1
|
Slesarchuk N, Ma E, Miranda-Pizarro J, Heikkinen S, Schollmeyer D, Nieger M, Vasko P, Repo T. On the mechanism of sp 2 C-H borylation using ortho-N-substituted pyridinium cations. Dalton Trans 2024; 53:9590-9595. [PMID: 38775650 DOI: 10.1039/d4dt00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
ortho-N-Substituted pyridinium cations with the weakly coordinating anion [B(C6F5)4]- have been studied and crucial structural features in the sp2 C-H borylation catalysis of 3-methylthiophene have been identified. The electron-deficiency of the aromatic core of the cation is essential for activity together with accessible protons. The spectroscopic yield of the borylation of 3-methylthiophene with catecholborane (CatBH) was optimized up to 86% and the method was further applied to other substrates such as N-alkylbenzenes. A mechanistic DFT study revealed the rate-limiting step in the catalysis to be the liberation of molecular H2 (ΔG‡ = 27.5 kcal mol-1), whereas the overall reaction was found to be exergonic by 5.1 kcal mol-1.
Collapse
Affiliation(s)
- Nikita Slesarchuk
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Enlu Ma
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Juan Miranda-Pizarro
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Sami Heikkinen
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Dieter Schollmeyer
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Martin Nieger
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Petra Vasko
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Timo Repo
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| |
Collapse
|
2
|
Czarnota M, Mames A, Pietrzak M, Jopa S, Theiß F, Buntkowsky G, Ratajczyk T. A Straightforward Method for the Generation of Hyperpolarized Orthohydrogen with a Partially Negative Line. Angew Chem Int Ed Engl 2024; 63:e202309188. [PMID: 37727926 DOI: 10.1002/anie.202309188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The hydrogen molecule, which exists in two spin isomers (ortho- and parahydrogen), is a highly studied system due to its fundamental properties and practical applications. Parahydrogen is used for Nuclear Magnetic Resonance signal enhancement, which is hyperpolarization of other molecules, including biorelevant ones. Hyperpolarization can be achieved by using Signal Amplification by Reversible Exchange (SABRE). SABRE can also convert parahydrogen into orthohydrogen, and surprisingly, in some cases, it has been discovered that orthohydrogen's resonance has the Partially Negative Line (PNL) pattern. Here, an approach for obtaining orthohydrogen with a PNL signal is presented for two catalysts: Ir-IMes, and Ir-IMesBn. The type of solvent in which SABRE is conducted is crucial for the observation of PNL. Specifically, a PNL signal can be easily generated in benzene using both catalysts, but it is more intense for Ir-IMesBn. In acetone, PNL is observed only for Ir-IMesBn. In methanol, no PNL is detected. The PNL effect is only detectable during the initial steps of pre-catalyst activation, and disappears as the activation process progresses. We have proposed a working hypothesis that explains our results. The presented data may facilitate the further investigation of PNL and its applications in material science and catalysis.
Collapse
Affiliation(s)
- Marek Czarnota
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Franziska Theiß
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Institute of Physical Chemistry, Technical University Darmstadt, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
3
|
Snadin AV, Chuklina NO, Kiryutin AS, Lukzen NN, Yurkovskaya AV. Magnetic field dependence of the para-ortho conversion rate of molecular hydrogen in SABRE experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 360:107630. [PMID: 38364339 DOI: 10.1016/j.jmr.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
The use of parahydrogen - the isomer of molecular hydrogen with zero nuclear spin - is important for promising and actively developing methods for spin hyperpolarization of nuclei called parahydrogen induced polarization (PHIP). However, the dissolved parahydrogen in PHIP experiments quickly loses its spin order, resulting in the formation of orthohydrogen and reduction of the overall nuclear polarization of the substrate. This process is due to the difference of chemical shifts of hydride protons, as well as spin-spin couplings between nuclei, in the intermediate catalytic complexes, and it has not been rigorously explained so far. We proposed a new experimental technique based on magnetic field cycling for measuring the rate of molecular hydrogen para-ortho conversion in solution and applied it for non-hydrogenative PHIP Signal Amplification By Reversible Exchange (SABRE) experiments. The para-ortho conversion rate was measured over a wide range of magnetic field from 0.5 mT to 9.4 T. It was found that the conversion rate strongly depends on the magnetic field in which the reaction occurs, as well as on the concentrations of reactants. The rate decreases with increasing the concentration of pyridine ligand and increases with increasing the concentration of iridium catalyst. The model, which takes into account the reversible exchange of molecular hydrogen with the catalyst, nuclear spin-spin interaction of hydride protons with nuclei of ligands within catalytic complex and nuclear Zeeman interactions, qualitatively describes the experimental data. Two types of complexes with different spin system symmetry contribute to the molecular hydrogen conversion. In asymmetric complexes possessing hydride protons with different chemical shifts due to the presence of chlorine anion ligand the para-ortho conversion rate increases with magnetic field, while for symmetric complexes this mechanism is not operable. In the magnetic field where level anti-crossing occurs the resonant feature for the rate of para-ortho conversion is found. The results of this work can be utilized for finding the optimal conditions for obtaining the maximum hyperpolarization in the experiments employing parahydrogen.
Collapse
Affiliation(s)
- Alexander V Snadin
- Novosibirsk State University, Novosibirsk 630090, Russia; Nesmeyanov Institute of Organoelement Compounds RAS, Moscow 119991, Russia
| | - Natalia O Chuklina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexey S Kiryutin
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Nikita N Lukzen
- Novosibirsk State University, Novosibirsk 630090, Russia; International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Konsewicz K, Laczkó G, Pápai I, Zhivonitko VV. Activation of H 2 using ansa-aminoboranes: solvent effects, dynamics, and spin hyperpolarization. Phys Chem Chem Phys 2024; 26:3197-3207. [PMID: 38193236 DOI: 10.1039/d3cp05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Spin hyperpolarization generated upon activation of parahydrogen, the spin-0 isomer of H2, by ansa-aminoboranes (AABs) constitutes a rare but interesting example of applied metal-free catalysis in parahydrogen-induced polarization (PHIP). AAB molecular moieties made of light elements would be useful in important areas of NMR, such as chemosensing and the production of hyperpolarized substances, or generally in NMR sensitivity enhancement. At the same time, little is known about the detailed mechanistic aspects of underlying chemical processes. Herein, we present a joint experimental-computational study of the kinetic and thermodynamic aspects of H2 activation by AABs, for the first time providing molecular-level details and results of PHIP experiments with AABs in various solvents. Specifically, a large number of kinetic and thermodynamic parameters are measured experimentally for H2 activation by 2-aminophenylboranes of variable steric bulkiness of the boryl site. A clear correlation between the experimental and DFT-predicted thermochemical parameters is observed. PHIP effects in toluene, dichloromethane, and acetonitrile are characterized and rationalized based on the use of the kinetic and nuclear spin relaxation parameters. Altogether, the obtained results provide valuable information for the further rational design of efficient AAB catalysts for metal-free PHIP based on frustrated Lewis pair (FLP) chemistry.
Collapse
Affiliation(s)
- Karolina Konsewicz
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, 90014, Finland.
| | - Gergely Laczkó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, Oulu, 90014, Finland.
| |
Collapse
|
5
|
Bernatowicz P, Ratajczyk T, Szymański S. Non-uniform orientation of H2 molecules in a magnetic field as a critical condition for the appearance of partially negative NMR lines of o-H2 in hyperpolarization experiments using p-H2. J Chem Phys 2023; 159:124304. [PMID: 38127386 DOI: 10.1063/5.0167498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/12/2023] [Indexed: 12/23/2023] Open
Abstract
In hyperpolarization experiments using parahydrogen, a partially negative line (PNL) of o-H2 is occasionally spotted in the nuclear magnetic resonance (NMR) spectra. This is a manifestation of the two-spin order (TSO) of the proton spins, appearing transiently in o-H2 molecules freshly derived from p-H2. For the TSO to be observable, the o-H2 NMR signal must be split into a doublet. In the literature, the splitting is believed to originate from a slow exchange of the dissolved dihydrogen with the dihydride moiety bound to a catalyst present in the reaction mixture. Because this hypothesis may be debatable, in this work a different splitting mechanism is proposed. It employs a residual dipolar coupling (RDC) between the hydrogen protons, originating from a partial orientation of the H2 molecules by the external magnetic field. The orientation effect is due to the anisotropic magnetic polarizability of H2. In a magnetic field of 11.74 T at room temperature, the currently predicted value of the RDC is -0.0024 Hz. Even such small RDC values are sufficient for the PNL effect to be clearly visible in NMR spectra for physically reasonable levels of the TSO in the o-H2 molecules. For RDC values much smaller than the natural linewidth of o-H2, the theoretical frequency distance between the minimum and maximum of PNL proves to be practically independent of the RDC and is of the order of the linewidth. The calculated amplitudes of the PNLs are proportional to the RDC values used in the calculations.
Collapse
Affiliation(s)
- P Bernatowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - T Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - S Szymański
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Alam MS, Li X, Brittin DO, Islam S, Deria P, Chekmenev EY, Goodson BM. Anomalously Large Antiphase Signals from Hyperpolarized Orthohydrogen Using a MOF-Based SABRE Catalyst. Angew Chem Int Ed Engl 2023; 62:e202213581. [PMID: 36526582 DOI: 10.1002/anie.202213581] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Hyperpolarized orthohydrogen (o-H2 ) is a frequent product of parahydrogen-based hyperpolarization approaches like signal amplification by reversible exchange (SABRE), where the hyperpolarized o-H2 signal is usually absorptive. We describe a novel manifestation of this effect wherein large antiphase o-H2 signals are observed, with 1 H enhancements up to ≈500-fold (effective polarization PH ≈1.6 %). This anomalous effect is attained only when using an intact heterogeneous catalyst constructed using a metal-organic framework (MOF) and is qualitatively independent of substrate nature. This seemingly paradoxical observation is analogous to the "partial negative line" (PNL) effect recently explained in the context of Parahydrogen Induced Polarization (PHIP) by Ivanov and co-workers. The two-spin order of the o-H2 resonance is manifested by a two-fold higher Rabi frequency, and the lifetime of the antiphase HP o-H2 resonance is extended by several-fold.
Collapse
Affiliation(s)
- Md Shahabuddin Alam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Xinlin Li
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Drew O Brittin
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Saiful Islam
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Pravas Deria
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Karmanos Cancer Institute, Integrative Biosciences, Wayne State University, Detroit, MI, USA.,Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow, 119991, Russia
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Dr., Carbondale, IL-62901, USA.,Materials Technology Center, Southern Illinois University, 1245 Lincoln Drive, Carbondale, IL, 62901, USA
| |
Collapse
|
7
|
Sorochkina K, Chernichenko K, Zhivonitko VV, Nieger M, Repo T. Water Reduction and Dihydrogen Addition in Aqueous Conditions With ansa-Phosphinoborane. Chemistry 2022; 28:e202201927. [PMID: 35861909 PMCID: PMC9804508 DOI: 10.1002/chem.202201927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Ortho-phenylene-bridged phosphinoborane (2,6-Cl2 Ph)2 B-C6 H4 -PCy2 1 was synthesized in three steps from commercially available starting materials. 1 reacts with H2 or H2 O under mild conditions to form corresponding zwitterionic phosphonium borates 1-H2 or 1-H2 O. NMR studies revealed both reactions to be remarkably reversible. Thus, when exposed to H2 , 1-H2 O partially converts to 1-H2 even in the presence of multiple equivalents of water in the solution. The addition of parahydrogen to 1 leads to nuclear spin hyperpolarization both in dry and hydrous solvents, confirming the dissociation of 1-H2 O to free 1. These observations were supported by computational studies indicating that the formation of 1-H2 and 1-H2 O from 1 are thermodynamically favored. Unexpectedly, 1-H2 O can release molecular hydrogen to form phosphine oxide 1-O. Kinetic, mechanistic, and computational (DFT) studies were used to elucidate the unique "umpolung" water reduction mechanism.
Collapse
Affiliation(s)
- Kristina Sorochkina
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Konstantin Chernichenko
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
- Chemical Process Research and Development Janssen PharmaceuticaTurnhoutseweg 302340BeerseBelgium
| | | | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| |
Collapse
|
8
|
Tickner BJ, Zhivonitko VV. Advancing homogeneous catalysis for parahydrogen-derived hyperpolarisation and its NMR applications. Chem Sci 2022; 13:4670-4696. [PMID: 35655870 PMCID: PMC9067625 DOI: 10.1039/d2sc00737a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Parahydrogen-induced polarisation (PHIP) is a nuclear spin hyperpolarisation technique employed to enhance NMR signals for a wide range of molecules. This is achieved by exploiting the chemical reactions of parahydrogen (para-H2), the spin-0 isomer of H2. These reactions break the molecular symmetry of para-H2 in a way that can produce dramatically enhanced NMR signals for reaction products, and are usually catalysed by a transition metal complex. In this review, we discuss recent advances in novel homogeneous catalysts that can produce hyperpolarised products upon reaction with para-H2. We also discuss hyperpolarisation attained in reversible reactions (termed signal amplification by reversible exchange, SABRE) and focus on catalyst developments in recent years that have allowed hyperpolarisation of a wider range of target molecules. In particular, recent examples of novel ruthenium catalysts for trans and geminal hydrogenation, metal-free catalysts, iridium sulfoxide-containing SABRE systems, and cobalt complexes for PHIP and SABRE are reviewed. Advances in this catalysis have expanded the types of molecules amenable to hyperpolarisation using PHIP and SABRE, and their applications in NMR reaction monitoring, mechanistic elucidation, biomedical imaging, and many other areas, are increasing.
Collapse
Affiliation(s)
- Ben J Tickner
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Vladimir V Zhivonitko
- NMR Research Unit, Faculty of Science, University of Oulu P.O. Box 3000 Oulu 90014 Finland
| |
Collapse
|
9
|
Zakharov DO, Chernichenko K, Sorochkina K, Yang S, Telkki V, Repo T, Zhivonitko VV. Parahydrogen-Induced Polarization in Hydrogenation Reactions Mediated by a Metal-Free Catalyst. Chemistry 2022; 28:e202103501. [PMID: 34928532 PMCID: PMC9303582 DOI: 10.1002/chem.202103501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 11/28/2022]
Abstract
We report nuclear spin hyperpolarization of various alkenes achieved in alkyne hydrogenations with parahydrogen over a metal-free hydroborane catalyst (HCAT). Being an intramolecular frustrated Lewis pair aminoborane, HCAT utilizes a non-pairwise mechanism of H2 transfer to alkynes that normally prevents parahydrogen-induced polarization (PHIP) from being observed. Nevertheless, the specific spin dynamics in catalytic intermediates leads to the hyperpolarization of predominantly one hydrogen in alkene. PHIP enabled the detection of important HCAT-alkyne-H2 intermediates through substantial 1 H, 11 B and 15 N signal enhancement and allowed advanced characterization of the catalytic process.
Collapse
Affiliation(s)
| | - Konstantin Chernichenko
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
- Present address: Discovery, Product Development & Supply (DPDS)Janssen Pharmaceutical Companies of Johnson & JohnsonTurnhoutseweg 302340BeerseBelgium
| | - Kristina Sorochkina
- NMR Research UnitUniversity of OuluP.O. Box 300090014OuluFinland
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | - Shengjun Yang
- NMR Research UnitUniversity of OuluP.O. Box 300090014OuluFinland
| | | | - Timo Repo
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio 100014HelsinkiFinland
| | | |
Collapse
|
10
|
Zakharov DO, Chernichenko K, Sorochkina K, Repo T, Zhivonitko VV. Parahydrogen-induced polarization study of imine hydrogenations mediated by a metal-free catalyst. Dalton Trans 2022; 51:13606-13611. [DOI: 10.1039/d2dt02178a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Parahydrogen-induced polarization is a nuclear spin hyperpolarization technique that can provide strongly enhanced NMR signals of catalytic hydrogenation reaction products and intermediates. Among other matters, this can be employed to...
Collapse
|
11
|
Sharma G, Newman PD, Platts JA. A review of quantum chemical studies of Frustrated Lewis Pairs. J Mol Graph Model 2021; 105:107846. [DOI: 10.1016/j.jmgm.2021.107846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
|
12
|
Zhivonitko VV, Beer H, Zakharov DO, Bresien J, Schulz A. Hyperpolarization Effects in Parahydrogen Activation with Pnictogen Biradicaloids: Metal-free PHIP and SABRE. Chemphyschem 2021; 22:813-817. [PMID: 33725397 PMCID: PMC8251785 DOI: 10.1002/cphc.202100141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/11/2021] [Indexed: 01/30/2023]
Abstract
Biradicaloids attract attention as a novel class of reagents that can activate small molecules such as H2, ethylene and CO2. Herein, we study activation of parahydrogen (nuclear spin‐0 isomer of H2) by a number of 4‐ and 5‐membered pnictogen biradicaloids based on hetero‐cyclobutanediyl [X(μ‐NTer)2Z] and hetero‐cyclopentanediyl [X(μ‐NTer)2ZC(NDmp)] moieties (X,Z=P,As; Ter=2,6‐Mes2−C6H3, Dmp=2,6‐Me2−C6H3). The concerted mechanism of this reaction allowed observing strong nuclear spin hyperpolarization effects in 1H and 31P NMR experiments. Signal enhancements from two to four orders of magnitude were detected at 9.4 T depending on the structure. It is demonstrated that 4‐membered biradicaloids activate H2 reversibly, leading to SABRE (signal amplification by reversible exchange) hyperpolarization of biradicaloids themselves and their H2 adducts. In contrast, the 5‐membered counterparts demonstrate rather irreversible parahydrogen activation resulting in hyperpolarized H2 adducts only. Kinetic measurements provided parameters to support experimental observations.
Collapse
Affiliation(s)
| | - Henrik Beer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Danila O Zakharov
- NMR Research Unit, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
| | - Jonas Bresien
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany.,Leibniz-Institut für Katalyse e.V., Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
13
|
Pravdivtsev AN, Brahms A, Kienitz S, Sönnichsen FD, Hövener J, Herges R. Catalytic Hydrogenation of Trivinyl Orthoacetate: Mechanisms Elucidated by Parahydrogen Induced Polarization. Chemphyschem 2021; 22:370-377. [PMID: 33319391 PMCID: PMC7986815 DOI: 10.1002/cphc.202000957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/12/2020] [Indexed: 12/24/2022]
Abstract
Parahydrogen (pH2 ) induced polarization (PHIP) is a unique method that is used in analytical chemistry to elucidate catalytic hydrogenation pathways and to increase the signal of small metabolites in MRI and NMR. PHIP is based on adding or exchanging at least one pH2 molecule with a target molecule. Thus, the spin order available for hyperpolarization is often limited to that of one pH2 molecule. To break this limit, we investigated the addition of multiple pH2 molecules to one precursor. We studied the feasibility of the simultaneous hydrogenation of three arms of trivinyl orthoacetate (TVOA) intending to obtain hyperpolarized acetate. It was found that semihydrogenated TVOA underwent a fast decomposition accompanied by several minor reactions including an exchange of geminal methylene protons of a vinyl ester with pH2 . The study shows that multiple vinyl ester groups are not suitable for a fast and clean (without any side products) hydrogenation and hyperpolarization that is desired in biochemical applications.
Collapse
Affiliation(s)
- Andrey N. Pravdivtsev
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Arne Brahms
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Stephan Kienitz
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Frank D. Sönnichsen
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| | - Jan‐Bernd Hövener
- Section Biomedical ImagingMolecular Imaging North Competence Center (MOIN CC)Department of Radiology and NeuroradiologyUniversity Medical Center KielKiel UniversityAm Botanischen Garten 1424114KielGermany
| | - Rainer Herges
- Otto Diels Institute for Organic ChemistryKiel UniversityOtto Hahn Platz 524098KielGermany
| |
Collapse
|
14
|
Johnson A, Royle CG, Brodie CN, Martínez-Martínez AJ, Duckett SB, Weller AS. η 2-Alkene Complexes of [Rh(PONOP- iPr)(L)] + Cations (L = COD, NBD, Ethene). Intramolecular Alkene-Assisted Hydrogenation and Dihydrogen Complex [Rh(PONOP- iPr)(η-H 2)] . Inorg Chem 2021; 60:13903-13912. [PMID: 33570930 PMCID: PMC8456414 DOI: 10.1021/acs.inorgchem.0c03687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Rhodium-alkene complexes of the pincer ligand κ3-C5H3N-2,6-(OPiPr2)2 (PONOP-iPr) have been prepared and structurally characterized: [Rh(PONOP-iPr)(η2-alkene)][BArF4] [alkene = cyclooctadiene (COD), norbornadiene (NBD), ethene; ArF = 3,5-(CF3)2C6H3]. Only one of these, alkene = COD, undergoes a reaction with H2 (1 bar), to form [Rh(PONOP-iPr)(η2-COE)][BArF4] (COE = cyclooctene), while the others show no significant reactivity. This COE complex does not undergo further hydrogenation. This difference in reactivity between COD and the other alkenes is proposed to be due to intramolecular alkene-assisted reductive elimination in the COD complex, in which the η2-bound diene can engage in bonding with its additional alkene unit. H/D exchange experiments on the ethene complex show that reductive elimination from a reversibly formed alkyl hydride intermediate is likely rate-limiting and with a high barrier. The proposed final product of alkene hydrogenation would be the dihydrogen complex [Rh(PONOP-iPr)(η2-H2)][BArF4], which has been independently synthesized and undergoes exchange with free H2 on the NMR time scale, as well as with D2 to form free HD. When the H2 addition to [Rh(PONOP-iPr)(η2-ethene)][BArF4] is interrogated using pH2 at higher pressure (3 bar), this produces the dihydrogen complex as a transient product, for which enhancements in the 1H NMR signal for the bound H2 ligand, as well as that for free H2, are observed. This is a unique example of the partially negative line-shape effect, with the enhanced signals that are observed for the dihydrogen complex being explained by the exchange processes already noted.
Collapse
Affiliation(s)
- Alice Johnson
- Chemical Research Laboratories, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Cameron G Royle
- Chemical Research Laboratories, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.,Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Claire N Brodie
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | | | - Simon B Duckett
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Andrew S Weller
- Department of Chemistry, University of York, York YO10 5DD, U.K
| |
Collapse
|
15
|
Holtkamp P, Schwabedissen J, Neumann B, Stammler H, Koptyug IV, Zhivonitko VV, Mitzel NW. A Zwitterionic Phosphonium Stannate(II) via Hydrogen Splitting by a Sn/P Frustrated Lewis-Pair and Reductive Elimination. Chemistry 2020; 26:17381-17385. [PMID: 33016507 PMCID: PMC7839681 DOI: 10.1002/chem.202004425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/22/2022]
Abstract
The reactivity of the frustrated Lewis pair (FLP) (F5 C2 )3 SnCH2 P(tBu)2 (1) was investigated with respect to the activation of elemental hydrogen. The reaction of 1 at elevated hydrogen pressure afforded the intramolecular phosphonium stannate(II) (F5 C2 )2 SnCH2 PH(tBu)2 (3). It was characterized by means of multinuclear NMR spectroscopy and single crystal X-ray diffraction. NMR experiments with the two isotopologues H2 and D2 showed it to be formed via an H2 adduct (F5 C2 )3 HSnCH2 PH(tBu)2 (2) and the subsequent formal reductive elimination of pentafluoroethane; this is supported by DFT calculations. Parahydrogen-induced polarization experiments revealed the formation of a second product of the reaction of 1 with H2 , [HP(tBu)2 Me][Sn(C2 F5 )3 ] (4), in 1 H NMR spectra, whereas 2 was not detected due to its transient nature.
Collapse
Affiliation(s)
- Philipp Holtkamp
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Jan Schwabedissen
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Beate Neumann
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| | - Igor V. Koptyug
- International Tomography Center, SB RASInstitutskaya St. 3ANovosibirsk630090Russia
| | | | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und StrukturchemieFakultät für ChemieUniversität BielefeldUniversitätsstraße 2533615BielefeldGermany
| |
Collapse
|
16
|
Hamza A, Sorochkina K, Kótai B, Chernichenko K, Berta D, Bolte M, Nieger M, Repo T, Pápai I. Origin of Stereoselectivity in FLP-Catalyzed Asymmetric Hydrogenation of Imines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Kristina Sorochkina
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Bianka Kótai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Konstantin Chernichenko
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Dénes Berta
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Michael Bolte
- Institute of Inorganic Chemistry, Goethe-University, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
| | - Martin Nieger
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Timo Repo
- Department of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Imre Pápai
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Iashin V, Berta D, Chernichenko K, Nieger M, Moslova K, Pápai I, Repo T. Metal-Free C-H Borylation of N-Heteroarenes by Boron Trifluoride. Chemistry 2020; 26:13873-13879. [PMID: 32478432 PMCID: PMC7702085 DOI: 10.1002/chem.202001436] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Organoboron compounds are essential reagents in modern C-C coupling reactions. Their synthesis via catalytic C-H borylation by main group elements is emerging as a powerful tool alternative to transition metal based catalysis. Herein, a straightforward metal-free synthesis of aryldifluoroboranes from BF3 and heteroarenes is reported. The reaction is assisted by sterically hindered amines and catalytic amounts of thioureas. According to computational studies the reaction proceeds via frustrated Lewis pair (FLP) mechanism. The obtained aryldifluoroboranes are further stabilized against destructive protodeborylation by converting them to the corresponding air stable tetramethylammonium organotrifluoroborates.
Collapse
Affiliation(s)
- Vladimir Iashin
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Dénes Berta
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Konstantin Chernichenko
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
- Present address: API Small Molecule DevelopmentJanssen Pharmaceutica N.V.Turnhoutseweg 302340BeerseBelgium
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Karina Moslova
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| | - Imre Pápai
- Institute of Organic ChemistryResearch Centre for Natural SciencesMagyar tudósok körútja 21117BudapestHungary
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiA. I. Virtasen aukio, 100014HelsinkiFinland
| |
Collapse
|
18
|
Kovtunov KV, Salnikov OG, Skovpin IV, Chukanov NV, Burueva DB, Koptyug IV. Catalytic hydrogenation with parahydrogen: a bridge from homogeneous to heterogeneous catalysis. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0203] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One of the essential themes in modern catalysis is that of bridging the gap between its homogeneous and heterogeneous counterparts to combine their individual advantages and overcome shortcomings. One more incentive can now be added to the list, namely the ability of transition metal complexes to provide strong nuclear magnetic resonance (NMR) signal enhancement upon their use in homogeneous hydrogenations of unsaturated compounds with parahydrogen in solution. The addition of both H atoms of a parahydrogen molecule to the same substrate, a prerequisite for such effects, is implemented naturally with metal complexes that operate via the formation of a dihydride intermediate, but not with most heterogeneous catalysts. Despite that, it has been demonstrated in recent years that various types of heterogeneous catalysts are able to perform the required pairwise H2 addition at least to some extent. This has opened a major gateway for developing highly sensitive and informative tools for mechanistic studies of heterogeneous hydrogenations and other processes involving H2. Besides, production of catalyst-free fluids with NMR signals enhanced by 3-4 orders of magnitude is essential for modern applications of magnetic resonance imaging (MRI), including biomedical research and practice. The ongoing efforts to design heterogeneous catalysts which can implement the homogeneous (pairwise) hydrogenation mechanism are reported.
Collapse
Affiliation(s)
- Kirill V. Kovtunov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Oleg G. Salnikov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| | - Ivan V. Skovpin
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| | - Nikita V. Chukanov
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Dudari B. Burueva
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
| | - Igor V. Koptyug
- International Tomography Center , SB RAS , Institutskaya St. 3A , Novosibirsk, 630090 , Russia
- Novosibirsk State University , Pirogova St. 1 , Novosibirsk, 630090 , Russia
- Boreskov Institute of Catalysis , SB RAS , 5 Acad. Lavrentiev Ave. , Novosibirsk, 630090 , Russia
| |
Collapse
|
19
|
Tickner BJ, Rayner PJ, Duckett SB. Using SABRE Hyperpolarized 13C NMR Spectroscopy to Interrogate Organic Transformations of Pyruvate. Anal Chem 2020; 92:9095-9103. [DOI: 10.1021/acs.analchem.0c01334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ben. J. Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Peter J. Rayner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarization in Magnetic Resonance (CHyM), Department of Chemistry, University of York, Heslington, York YO10 5NY, United Kingdom
| |
Collapse
|
20
|
Berthault P, Boutin C, Martineau-Corcos C, Carret G. Use of dissolved hyperpolarized species in NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 118-119:74-90. [PMID: 32883450 DOI: 10.1016/j.pnmrs.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Hyperpolarization techniques that can transiently boost nuclear spin polarization are generally carried out at low temperature - as in the case of dynamic nuclear polarization - or at high temperature in the gaseous state - as in the case of optically pumped noble gases. This review aims at describing the various issues and challenges that have been encountered during dissolution of hyperpolarized species, and solutions to these problems that have been or are currently proposed in the literature. During the transport of molecules from the polarizer to the NMR detection region, and when the hyperpolarized species or a precursor of hyperpolarization (e.g. parahydrogen) is introduced into the solution of interest, several obstacles need to be overcome to keep a high level of final magnetization. The choice of the magnetic field, the design of the dissolution setup, and ways to isolate hyperpolarized compounds from relaxation agents will be presented. Due to the non-equilibrium character of the hyperpolarization, new NMR pulse sequences that perform better than the classical ones will be described. Finally, three applications in the field of biology will be briefly mentioned.
Collapse
Affiliation(s)
- Patrick Berthault
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France.
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Charlotte Martineau-Corcos
- ILV, UMR CNRS 8180, Université de Versailles Saint Quentin, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France
| | - Guillaume Carret
- Cortecnet, 15 rue des tilleuls, 78960 Voisins-le-Bretonneux, France
| |
Collapse
|
21
|
Simon M, Radius M, Wagner HE, Breher F. Imidazolyl Alanes – Synthesis, Structures, and Reactivity Studies. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Martin Simon
- Institute of Inorganic Chemistry Division Molecular Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr.15 76131 Karlsruhe Germany
| | - Michael Radius
- Institute of Inorganic Chemistry Division Molecular Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr.15 76131 Karlsruhe Germany
| | - Hanna E. Wagner
- Institute of Inorganic Chemistry Division Molecular Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr.15 76131 Karlsruhe Germany
| | - Frank Breher
- Institute of Inorganic Chemistry Division Molecular Chemistry Karlsruhe Institute of Technology (KIT) Engesserstr.15 76131 Karlsruhe Germany
| |
Collapse
|
22
|
Tickner BJ, Parker RR, Whitwood AC, Duckett SB. Probing the Hydrogenation of Vinyl Sulfoxides Using para-Hydrogen. Organometallics 2019; 38:4377-4382. [PMID: 31787798 PMCID: PMC6880776 DOI: 10.1021/acs.organomet.9b00610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Vinyl sulfoxides are an important functional group used in a wide range of organic transformations. Here, we use [IrCl(COD)(IMes)] where IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazole-2-ylidene and COD = cis,cis-1,5-cyclooctadiene to rapidly hydrogenate phenylvinylsulfoxide. We use para-hydrogen-induced hyperpolarization (PHIP) to follow this reaction with [IrCl(H)2(IMes)(S(O)(Ph)(Et))2] dominating in the later stages. Decomposition to form the reduced C-S bond cleavage product [Ir2(H)3(κ2-H)(κ2-SPh)2(IMes)2(S(Et)(Ph)O)] limits turnover. The related product [Ir2(H)4(κ2-S)(IMes)2(S(O)(CH2Ph)2)2] is formed from dibenzylsulfoxide, demonstrating the wider utility of this transformation.
Collapse
Affiliation(s)
- Ben J. Tickner
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| | - Rachel R. Parker
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Adrian C. Whitwood
- Department of Chemistry, University
of York, Heslington, York YO10 5DD, United Kingdom
| | - Simon B. Duckett
- Center for Hyperpolarisation
in Magnetic Resonance (CHyM), University
of York, Heslington, York YO10 5NY, United
Kingdom
| |
Collapse
|
23
|
Tickner BJ, Lewis JS, John RO, Whitwood AC, Duckett SB. Mechanistic insight into novel sulfoxide containing SABRE polarisation transfer catalysts. Dalton Trans 2019; 48:15198-15206. [PMID: 31576870 DOI: 10.1039/c9dt02951f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signal Amplification By Reversible Exchange (SABRE) is a hyperpolarisation technique that commonly uses [Ir(H)2(carbene)(substrate)3]Cl complexes to catalytically transfer magnetisation from para-hydrogen derived hydride ligands to coordinated substrates. Here, we explore the reactivity of a novel class of such catalysts based on sulfoxide containing [IrCl(H)2(carbene)(DMSO)2], which are involved in the hyperpolarisation of pyruvate using SABRE. We probe the reactivity of this species by NMR and DFT and upon reaction with sodium pyruvate establish the formation of two isomers of [Ir(H)2(η2-pyruvate)(DMSO)(IMes)]. Studies with related disodium oxalate yield [Ir2(H)4(IMes)2(DMSO)2(η2-κ2-Oxalate)] that is characterised by NMR and X-ray diffraction.
Collapse
Affiliation(s)
- Ben J Tickner
- Center for Hyperpolarization in Magnetic Resonance (CHyM), University of York, Heslington, York YO10 5NY, UK.
| | | | | | | | | |
Collapse
|
24
|
Zhivonitko VV, Bresien J, Schulz A, Koptyug IV. Parahydrogen-induced polarization with a metal-free P-P biradicaloid. Phys Chem Chem Phys 2019; 21:5890-5893. [PMID: 30694276 PMCID: PMC6430094 DOI: 10.1039/c8cp07625a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022]
Abstract
Metal-free H2 activations are unusual but interesting for catalytic transformations, particularly in parahydrogen-based nuclear spin hyperpolarization techniques. We demonstrate that metal-free singlet phosphorus biradicaloid, [P(μ-NTer)]2, provides pronounced 1H and 31P hyperpolarization while activating the parahydrogen molecules. A brief analysis of the resulting NMR signals and the important kinetic parameters are presented.
Collapse
|
25
|
Guan D, Godard C, Polas SM, Tooze RP, Whitwood AC, Duckett SB. Using para hydrogen induced polarization to study steps in the hydroformylation reaction. Dalton Trans 2019; 48:2664-2675. [PMID: 30702728 DOI: 10.1039/c8dt04723e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of iridium complexes, Ir(η3-C3H5)(CO)(PR2R')2 (1a-1e) [where 1a, PR2R' = PPh3, 1b P(p-tol)3, 1c PMePh2, 1d PMe2Ph and 1e PMe3] were synthesized and their reactivity as stoichiometric hydroformylation precursors studied. Para-hydrogen assisted NMR spectroscopy detected the following intermediates: Ir(H)2(η3-C3H5)(CO)(PR2R') (2a-e), Ir(H)2(η1-C3H5)(CO)(PR2R')2 (4d-e), Ir(H)2(η1-C3H5)(CO)2(PR2R') (10a-e), Ir(H)2(CO-C3H5)(CO)2(PR2R') (11a-c), Ir(H)2(CO-C3H7)(CO)2(PR2R') (12a-c) and Ir(H)2(CO-C3H5)(CO)(PR2R')2 (13d-e). Some of these species exist as two geometric isomers according to their multinuclear NMR characteristics. The NMR studies suggest a role for the following 16 electron species in these reactions: Ir(η3-C3H5)(CO)(PR2R'), Ir(η1-C3H5)(CO)(PR2R')2, Ir(η1-C3H5)(CO)2(PR2R'), Ir(CO-C3H5)(CO)2(PR2R'), Ir(CO-C3H7)(CO)2(PR2R') and Ir(CO-C3H5)(CO)(PR2R')2. Their role is linked to several 18 electron species in order to confirm the route by which hydroformylation and hydrogenation proceeds.
Collapse
Affiliation(s)
- Dexin Guan
- School of Innovation and Entrepreneurship, Zhejiang University of Science and Technology, Hangzhou, Zhejiang Provence, China 310023
| | | | | | | | | | | |
Collapse
|
26
|
Zhivonitko VV, Skovpin IV, Szeto KC, Taoufik M, Koptyug IV. Parahydrogen-Induced Polarization Study of the Silica-Supported Vanadium Oxo Organometallic Catalyst. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:4891-4900. [PMID: 30258526 PMCID: PMC6150668 DOI: 10.1021/acs.jpcc.7b12069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Parahydrogen can be used in catalytic hydrogenations to achieve substantial enhancement of NMR signals of the reaction products and in some cases of the reaction reagents as well. The corresponding nuclear spin hyperpolarization technique, known as parahydrogen-induced polarization (PHIP), has been applied to boost the sensitivity of NMR spectroscopy and magnetic resonance imaging by several orders of magnitude. The catalyst properties are of paramount importance for PHIP because the addition of parahydrogen to a substrate must be pairwise. This requirement significantly narrows down the range of the applicable catalysts. Herein, we study an efficient silica-supported vanadium oxo organometallic complex (VCAT) in hydrogenation and dehydrogenation reactions in terms of efficient PHIP production. This is the first example of group 5 catalyst used to produce PHIP. Hydrogenations of propene and propyne with parahydrogen over VCAT demonstrated production of hyperpolarized propane and propene, respectively. The achieved NMR signal enhancements were 200-300-fold in the case of propane and 1300-fold in the case of propene. Propane dehydrogenation in the presence of parahydrogen produced no hyperpolarized propane, but instead the hyperpolarized side-product 1-butene was detected. Test experiments of other group 5 (Ta) and group 4 (Zr) catalysts showed a much lower efficiency in PHIP as compared to that of VCAT. The results prove the general conclusion that vanadium-based catalysts and other group 4 and group 5 catalysts can be used to produce PHIP. The hydrogenation/dehydrogenation processes, however, are accompanied by side reactions leading, for example, to C4, C2, and C1 side products. Some of the side products like 1-butene and 2-butene were shown to appear hyperpolarized, demonstrating that the reaction mechanism includes pairwise parahydrogen addition in these cases as well.
Collapse
Affiliation(s)
- Vladimir V. Zhivonitko
- NMR
Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Ivan V. Skovpin
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Kai C. Szeto
- Laboratoire
de Chimie, Catalyse, Polymères et Procédés, UMR
5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Mostafa Taoufik
- Laboratoire
de Chimie, Catalyse, Polymères et Procédés, UMR
5265 CNRS/ESCPE-Lyon/UCBL, ESCPE Lyon, F-308-43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne Cedex, France
| | - Igor V. Koptyug
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
Sorochkina K, Zhivonitko VV, Chernichenko K, Telkki VV, Repo T, Koptyug IV. Spontaneous 15N Nuclear Spin Hyperpolarization in Metal-Free Activation of Parahydrogen by Molecular Tweezers. J Phys Chem Lett 2018; 9:903-907. [PMID: 29401399 PMCID: PMC5862329 DOI: 10.1021/acs.jpclett.7b03433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/05/2018] [Indexed: 06/07/2023]
Abstract
The ability of frustrated Lewis pairs (FLPs) to activate H2 is of significant interest for metal-free catalysis. The activation of H2 is also the key element of parahydrogen-induced polarization (PHIP), one of the nuclear spin hyperpolarization techniques. It is demonstrated that o-phenylene-based ansa-aminoboranes (AABs) can produce 1H nuclear spin hyperpolarization through a reversible interaction with parahydrogen at ambient temperatures. Heteronuclei are useful in NMR and MRI as well because they have a broad chemical shift range and long relaxation times and may act as background-free labels. We report spontaneous formation of 15N hyperpolarization of the N-H site for a family of AABs. The process is efficient at the high magnetic field of an NMR magnet (7 T), and it provides up to 350-fold 15N signal enhancements. Different hyperpolarization effects are observed with various AAB structures and in a broad temperature range. Spontaneous hyperpolarization, albeit an order of magnitude weaker than that for 15N, was also observed for 11B nuclei.
Collapse
Affiliation(s)
- Kristina Sorochkina
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Vladimir V. Zhivonitko
- NMR
Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| | - Konstantin Chernichenko
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | | | - Timo Repo
- Department
of Chemistry, University of Helsinki, A. I. Virtasen aukio 1, 00014 Helsinki, Finland
| | - Igor V. Koptyug
- Laboratory
of Magnetic Resonance Microimaging, International
Tomography Center SB RAS, Institutskaya Street 3A, 630090 Novosibirsk, Russia
- Department
of Natural Sciences, Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk, Russia
| |
Collapse
|
28
|
Houghton AY, Autrey T. Calorimetric Study of the Activation of Hydrogen by Tris(pentafluorophenyl)borane and Trimesitylphosphine. J Phys Chem A 2017; 121:8785-8790. [DOI: 10.1021/acs.jpca.7b08582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adrian Y. Houghton
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352 United States
| | - Tom Autrey
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, Washington 99352 United States
| |
Collapse
|
29
|
Sorochkina K, Chernichenko K, Nieger M, Leskelä M, Repo T. (Dicyclohexyl(2-(dimesitylboryl)phenyl)phosphine: en route to stable frustrated Lewis pairs-hydrogen adducts in water. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2017. [DOI: 10.1515/znb-2017-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The new ansa-phosphinoborane (dicyclohexyl(2-(dimesitylboryl)phenyl)phosphine was synthesized via an one-pot protocol in 67% yield. The compound has been characterized by 1H, 13C, 11B and 31P NMR, and its solid-state structure determined by a single crystal X-ray diffraction analysis. The ansa-phosphinoborane does not react with molecular hydrogen or water at room or elevated temperature. According to performed DFT studies, heterolytic splitting of water or hydrogen by the phosphinoborane are both endergonic but close in thermodynamics. In polar solvents, such as in methanol or acetonitrile, addition of hydrogen is energetically more favorable than of water.
Collapse
Affiliation(s)
- Kristina Sorochkina
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1, P.O. Box 55, FIN-00014 , Helsinki , Finland
| | - Konstantin Chernichenko
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1, P.O. Box 55, FIN-00014 , Helsinki , Finland , Tel.: +358440926420
| | - Martin Nieger
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1, P.O. Box 55, FIN-00014 , Helsinki , Finland
| | - Markku Leskelä
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1, P.O. Box 55, FIN-00014 , Helsinki , Finland
| | - Timo Repo
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1, P.O. Box 55, FIN-00014 , Helsinki , Finland , Tel.: +358294150194
| |
Collapse
|
30
|
Chernichenko K, Kótai B, Nieger M, Heikkinen S, Pápai I, Repo T. Replacing C6F5 groups with Cl and H atoms in frustrated Lewis pairs: H2 additions and catalytic hydrogenations. Dalton Trans 2017; 46:2263-2269. [DOI: 10.1039/c6dt04649e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frustrated Lewis isosteres: 2-aminophenylboranes containing C6F5 groups replaced with Cl atoms show similar reactivity with H2 including catalytic hydrogenations.
Collapse
Affiliation(s)
| | - B. Kótai
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - M. Nieger
- Department of Chemistry
- University of Helsinki
- Finland
| | - S. Heikkinen
- Department of Chemistry
- University of Helsinki
- Finland
| | - I. Pápai
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- Budapest
- Hungary
| | - T. Repo
- Department of Chemistry
- University of Helsinki
- Finland
| |
Collapse
|
31
|
Guan D, Jonathan Holmes A, López-Serrano J, Duckett SB. Following palladium catalyzed methoxycarbonylation by hyperpolarized NMR spectroscopy: a parahydrogen based investigation. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00252a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When the reaction of Pd(OTf)2(bcope) with diphenylacetylene, carbon monoxide and parahydrogen is probed, hyperpolarised NMR signals (blue) are seen.
Collapse
Affiliation(s)
- Dexin Guan
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - A. Jonathan Holmes
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - Joaquín López-Serrano
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| | - Simon B. Duckett
- Centre for Hyperpolarisation in Magnetic Resonance, Department of Chemistry
- Department of Chemistry
- University of York
- York
- UK
| |
Collapse
|