh-2 has a strong charge separation ability and fast transmission rate. After light excitation, the recombination ability of photogenerated holes and electrons becomes weak, and it has better utilization ability for visible light; the bandgap width is narrower.
Collapse
Affiliation(s)
- Yanchen Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, People’s Republic of China
| | - Cailing Ni
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, People’s Republic of China
| | - Yubing Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, People’s Republic of China
| | - Yuancheng Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, People’s Republic of China
| |
Collapse
|
41
|
Shit SC, Shown I, Paul R, Chen KH, Mondal J, Chen LC. Integrated nano-architectured photocatalysts for photochemical CO 2 reduction. NANOSCALE 2020; 12:23301-23332. [PMID: 33107552 DOI: 10.1039/d0nr05884j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advances in nanotechnology, especially the development of integrated nanostructured materials, have offered unprecedented opportunities for photocatalytic CO2 reduction. Compared to bulk semiconductor photocatalysts, most of these nanostructured photocatalysts offer at least one advantage in areas such as photogenerated carrier kinetics, light absorption, and active surface area, supporting improved photochemical reaction efficiencies. In this review, we briefly cover the cutting-edge research activities in the area of integrated nanostructured catalysts for photochemical CO2 reduction, including aqueous and gas-phase reactions. Primarily explored are the basic principles of tailor-made nanostructured composite photocatalysts and how nanostructuring influences photochemical performance. Specifically, we summarize the recent developments related to integrated nanostructured materials for photocatalytic CO2 reduction, mainly in the following five categories: carbon-based nano-architectures, metal-organic frameworks, covalent-organic frameworks, conjugated porous polymers, and layered double hydroxide-based inorganic hybrids. Besides the technical aspects of nanostructure-enhanced catalytic performance in photochemical CO2 reduction, some future research trends and promising strategies are addressed.
Collapse
Affiliation(s)
- Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | |
Collapse
|
42
|
Wang Y, Liu H, Pan Q, Ding N, Yang C, Zhang Z, Jia C, Li Z, Liu J, Zhao Y. Construction of Thiazolo[5,4- d]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46483-46489. [PMID: 32962337 DOI: 10.1021/acsami.0c12173] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficient conversion of CO2 to chemical fuels driven by solar energy is still a challenging research area in photosynthesis, in which the conversion efficiency greatly relies on photocatalytic coenzyme NADH regeneration. Herein, a photocatalyst/biocatalyst synergetic system based on a conjugated microporous polymer (CMP) was prepared for sustainable and highly selective photocatalytic reduction of CO2 to methanol. Two thiazolo[5,4-d]thiazole-linked CMPs (TZTZ-TA and TZTZ-TP) were designed and synthesized as photocatalysts. Slight skeleton modification led to a great difference in their photocatalytic performance. Triazine-based TZTZ-TA exhibited an unprecedentedly high NADH regeneration efficiency of 82.0% yield within 5 min. Furthermore, the in situ photocatalytic NADH regeneration system could integrate with three consecutive enzymes for efficient conversion of CO2 into methanol. This CMP-enzyme hybrid system provides a new avenue for accomplishing the liquid sunshine from CO2.
Collapse
Affiliation(s)
- Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Naixiu Ding
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhang Heng Road, Pudong New District, Shanghai 201204, China
| | - Zhaohui Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Changchao Jia
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
43
|
Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou JJ. Heterogeneous Photocatalytic Organic Transformation Reactions Using Conjugated Polymers-Based Materials. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03480] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jie Xiao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianlong Liu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
44
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020; 59:16278-16293. [PMID: 32329950 PMCID: PMC7540687 DOI: 10.1002/anie.202002561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/02/2022]
Abstract
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.
Collapse
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala UniversitySweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| |
Collapse
|
45
|
Affiliation(s)
- Xiudong Chen
- College of Chemistry and Environmental Engineering Jiujiang University Qianjin East Road 551 Jiujiang P. R. China 332005
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Weiwei Sun
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| | - Yong Wang
- School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road Shanghai P. R. China 200444
| |
Collapse
|
46
|
López-Calixto CG, Barawi M, Gomez-Mendoza M, Oropeza FE, Fresno F, Liras M, de la Peña O'Shea VA. Hybrids Based on BOPHY-Conjugated Porous Polymers as Photocatalysts for Hydrogen Production: Insight into the Charge Transfer Pathway. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01346] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Carmen G. López-Calixto
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | - Mariam Barawi
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | - Freddy E. Oropeza
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | - Fernando Fresno
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | - Marta Liras
- Photoactivated Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain
| | | |
Collapse
|
47
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water‐Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala University Sweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| |
Collapse
|
48
|
Zhao C, Chen Z, Shi R, Yang X, Zhang T. Recent Advances in Conjugated Polymers for Visible-Light-Driven Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907296. [PMID: 32483883 DOI: 10.1002/adma.201907296] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Chengxiao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zupeng Chen
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Aleksovska A, Lönnecke P, Addicoat MA, Gläser R, Hey‐Hawkins E. Catalytic Activity Towards Hydrogen Evolution Dependent of the Degree of Conjugation and Absorption of Six Organic Chromophores. ChemistryOpen 2020; 9:405-408. [PMID: 32257749 PMCID: PMC7110142 DOI: 10.1002/open.202000036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/11/2020] [Indexed: 11/12/2022] Open
Abstract
Conjugated materials can, in many cases, absorb visible light because of their delocalized π electron system. Such materials have been widely used as a photoactive layers in organic photovoltaic devices and as photosensitizers in dye-sensitized solar cells. Additionally, these materials have been reported for applications in solar fuel production, working as photocatalysts for the hydrogen evolution reaction (HER). The synthesis of three flexible vinyl groups-containing chromophores is reported. The catalytic activity towards hydrogen evolution of these chromophores has been investigated and compared to their non-vinyl-containing analogues. The catalytic effect was confirmed using two different approaches: electrochemical, using the chromophores to modify a working electrode, and photocatalytic, using the chromophores combined with platinum nanoparticles. A relationship between the degree of conjugation and the catalytic activity of the chromophores has been observed with the electrochemical method, while a relationship between the UV absorption in the solid state and the photocatalytic effect with platinum nanoparticles was observed.
Collapse
Affiliation(s)
- Angela Aleksovska
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| | - Peter Lönnecke
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Fakultät für Chemie und MineralogieInstitut für Anorganische ChemieJohannisallee 2904103LeipzigGermany
| |
Collapse
|
50
|
Singh A, Verma P, Samanta D, Singh T, Maji TK. Bimodal Heterogeneous Functionality in Redox-Active Conjugated Microporous Polymer toward Electrocatalytic Oxygen Reduction and Photocatalytic Hydrogen Evolution. Chemistry 2020; 26:3810-3817. [PMID: 31868270 DOI: 10.1002/chem.201904938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 11/07/2022]
Abstract
The designing and development of heterogeneous catalysts for conversion of renewable energy to chemical energies by electrochemical as well as photochemical processes is at the forefront of energy research. In this work, two new donor-acceptor-based redox-active conjugated microporous polymers (CMPs) (TAPA-OPE-mix and TAPA-OPE-gly) are synthesized through Schiff base condensation reaction using a microwave synthesizer. Notably, the asymmetric and symmetric bola-amphiphilic nature of the OPE struts results in distinct nanostructuring and morphologies in the CMPs. Interestingly, both CMPs show impressive heterogeneous catalytic activity toward electrochemical O2 reduction and photocatalytic H2 evolution reactions, and therefore, act as bimodal electro- and photocatalytic porous organic materials. Furthermore, the redox-active property of the CMPs is exploited for in situ generation and stabilization of platinum nanoparticles (Pt), and these Pt@CMPs exhibit significantly enhanced photocatalytic activity.
Collapse
Affiliation(s)
- Ashish Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Parul Verma
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Debabrata Samanta
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Tarandeep Singh
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Tapas Kumar Maji
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|