1
|
Komiyama M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:218-232. [PMID: 36793325 PMCID: PMC9924364 DOI: 10.3762/bjnano.14.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Cyclodextrins have been widely employed for drug delivery systems (DDSs) in which drugs are selectively delivered to a target site in the body. Recent interest has been focused on the construction of cyclodextrin-based nanoarchitectures that show sophisticated DDS functions. These nanoarchitectures are precisely fabricated based on three important features of cyclodextrins, namely (1) the preorganized three-dimensional molecular structure of nanometer size, (2) the easy chemical modification to introduce functional groups, and (3) the formation of dynamic inclusion complexes with various guests in water. With the use of photoirradiation, drugs are released from cyclodextrin-based nanoarchitectures at designated timing. Alternatively, therapeutic nucleic acids are stably protected in the nanoarchitectures and delivered to the target site. The efficient delivery of the CRISPR-Cas9 system for gene editing was also successful. Even more complicated nanoarchitectures can be designed for sophisticated DDSs. Cyclodextrin-based nanoarchitectures are highly promising for future applications in medicine, pharmaceutics, and other relevant fields.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
3
|
Tyagi G, Greenfield JL, Jones BE, Sharratt WN, Khan K, Seddon D, Malone LA, Cowieson N, Evans RC, Fuchter MJ, Cabral JT. Light Responsiveness and Assembly of Arylazopyrazole-Based Surfactants in Neat and Mixed CTAB Micelles. JACS AU 2022; 2:2670-2677. [PMID: 36590257 PMCID: PMC9795462 DOI: 10.1021/jacsau.2c00453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
The self-assembly of an arylazopyrazole-based photosurfactant (PS), based on cetyltrimethylammonium bromide (CTAB), and its mixed micelle formation with CTAB in aqueous solution was investigated by small angle neutron and X-ray scattering (SANS/SAXS) and UV-vis absorption spectroscopy. Upon UV light exposure, PS photoisomerizes from E-PS (trans) to Z-PS (cis), which transforms oblate ellipsoidal micelles into smaller, spherical micelles with larger shell thickness. Doping PS with CTAB resulted in mixed micelle formation at all stoichiometries and conditions investigated; employing selectively deuterated PS, a monotonic variation in scattering length density and dimensions of the micellar core and shell is observed for all contrasts. The concentration- and irradiance-dependence of the E to Z configurational transition was established in both neat and mixed micelles. A liposome dye release assay establishes the enhanced efficacy of photosurfactants at membrane disruption, with E-PS exhibiting a 4-fold and Z-PS a 10-fold increase in fluorescence signal with respect to pure CTAB. Our findings pave the way for external triggering and modulation of the wide range of CTAB-based biomedical and material applications.
Collapse
Affiliation(s)
- Gunjan Tyagi
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| | - Jake L. Greenfield
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Beatrice E. Jones
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - William N. Sharratt
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Kasim Khan
- Department
of Biology, Lund University, 22100 Lund, Sweden
| | - Dale Seddon
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Lorna A. Malone
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Nathan Cowieson
- Diamond
Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11
0DE, U.K.
| | - Rachel C. Evans
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 OFS, U.K.
| | - Matthew J. Fuchter
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - João T. Cabral
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
- Institute
for Molecular Science and Engineering, Imperial
College London, London SW7 2AZ, U.K.
| |
Collapse
|
4
|
Fully Symmetric Cyclodextrin Polycarboxylates: How to Determine Reliable Protonation Constants from NMR Titration Data. Int J Mol Sci 2022; 23:ijms232214448. [PMID: 36430926 PMCID: PMC9696085 DOI: 10.3390/ijms232214448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Acid-base properties of cyclodextrins (CDs), persubstituted at C-6 by 3-mercaptopropionic acid, sualphadex (Suα-CD), subetadex (Suβ-CD) and sugammadex (Suγ-CD, the antidote of neuromuscular blocking steroids) were studied by 1H NMR-pH titrations. For each CD, the severe overlap in protonation steps prevented the calculation of macroscopic pKa values using the standard data fitting model. Considering the full symmetry of polycarboxylate structures, we reduced the number of unknown NMR parameters in the "Q-fitting" or the novel "equidistant macroscopic" evaluation approaches. These models already provided pKa values, but some of them proved to be physically unrealistic, deceptively suggesting cooperativity in carboxylate protonations. The latter problem could be circumvented by adapting the microscopic site-binding (cluster expansion) model by Borkovec, which applies pairwise interactivity parameters to quantify the mutual basicity-decreasing effect of carboxylate protonations. Surprisingly, only a single averaged interactivity parameter could be calculated reliably besides the carboxylate 'core' microconstant for each CD derivative. The speciation of protonation isomers hence could not be resolved, but the optimized microscopic basicity parameters could be converted to the following sets of macroscopic pKa values: 3.84, 4.35, 4.81, 5.31, 5.78, 6.28 for Suα-CD; 3.82, 4.31, 4.73, 5.18, 5.64, 6.06, 6.54 for Suβ-CD and 3.83, 4.28, 4.65, 5.03, 5.43, 5.81, 6.18, 6.64 for Suγ-CD. The pH-dependent charge of these compounds can now be accurately calculated, in support of designing new analytical methods to exploit their charge-dependent molecular recognition such as in cyclodextrin-aided chiral capillary electrophoresis.
Collapse
|
5
|
Pérez-Ruiz R. Photon Upconversion Systems Based on Triplet-Triplet Annihilation as Photosensitizers for Chemical Transformations. Top Curr Chem (Cham) 2022; 380:23. [PMID: 35445872 DOI: 10.1007/s41061-022-00378-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/30/2022] [Indexed: 12/22/2022]
Abstract
Photon upconversion (UC) based on triplet-triplet annihilation (TTA) is considered one of the most attractive methodologies for switching wavelengths from lower to higher energy. This two-photon process, which requires the involvement of a bimolecular system, has been widely used in numerous fields such as bioimaging, solar cells, displays, drug delivery, and so on. In the last years, we have witnessed the harnessing of this concept by the organic community who have developed new strategies for synthetic purposes. Interestingly, the generation of high-energetic species by this phenomenon has provided the opportunity not only to photoredox activate compounds with high-energy demanding bonds, expanding the reactivity window that lies outside the energy window of the initial irradiation wavelength, but also to sensitized conventional photocatalysts through energy transfer processes even employing infrared irradiation. Herein, an overview of the principal examples found in literature is described where TTA-UC systems are found to be suitable photosensitizers for several chemical transformations.
Collapse
Affiliation(s)
- Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València, Camino de Vera S/N, 46022, Valencia, Spain.
| |
Collapse
|
6
|
Leistner AL, Pianowski Z. Smart photochromic materials triggered with visible light. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anna-Lena Leistner
- KIT: Karlsruher Institut fur Technologie Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| | - Zbigniew Pianowski
- Karlsruher Institut fur Technologie Fakultat fur Chemie und Biowissenschaften Institute of Organic Chemistry Fritz-Haber-Weg 6 76131 Karlsruhe GERMANY
| |
Collapse
|
7
|
Liu YH, Liu Y. Highly effective gene delivery based on cyclodextrin multivalent assembly in target cancer cells. J Mater Chem B 2022; 10:958-965. [DOI: 10.1039/d1tb02585f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A supramolecular assembly based on cyclodextrins for highly effective gene delivery responded to NIR light and reductase in targeted cancer cells.
Collapse
Affiliation(s)
- Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Solid-state photoswitching in arylazopyrazole-embedded polydimethylsiloxane composite thin films. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Niehues M, Engel S, Ravoo BJ. Photo-Responsive Self-Assembly of Plasmonic Magnetic Janus Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11123-11130. [PMID: 34499520 DOI: 10.1021/acs.langmuir.1c01979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive self-assembly of nanoparticles is a versatile approach for the bottom-up fabrication of adaptive and functional nanomaterials. For this purpose, anisotropic building blocks are of particular importance due to the unique shapes and structures that can be obtained upon self-assembly. Here, we demonstrate the photo-responsive self-assembly of plasmonic magnetic "dumbbell" Janus nanoparticles (Au-Fe3O4) via the host-guest interaction of the supramolecular host cyclodextrin and the molecular photoswitch arylazopyrazole. We developed efficient ligand exchange procedures that enable the introduction of functional ligands, respectively, to the surface of the gold or magnetite core of the dumbbell. Our results indicate that distinct nanoparticle superstructures arise in aqueous solutions if nanoparticle aggregation is crosslinker-induced or self-induced and that the reversible formation and fragmentation of the superstructures can be modulated with light.
Collapse
Affiliation(s)
- Maximilian Niehues
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Sabrina Engel
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, D-48149 Münster, Germany
- Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| |
Collapse
|
10
|
Nie C, Liu C, Sun S, Wu S. Visible‐Light‐Controlled Azobenzene‐Cyclodextrin Host‐Guest Interactions for Biomedical Applications and Surface Functionalization. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
11
|
Nagai Y, Ishiba K, Yamamoto R, Yamada T, Morikawa M, Kimizuka N. Light‐Triggered, Non‐Centrosymmetric Self‐Assembly of Aqueous Arylazopyrazoles at the Air–Water Interface and Switching of Second‐Harmonic Generation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Nagai
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Keita Ishiba
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Ryosuke Yamamoto
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Teppei Yamada
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Department of Chemistry Graduate School of Science University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masa‐aki Morikawa
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
12
|
Nagai Y, Ishiba K, Yamamoto R, Yamada T, Morikawa M, Kimizuka N. Light‐Triggered, Non‐Centrosymmetric Self‐Assembly of Aqueous Arylazopyrazoles at the Air–Water Interface and Switching of Second‐Harmonic Generation. Angew Chem Int Ed Engl 2021; 60:6333-6338. [DOI: 10.1002/anie.202013650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/10/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Yuki Nagai
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Keita Ishiba
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Ryosuke Yamamoto
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Teppei Yamada
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Department of Chemistry Graduate School of Science University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Masa‐aki Morikawa
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry Graduate School of Engineering Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS) Kyushu University 744 Moto-oka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
13
|
Tian J, Liu Z, Wu C, Jiang W, Chen L, Shi D, Zhang X, Zhang G, Zhang D. Simultaneous Incorporation of Two Types of Azo-Groups in the Side Chains of a Conjugated D-A Polymer for Logic Control of the Semiconducting Performance by Light Irradiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005613. [PMID: 33448055 DOI: 10.1002/adma.202005613] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Indexed: 06/12/2023]
Abstract
A new design strategy for photoresponsive semiconducting polymer with tri-stable semiconducting states is reported by simultaneous incorporation of tetra-ortho-methoxy-substituted azobenzene (mAzo) and arylazopyrazole (pAzo) in the side chains. The trans-to-cis transformations for mAzo and pAzo groups can sequentially occur within the polymer thin film after sequential 560 and 365 nm light irradiation. Remarkably, the trans-cis isomerization of mAzo and pAzo groups can modulate the thin film crystallinity. Accordingly, the performances of the resulting field-effect transistors (FETs) can be reversibly modulated, leading to tri-stable semiconducting states after sequential 560, 365, and 470 nm light irradiation. Therefore, the device performance can be logically controlled by light irradiation at three different wavelengths. In addition, with light irradiation and device current as the input and output signals, the three-value logic gate by using single FET device can be successfully mimicked.
Collapse
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Changchun Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
14
|
Nazerdeylami S, Ghasemi JB, Amiri A, Mohammadi Ziarani G, Badiei A. A highly sensitive fluorescence measurement of amphetamine using 8-hydroxyquinoline-β-cyclodextrin grafted on graphene oxide. DIAMOND AND RELATED MATERIALS 2020; 109:108032. [DOI: 10.1016/j.diamond.2020.108032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
15
|
Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di CA, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field-Effect Transistors Optically Tunable by Near Infra-Red Light. Angew Chem Int Ed Engl 2020; 59:13844-13851. [PMID: 32385919 DOI: 10.1002/anie.202003706] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Optically tunable field-effect transistors (FETs) with near infra-red (NIR) light show promising applications in various areas. Now, arylazopyrazole groups are incorporated in the side chains of a semiconducting donor-acceptor (D-A) polymer. The cis-trans interconversion of the arylazopyrazole can be controlled by 980 nm and 808 nm NIR light irradiation, by utilizing NaYF4 :Yb,Tm upconversion nanoparticles and the photothermal effect of conjugated D-A polymers, respectively. This reversible transformation affects the interchain packing of the polymer thin film, which in turn reversibly tunes the semiconducting properties of the FETs by the successive 980 nm and 808 nm light irradiation. The resultant FETs display fast response to NIR light, good resistance to photofatigue, and stability in storage for up to 120 days. These unique features will be useful in future memory and bioelectronic wearable devices.
Collapse
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Tian J, Liu Z, Jiang W, Shi D, Chen L, Zhang X, Zhang G, Di C, Zhang D. A Conjugated Polymer Containing Arylazopyrazole Units in the Side Chains for Field‐Effect Transistors Optically Tunable by Near Infra‐Red Light. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jianwu Tian
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenlin Jiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Dandan Shi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xisha Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory for Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
18
|
Yan H, Qiu Y, Wang J, Jiang Q, Wang H, Liao Y, Xie X. Wholly Visible-Light-Responsive Host-Guest Supramolecular Gels Based on Methoxy Azobenzene and β-Cyclodextrin Dimers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7408-7417. [PMID: 32486643 DOI: 10.1021/acs.langmuir.0c00964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Much attention has been paid to construct photoresponsive host-guest supramolecular gels; however, red-shifting the responsive wavelength remains a formidable challenge. Here, a wholly visible-light-responsive supramolecular gel was fabricated through the host-guest interaction between a β-cyclodextrin (β-CD) dimer and a tetra-ortho-methoxy-substituted azobenzene (mAzo) dimer (binary gelator) in DMSO/H2O (V/V = 8/2). The minimum gelation concentration of the low-molecular-weight binary gelator was 6 wt % measured via the tube inversion method. The substituted methoxy groups shifted the responsive wavelengths of trans-mAzo and cis-mAzo to the green and blue light regions, respectively. The host-guest interaction between mAzo and β-CD as the driving force for gelation was confirmed using the 1H-NMR and 2D 1H NOESY spectra. The supramolecular gel showed good self-supporting ability with a storage modulus higher than 104 Pa. The release of Rhodamine B loaded in the gel as a model drug could be controlled by green light irradiation. We envisioned the potential applications of the wholly visible-light-responsive supramolecular compounds ranging from biomedical materials to smart materials.
Collapse
Affiliation(s)
- Hongchao Yan
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qian Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yonggui Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Material Processing and Die&Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Bian T, Chu Z, Klajn R. The Many Ways to Assemble Nanoparticles Using Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905866. [PMID: 31709655 DOI: 10.1002/adma.201905866] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The ability to reversibly assemble nanoparticles using light is both fundamentally interesting and important for applications ranging from reversible data storage to controlled drug delivery. Here, the diverse approaches that have so far been developed to control the self-assembly of nanoparticles using light are reviewed and compared. These approaches include functionalizing nanoparticles with monolayers of photoresponsive molecules, placing them in photoresponsive media capable of reversibly protonating the particles under light, and decorating plasmonic nanoparticles with thermoresponsive polymers, to name just a few. The applicability of these methods to larger, micrometer-sized particles is also discussed. Finally, several perspectives on further developments in the field are offered.
Collapse
Affiliation(s)
- Tong Bian
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Zonglin Chu
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
20
|
Sallee A, Ghebreyessus K. Photoresponsive Zn2+-specific metallohydrogels coassembled from imidazole containing phenylalanine and arylazopyrazole derivatives. Dalton Trans 2020; 49:10441-10451. [DOI: 10.1039/d0dt01809k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimuli-responsive supramolecular gels and metallogels have been widely explored in the past decade, but the fabrication of metallogels with reversible photoresponsive properties remains largely unexplored.
Collapse
Affiliation(s)
- Ashanti Sallee
- Department of Chemistry and Biochemistry
- Hampton University
- Hampton
- USA
| | | |
Collapse
|
21
|
Zhang YM, Liu YH, Liu Y. Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806158. [PMID: 30773709 DOI: 10.1002/adma.201806158] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/23/2019] [Indexed: 06/09/2023]
Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host-guest interactions in water. In this review, recent progress in CD-based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH- and redox-responsive drug and gene delivery, enzyme-activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell-cell communication, as well as a geomagnetism-controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD-based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.
Collapse
Affiliation(s)
- Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yao-Hua Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
22
|
Li W, Dong K, Wang H, Zhang P, Sang Y, Ren J, Qu X. Remote and reversible control of in vivo bacteria clustering by NIR-driven multivalent upconverting nanosystems. Biomaterials 2019; 217:119310. [DOI: 10.1016/j.biomaterials.2019.119310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 11/27/2022]
|
23
|
Niehues M, Tegeder P, Ravoo BJ. Reversible end-to-end assembly of selectively functionalized gold nanorods by light-responsive arylazopyrazole-cyclodextrin interaction. Beilstein J Org Chem 2019; 15:1407-1415. [PMID: 31293690 PMCID: PMC6604721 DOI: 10.3762/bjoc.15.140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022] Open
Abstract
We propose a two-step ligand exchange for the selective end-functionalization of gold nanorods (AuNR) by thiolated cyclodextrin (CD) host molecules. As a result of the complete removal of the precursor capping agent cetyltrimethylammonium bromide (CTAB) by a tetraethylene glycol derivative, competitive binding to the host cavity was prevented, and reversible, light-responsive assembly and disassembly of the AuNR could be induced by host-guest interaction of CD on the nanorods and a photoswitchable arylazopyrazole cross-linker in aqueous solution. The end-to-end assembly of AuNR could be effectively controlled by irradiation with UV and visible light, respectively, over four cycles. By the introduction of AAP, previous disassembly limitations based on the photostationary states of azobenzenes could be solved. The combination photoresponsive interaction and selectively end-functionalized nanoparticles shows significant potential in the reversible self-assembly of inorganic-organic hybrid nanomaterials.
Collapse
Affiliation(s)
- Maximilian Niehues
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149, Germany
| | - Patricia Tegeder
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, D-48149, Germany
| |
Collapse
|
24
|
Sentürk OI, Chervyachkova E, Ji Y, Wegner SV. Independent Blue and Red Light Triggered Narcissistic Self-Sorting Self-Assembly of Colloidal Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901801. [PMID: 31111634 DOI: 10.1002/smll.201901801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/07/2019] [Indexed: 06/09/2023]
Abstract
The ability of living systems to self-sort different cells into separate assemblies and the ability to independently regulate different structures are one ingredient that gives rise to their spatiotemporal complexity. Here, this self-sorting behavior is replicated in a synthetic system with two types of colloidal particles; where each particle type independently self-assembles either under blue or red light into distinct clusters, known as narcissistic self-sorting. For this purpose, each particle type is functionalized either with the light-switchable protein VVDHigh or Cph1, which homodimerize under blue and red light, respectively. The response to different wavelengths of light and the high specificity of the protein interactions allows for the independent self-assembly of each particle type with blue or red light and narcissistic self-sorting. Moreover, as both of the photoswitchable protein interactions are reversible in the dark; also, the self-sorting is reversible and dynamic. Overall, the independent blue and red light controlled self-sorting in a synthetic system opens new possibilities to assemble adaptable, smart, and advanced materials similar to the complexity observed in tissues.
Collapse
Affiliation(s)
- Oya Ilke Sentürk
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | | | - Yuhao Ji
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| | - Seraphine V Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
25
|
Chu C, Stricker L, Kirse TM, Hayduk M, Ravoo BJ. Light-Responsive Arylazopyrazole Gelators: From Organic to Aqueous Media and from Supramolecular to Dynamic Covalent Chemistry. Chemistry 2019; 25:6131-6140. [PMID: 30791165 PMCID: PMC6593461 DOI: 10.1002/chem.201806042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/09/2023]
Abstract
Versatile photoresponsive gels based on tripodal low molecular weight gelators (LMWGs) are reported. A cyclohexane-1,3,5-tricarboxamide (CTA) core provides face-to-face hydrogen bonding and a planar conformation, inducing the self-assembly of supramolecular polymers. The CTA core was substituted with three arylazopyrazole (AAP) arms. AAP is a molecular photoswitch that isomerizes reversibly under alternating UV and green light irradiation. The E isomer of AAP is planar, favoring the self-assembly, whereas the Z isomer has a twisted structure, leading to a disassembly of the supramolecular polymers. By using tailor-made molecular design of the tripodal gelator, light-responsive organogels and hydrogels were obtained. Additionally, in the case of the hydrogels, AAP was coupled to the core through hydrazones, so that the hydrogelator and, hence, the photoresponsive hydrogel could also be assembled and disassembled by using dynamic covalent chemistry.
Collapse
Affiliation(s)
- Chih‐Wei Chu
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Thomas M. Kirse
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Matthias Hayduk
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience (SoN)Westfälische Wilhelms-Universität MünsterCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
26
|
Choi JE, Kim D, Jang HS. Intense upconversion red emission from Gd-doped NaErF4:Tm-based core/shell/shell nanocrystals under 980 and 800 nm near infrared light excitations. Chem Commun (Camb) 2019; 55:2261-2264. [DOI: 10.1039/c8cc09031a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong upconversion red-emitting Gd-doped NaErF4:Tm-based upconversion nanophosphors (UCNPs) are successfully synthesized by the formation of a core/intermediate shell/active shell structure.
Collapse
Affiliation(s)
- Jung Eun Choi
- Materials Architecturing Research Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
- Department of Materials Science and Engineering
| | - Donghwan Kim
- Department of Materials Science and Engineering
- Korea University
- Seoul 02841
- Republic of Korea
- KU-KIST Graduate School of Energy and Environment (Green School)
| | - Ho Seong Jang
- Materials Architecturing Research Center
- Korea Institute of Science and Technology
- Seoul 02792
- Republic of Korea
- Division of Nano & Information Technology
| |
Collapse
|
27
|
Kauscher U, Holme MN, Björnmalm M, Stevens MM. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv Drug Deliv Rev 2019; 138:259-275. [PMID: 30947810 PMCID: PMC7180078 DOI: 10.1016/j.addr.2018.10.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Over the past few decades, a range of vesicle-based drug delivery systems have entered clinical practice and several others are in various stages of clinical translation. While most of these vesicle constructs are lipid-based (liposomes), or polymer-based (polymersomes), recently new classes of vesicles have emerged that defy easy classification. Examples include assemblies with small molecule amphiphiles, biologically derived membranes, hybrid vesicles with two or more classes of amphiphiles, or more complex hierarchical structures such as vesicles incorporating gas bubbles or nanoparticulates in the lumen or membrane. In this review, we explore these recent advances and emerging trends at the edge and just beyond the research fields of conventional liposomes and polymersomes. A focus of this review is the distinct behaviors observed for these classes of vesicles when exposed to physical stimuli - such as ultrasound, heat, light and mechanical triggers - and we discuss the resulting potential for new types of drug delivery, with a special emphasis on current challenges and opportunities.
Collapse
Affiliation(s)
- Ulrike Kauscher
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Margaret N Holme
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Mattias Björnmalm
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Imperial College London, London SW7 2AZ, UK; Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden.
| |
Collapse
|
28
|
Freitag M, Möller N, Rühling A, Strassert CA, Ravoo BJ, Glorius F. Photocatalysis in the Dark: Near-Infrared Light Driven Photoredox Catalysis by an Upconversion Nanoparticle/Photocatalyst System. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Matthias Freitag
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Nadja Möller
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Andreas Rühling
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie - CiMIC and CeNTech; Westfälische Wilhelms-Universität Münster; Corrensstraße 28/30 Münster 48149 Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN); Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
29
|
Chen G, Ma B, Xie R, Wang Y, Dou K, Gong S. NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier. J Control Release 2018; 282:148-155. [PMID: 29287907 PMCID: PMC6008219 DOI: 10.1016/j.jconrel.2017.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/19/2017] [Accepted: 12/25/2017] [Indexed: 01/04/2023]
Abstract
Spatiotemporal control over the release or activation of biomacromolecules such as siRNA remains a significant challenge. Light-controlled release has gained popularity in recent years; however, a major limitation is that most photoactivable compounds/systems respond only to UV irradiation, but not near-infrared (NIR) light that offers a deeper tissue penetration depth and better biocompatibility. This paper reports a simple NIR-to-UV upconversion nanoparticle (UCNP)-based siRNA nanocarrier for NIR-controlled gene silencing. siRNA is complexed onto a NaYF4:Yb/Tm/Er UCNP through an azobenzene (Azo)-cyclodextrin (CD) host-guest interaction. The UV emission generated by the NIR-activated UCNP effectively triggers the trans-to-cis photoisomerization of azobenzene, thus leading to the release of siRNA due to unmatched host-guest pairs. The UCNP-siRNA complexes are also functionalized with PEG (i.e., UCNP-(CD/Azo)-siRNA/PEG NPs), targeting ligands (i.e., EGFR-specific GE11 peptide), acid-activatable cell-penetrating peptides (i.e., TH peptide), and imaging probes (i.e., Cy5 fluorophore). The UCNP-(CD/Azo)-siRNA/PEG NPs with both GE11 and TH peptides display a high level of cellular uptake and an excellent endosomal/lysosomal escape capability. More importantly, NIR-controlled spatiotemporal knockdown of GFP expression is successfully achieved in both a 2D monolayer cell model and a 3D multicellular tumor spheroid model. Thus, this simple and versatile nanoplatform has great potential for the selective activation or release of various biomacromolecules.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Ben Ma
- Wisconsin Institute for Discovery, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Yuyuan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Wisconsin Institute for Discovery, Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
30
|
Lee G, Park YI. Lanthanide-Doped Upconversion Nanocarriers for Drug and Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E511. [PMID: 29987223 PMCID: PMC6071191 DOI: 10.3390/nano8070511] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 02/08/2023]
Abstract
Compared to traditional cancer treatments, drug/gene delivery is an advanced, safe, and efficient method. Nanoparticles are widely used as nanocarriers in a drug/gene delivery system due to their long circulation time and low multi-drug resistance. In particular, lanthanide-doped upconversion nanoparticles (UCNPs) that can emit UV and visible light by near-infrared (NIR) upconversion demonstrated more efficient and safer drug/gene delivery. Because of the low penetration depth of UV and visible light, a photoinduced reaction such as photocleavage or photoisomerization has proven restrictive. However, NIR light has high tissue penetration depth and stimulates the photoinduced reaction through UV and visible emissions from lanthanide-doped UCNPs. This review discusses the optical properties of UCNPs that are useful in bioapplications and drug/gene delivery systems using the UCNPs as a photoreaction inducer.
Collapse
Affiliation(s)
- Gibok Lee
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
31
|
Stricker L, Böckmann M, Kirse TM, Doltsinis NL, Ravoo BJ. Arylazopyrazole Photoswitches in Aqueous Solution: Substituent Effects, Photophysical Properties, and Host-Guest Chemistry. Chemistry 2018; 24:8639-8647. [PMID: 29601098 DOI: 10.1002/chem.201800587] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 11/09/2022]
Abstract
Getting the green light! Substituted arylazopyrazoles (AAPs) have been investigated as supramolecular photoswitches in aqueous solution. Selective photostationary states (PSSs) and improved binding affinities to β-cyclodextrin have been determined. The experimental findings are supported by results from DFT calculations.
Collapse
Affiliation(s)
- Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Marcus Böckmann
- Institute for Solid State Theory and Center for Multiscale Theory, & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm Str. 10, 48149, Münster, Germany
| | - Thomas M Kirse
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory, & Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm Str. 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
32
|
Engel S, Möller N, Stricker L, Peterlechner M, Ravoo BJ. A Modular System for the Design of Stimuli-Responsive Multifunctional Nanoparticle Aggregates by Use of Host-Guest Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704287. [PMID: 29573341 DOI: 10.1002/smll.201704287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/24/2018] [Indexed: 06/08/2023]
Abstract
A self-assembly approach for the design of multifunctional nanomaterials consisting of different nanoparticles (gold, iron oxide, and lanthanide-doped LiYF4 ) is developed. This modular system takes advantage of the light-responsive supramolecular host-guest chemistry of β-cyclodextrin and arylazopyrazole, which enables the dynamic and reversible self-assembly of particles to spherical nanoparticle aggregates in aqueous solution. Due to the magnetic iron oxide nanoparticles, the aggregates can be manipulated by an external magnetic field leading to the formation of linear structures. As a result of the integration of upconversion nanoparticles, the aggregates are additionally responsive to near-infrared light and can be redispersed by use of the upconversion effect. By varying the nanoparticle and linker concentrations the composition, size, shape, and properties of the multifunctional nanoparticle aggregates can be fine-tuned.
Collapse
Affiliation(s)
- Sabrina Engel
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Nadja Möller
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Martin Peterlechner
- Institute of Materials Physics, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|
33
|
Wang D, Zhao W, Wei Q, Zhao C, Zheng Y. Photoswitchable Azobenzene/Cyclodextrin Host-Guest Complexes: From UV- to Visible/Near-IR-Light-Responsive Systems. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700233] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dongsheng Wang
- School of Optoelectronic Information; University of Electronic Science and Technology of China, No. 4, Section 2; North Jianshe Road 610054 Chengdu China
| | - Weifeng Zhao
- College of Polymer Science and Engineering; Sichuan University, No. 24 South Section 1; Yihuan Road Chengdu China
| | - Qiang Wei
- Department of Cellular Biophysics; Max-Planck-Institute for Medical Research, Heidelberg; Heisenbergstr. 3 70569 Stuttgart Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering; Sichuan University, No. 24 South Section 1; Yihuan Road Chengdu China
| | - Yonghao Zheng
- School of Optoelectronic Information; University of Electronic Science and Technology of China, No. 4, Section 2; North Jianshe Road 610054 Chengdu China
| |
Collapse
|
34
|
Engel S, Möller N, Ravoo BJ. Stimulus-Responsive Assembly of Nanoparticles using Host-Guest Interactions of Cyclodextrins. Chemistry 2018; 24:4741-4748. [DOI: 10.1002/chem.201705540] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Sabrina Engel
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Nadja Möller
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
35
|
Dong M, Babalhavaeji A, Collins CV, Jarrah K, Sadovski O, Dai Q, Woolley GA. Near-Infrared Photoswitching of Azobenzenes under Physiological Conditions. J Am Chem Soc 2017; 139:13483-13486. [PMID: 28885845 DOI: 10.1021/jacs.7b06471] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biological tissue exhibits an absorbance minimum in the near-infrared between 700 and 900 nm that permits deep penetration of light. Molecules that undergo photoisomerization in this bio-optical window are highly desirable as core structures for the development of photopharmaceuticals and as components of chemical-biological tools. We report the systematic design, synthesis, and testing of an azobenzene derivative tailored to undergo single-photon photoswitching with near-infrared light under physiological conditions. A fused dioxane ring and a methoxy substituent were used to place oxygen atoms in all four ortho positions, as well as two meta positions, relative to the azobenzene N═N double bond. This substitution pattern, together with a para pyrrolidine group, raises the pKa of the molecule so that it is protonated at physiological pH and absorbs at wavelengths >700 nm. This azobenzene derivative, termed DOM-azo, is stable for months in neutral aqueous solutions, undergoes trans-to-cis photoswitching with 720 nm light, and thermally reverts to the stable trans isomer with a half-life near 1 s.
Collapse
Affiliation(s)
- Mingxin Dong
- Department of Chemistry, 80 St. George Street, University of Toronto , Toronto M5S 3H6, Canada.,Beijing Institute of Biotechnology , Beijing 100071, China
| | | | - Catherine V Collins
- Department of Chemistry, 80 St. George Street, University of Toronto , Toronto M5S 3H6, Canada
| | - Kareem Jarrah
- Department of Chemistry, 80 St. George Street, University of Toronto , Toronto M5S 3H6, Canada
| | - Oleg Sadovski
- Department of Chemistry, 80 St. George Street, University of Toronto , Toronto M5S 3H6, Canada
| | - Qiuyun Dai
- Beijing Institute of Biotechnology , Beijing 100071, China
| | - G Andrew Woolley
- Department of Chemistry, 80 St. George Street, University of Toronto , Toronto M5S 3H6, Canada
| |
Collapse
|
36
|
Moratz J, Stricker L, Engel S, Ravoo BJ. Controlling Complex Stability in Photoresponsive Macromolecular Host–Guest Systems: Toward Reversible Capture of DNA by Cyclodextrin Vesicles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Moratz
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Sabrina Engel
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
37
|
Möller N, Rühling A, Lamping S, Hellwig T, Fallnich C, Ravoo BJ, Glorius F. Stabilization of High Oxidation State Upconversion Nanoparticles by N-Heterocyclic Carbenes. Angew Chem Int Ed Engl 2017; 56:4356-4360. [PMID: 28300327 DOI: 10.1002/anie.201611506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 12/20/2022]
Abstract
The stabilization of high oxidation state nanoparticles by N-heterocyclic carbenes is reported. Such nanoparticles represent an important subset in the field of nanoparticles, with different and more challenging requirements for suitable ligands compared to elemental metal nanoparticles. N-Heterocyclic carbene coated NaYF4 :Yb,Tm upconversion nanoparticles were synthesized by a ligand-exchange reaction from a well-defined precursor. This new photoactive material was characterized in detail and employed in the activation of photoresponsive molecules by low-intensity near-infrared light (λ=980 nm).
Collapse
Affiliation(s)
- Nadja Möller
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 4, 8149, Münster, Germany
| | - Andreas Rühling
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 4, 8149, Münster, Germany
| | - Sebastian Lamping
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 4, 8149, Münster, Germany
| | - Tim Hellwig
- Westfälische Wilhelms-Universität Münster, Angewandte Physik, Corrensstrasse 2, 48149, Münster, Germany
| | - Carsten Fallnich
- Westfälische Wilhelms-Universität Münster, Angewandte Physik, Corrensstrasse 2, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 4, 8149, Münster, Germany
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 4, 8149, Münster, Germany
| |
Collapse
|
38
|
Möller N, Rühling A, Lamping S, Hellwig T, Fallnich C, Ravoo BJ, Glorius F. Stabilisierung von hochoxidierten Upconversion-Nanopartikeln mit N-heterocyclischen Carbenen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nadja Möller
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Deutschland
| | - Andreas Rühling
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Deutschland
| | - Sebastian Lamping
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Deutschland
| | - Tim Hellwig
- Westfälische Wilhelms-Universität Münster; Angewandte Physik; Corrensstraße 2 48149 Münster Deutschland
| | - Carsten Fallnich
- Westfälische Wilhelms-Universität Münster; Angewandte Physik; Corrensstraße 2 48149 Münster Deutschland
| | - Bart Jan Ravoo
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Westfälische Wilhelms-Universität Münster; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
39
|
Chu CW, Ravoo BJ. Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host–guest interaction. Chem Commun (Camb) 2017; 53:12450-12453. [DOI: 10.1039/c7cc07859e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Using photoresponsive host–guest chemistry, three different payloads can be photo-released successively from the same peptide hydrogel.
Collapse
Affiliation(s)
- Chih-Wei Chu
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- Münster 48149
- Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience
- Westfälische Wilhelms-Universität Münster
- Münster 48149
- Germany
| |
Collapse
|