1
|
Marco-Velasco G, Gálvez-Subiela A, Jiménez-Robles R, Izquierdo M, Cháfer A, Badia JD. A Review on the Application of Deep Eutectic Solvents in Polymer-Based Membrane Preparation for Environmental Separation Technologies. Polymers (Basel) 2024; 16:2604. [PMID: 39339067 PMCID: PMC11435313 DOI: 10.3390/polym16182604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production of the DESs, and a wide range of DESs' physicochemical characteristics, such as density, surface tension, viscosity, and melting temperature, are initially gathered. Furthermore, the most popular techniques for creating membranes have been demonstrated and discussed, with a focus on the non-solvent induced phase separation (NIPS) method. Additionally, a number of studies have been reported in which DESs were employed as pore formers, solvents, additives, or co-solvents, among other applications. The addition of DESs to the manufacturing process increased the presence of finger-like structures and macrovoids in the cross-section and, on numerous occasions, had a substantial impact on the overall porosity and pore size. Performance data were also gathered for membranes made for various separation technologies, such as ultrafiltration (UF) and nanofiltration (NF). Lastly, DESs provide various options for the functionalization of membranes, such as the creation of various liquid membrane types, with special focus on supported liquid membranes (SLMs) for decarbonization technologies, discussed in terms of permeability and selectivity of several gases, including CO2, N2, and CH4.
Collapse
Affiliation(s)
- Gorka Marco-Velasco
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Alejandro Gálvez-Subiela
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Ramón Jiménez-Robles
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Marta Izquierdo
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| | - José David Badia
- Research Group in Materials Technology and Sustainability (MATS), Department of Chemical Engineering, School of Engineering, University of Valencia, Avinguda de la Universitat, 46100 Burjassot, Spain
| |
Collapse
|
2
|
Farahmandazad H, Asperti S, Kortlever R, Goetheer E, de Jong W. Effect of Halide Anions on Electrochemical CO 2 Reduction in Non-Aqueous Choline Solutions using Ag and Au Electrodes. ChemistryOpen 2024:e202400166. [PMID: 39254258 DOI: 10.1002/open.202400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 09/11/2024] Open
Abstract
In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CO2RR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl- ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CO2RR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.
Collapse
Affiliation(s)
- Hengameh Farahmandazad
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Simone Asperti
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ruud Kortlever
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Earl Goetheer
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Wiebren de Jong
- Section of Large Scale Energy Storage, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| |
Collapse
|
3
|
Bartsch T, Lütz S, Rosenthal K. Cell-free protein synthesis with technical additives - expanding the parameter space of in vitro gene expression. Beilstein J Org Chem 2024; 20:2242-2253. [PMID: 39286794 PMCID: PMC11403795 DOI: 10.3762/bjoc.20.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Biocatalysis has established itself as a successful tool in organic synthesis. A particularly fast technique for screening enzymes is the in vitro expression or cell-free protein synthesis (CFPS). The system is based on the transcription and translation machinery of an extract-donating organism to which substrates such as nucleotides and amino acids, as well as energy molecules, salts, buffer, etc., are added. After successful protein synthesis, further substrates can be added for an enzyme activity assay. Although mimicking of cell-like conditions is an approach for optimization, the physical and chemical properties of CFPS are not well described yet. To date, standard conditions have mainly been used for CFPS, with little systematic testing of whether conditions closer to intracellular conditions in terms of viscosity, macromolecules, inorganic ions, osmolarity, or water content are advantageous. Also, very few non-physiological conditions have been tested to date that would expand the parameter space in which CFPS can be performed. In this study, the properties of an Escherichia coli extract-based CFPS system are evaluated, and the parameter space is extended to high viscosities, concentrations of inorganic ion and osmolarity using ten different technical additives including organic solvents, polymers, and salts. It is shown that the synthesis of two model proteins, namely superfolder GFP (sfGFP) and the enzyme truncated human cyclic GMP-AMP synthase fused to sfGFP (thscGAS-sfGFP), is very robust against most of the tested additives.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Stephan Lütz
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227 Dortmund, Germany
| | - Katrin Rosenthal
- School of Science, Constructor University, Campus Ring 6, 28759 Bremen, Germany
| |
Collapse
|
4
|
de Lima ND, da Silva Monteiro Wanderley BR, Andrade Ferreira AL, Pereira-Coelho M, da Silva Haas IC, Vitali L, Dos Santos Madureira LA, Müller JM, Fritzen-Freire CB, de Mello Castanho Amboni RD. Green extraction of phenolic compounds from the by-product of purple araçá (Psidium myrtoides) with natural deep eutectic solvents assisted by ultrasound: Optimization, comparison, and bioactivity. Food Res Int 2024; 191:114731. [PMID: 39059924 DOI: 10.1016/j.foodres.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
The recovery of bioactive compounds is a promising approach for obtaining rich extracts from fruit by-products. This study investigated the influence of Natural Deep Eutectic Solvents (NADES) and Ultrasound-Assisted Extraction (UAE) on the phenolic content, antioxidant capacity, and in vitro antidiabetic activity of Psidium myrtoides by-product. Among eight NADES evaluated based on choline chloride, NADES ChCl:Gly (1:2) was selected for its efficiency in extracting total phenolic compounds (TPC) with high antioxidant capacity. The optimized conditions were 61 °C, a solid-liquid ratio of 100 mg 5 mL-1, and a 60-minute extraction time. ChCl:Gly exhibited superior TPC recovery (2.6-fold greater effectiveness) compared to the 60 % hydroethanolic solution. Twenty-six phenolic compounds were identified, including significant levels of catechin (336.48 mg g-1) and isoquercetin (26.09 mg g-1). Phenolic acids, such as p-anisic acid (5.47 mg g-1) and methoxyphenylacetic acid (0.23 mg g-1), were identified for the first time in the purple araçá by-product. The ChCl:Gly extract demonstrated the highest bioactivity, showcasing antioxidant and antidiabetic capacities. This study introduces an innovative and sustainable alternative for recovering phenolic compounds from fruit by-products, offering enhanced recovery efficiency and/or selectivity compared to organic solvents.
Collapse
Affiliation(s)
- Natália Duarte de Lima
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | | | - Ana Letícia Andrade Ferreira
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Marina Pereira-Coelho
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Vitali
- Department of Chemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | | | - José Miguel Müller
- Department of Food Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Carlise Beddin Fritzen-Freire
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | | |
Collapse
|
5
|
Zapater C, Aguirre MÁ, González-Gallardo N, Ramón DJ, Vidal L, Canals A. Determination of Fe, Cu, and Pb in edible oils using choline chloride:ethylene glycol deep eutectic solvent-based dispersive liquid-liquid microextraction associated with microwave-induced plasma optical emission spectrometry. Talanta 2024; 274:125939. [PMID: 38547838 DOI: 10.1016/j.talanta.2024.125939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024]
Abstract
A new simple, fast and environmentally friendly deep eutectic solvent based dispersive liquid-liquid microextraction (DES-based DLLME) methodology assisted by vortex is presented for the separation and preconcentration of three elements (i.e., Fe, Cu and Pb) from edible oil samples (i.e., soybean, sunflower, rapeseed, sesame, and olive oil) prior to the determination by microwave-induced plasma optical emission spectrometry (MIP-OES). The deep eutectic solvent selected as extractant (i.e., choline chloride and ethylene glycol, 1:2) is synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC), and the extraction conditions are optimized by a two steps experimental design. Under the optimum extraction conditions (i.e., diluted sample weight: 8.6 g; DES volume: 100 μL; extraction time: 1 min; centrifugation time and speed: 3 min and 3000 rpm; and dispersion system: vortex) the analytical method presents excellent linearity (i.e., R2 values higher than 0.99) in the range 10-500 μg kg-1, repeatability (i.e., CV values lower than 9.2%), and limits of detection (LOD) values of 3, 2 and 0.7 μg kg-1 for Pb, Fe and Cu, respectively. None of the analytes displayed amounts over the upper limit permitted by law, and recovery values of all analytes evaluated in the different samples using external standard calibration were close to 100%, which excludes significant matrix effects. Finally, AGREEprep metric has been used to evaluate the method greenness (final score of 0.47) and it has been compared successfully with previous publications for the same type of analytes and matrices.
Collapse
Affiliation(s)
- Cristina Zapater
- Department of Analytical Chemistry, Nutrition and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Miguel Ángel Aguirre
- Department of Analytical Chemistry, Nutrition and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
| | - Nerea González-Gallardo
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080, Alicante, Spain
| | - Diego J Ramón
- Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080, Alicante, Spain
| | - Lorena Vidal
- Department of Analytical Chemistry, Nutrition and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain
| | - Antonio Canals
- Department of Analytical Chemistry, Nutrition and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080, Alicante, Spain.
| |
Collapse
|
6
|
Kahlon NK, Matthewman EL, El Mohamad M, Greaves TL, Weber CC. Small-Angle X-ray Scattering Study of the Amphiphilic Bulk Nanostructure of Tetraalkylammonium Deep Eutectic Solvents. J Phys Chem B 2024. [PMID: 38662201 DOI: 10.1021/acs.jpcb.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Deep eutectic solvents (DESs) are low-melting mixtures, often prepared from a salt and a molecular hydrogen bond donor. Like ionic liquids, DESs that contain at least one sufficiently amphiphilic component can form bicontinuous nanostructures consisting of polar and nonpolar domains, although this has not been widely explored for many DES combinations. Here, the bulk nanostructures of DESs comprising tetraalkylammonium bromide salts (tetrabutylammonium bromide, tetraoctylammonium bromide, and methyltrioctylammonium bromide) with alkanols and alkanoic acids of systematically varied chain lengths (C2, C6, C8, and C10) as hydrogen bond donors have been studied. Small-angle X-ray scattering techniques were used to identify the relationship between the alkyl chain length and functionality of the hydrogen bond donor on the nature of the amphiphilic nanostructures formed. These findings demonstrated that the amphiphilic nanostructures of the DESs were not affected by the functional group on the hydrogen bond donor, with these nanostructures influenced primarily by both the absolute and relative alkyl chain lengths of the salt and hydrogen bond donor.
Collapse
Affiliation(s)
- Navjot K Kahlon
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Emma L Matthewman
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | | | | | - Cameron C Weber
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
7
|
Kapre S, Palakurthi SS, Jain A, Palakurthi S. DES-igning the future of drug delivery: A journey from fundamentals to drug delivery applications. J Mol Liq 2024; 400:124517. [DOI: 10.1016/j.molliq.2024.124517] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
8
|
Kim P, Weeraratna C, Nemšák S, Dias N, Lemmens AK, Wilson KR, Ahmed M. Interfacial Nanostructure and Hydrogen Bond Networks of Choline Chloride and Glycerol Mixtures Probed with X-ray and Vibrational Spectroscopies. J Phys Chem Lett 2024; 15:3002-3010. [PMID: 38457923 DOI: 10.1021/acs.jpclett.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
The molecular distribution at the liquid-vapor interface and evolution of the hydrogen bond interactions in mixtures of glycerol and choline chloride are investigated using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoscale depth profiles of supersaturated deep eutectic solvent (DES) mixtures up to ∼2 nm measured by ambient-pressure XPS show the enhancement of choline cation (Ch+) concentration by a factor of 2 at the liquid-vapor interface compared to the bulk. In addition, Raman spectral analysis of a wide range of DES mixtures reveals the conversion of gauche-conformer Ch+ into the anti-conformer in relatively lower ChCl concentrations. Finally, the depletion of Ch+ from the interface (probing depth = 0.4 nm) is demonstrated by aerosol-based velocity map imaging XPS measurements of glyceline and water mixtures. The nanostructure of liquid-vapor interfaces and structural rearrangement by hydration can provide critical insight into the molecular origin of the deep eutectic behavior and gas-capturing application of DESs.
Collapse
Affiliation(s)
- Pyeongeun Kim
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics and Astronomy, University of California Davis, Davis, California 95616, United States
| | - Nureshan Dias
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexander K Lemmens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin R Wilson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Dobre A, Koutsoukos S, Philippi F, Rauber D, Kay CWM, Palumbo O, Roessler MM, Welton T. Understanding the effects of targeted modifications on the 1 : 2 Choline And GEranate structure. Phys Chem Chem Phys 2024; 26:8858-8872. [PMID: 38426306 DOI: 10.1039/d3cp05271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
1 : 2 Choline-and-geranate (CAGE) is an ionic liquid (IL) widely studied for its biomedical applications. However, both its industrial-scale preparation and its long-term storage are problematic so finding more suitable candidates which retain its advantageous properties is crucial. As a first step towards this we have conducted a targeted modification study to understand the effects of specific functional groups on the properties of CAGE. 1 : 2 Choline-and-octanoate and 1 : 2 butyltrimethylammonium-and-octanoate were synthesised and their thermal and rheological properties examined in comparison to those of CAGE. Using differential scanning calorimetry and polarising microscopy, the model compound was found to be an isotropic liquid, while the analogues were room-temperature liquid-crystals which transition to isotropic liquids upon heating. Dynamic mechanical analysis showed that the thermal behaviour of the studied systems was even more complex, with the ILs also undergoing a thermally-activated relaxation process. Furthermore, we have used electron paramagnetic resonance (EPR) spectroscopy, along with a variety of spin probes with different functional groups, in order to understand the chemical environment experienced by solutes in each system. The EPR spectra indicate that the radicals experience two distinct environments (polar and nonpolar) in the liquid-crystalline phase, but only one average environment in the isotropic phase. The liquid-crystalline phase experiments also showed that the relative populations of the two domains depend on the nature of the solutes, with polar or strongly hydrogen-bonding solutes preferring the polar domain. For charged solutes, the EPR spectra showed line-broadening, suggesting that their ionic nature leads to complex, unresolved interactions.
Collapse
Affiliation(s)
- Ana Dobre
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
- Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| | - Daniel Rauber
- Department of Chemistry, Saarland University, Campus B2.2, Saarbrücken, Germany
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B2.2, Saarbrücken, Germany
- London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maxie M Roessler
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
- Centre for Pulse EPR Spectroscopy (PEPR), Imperial College London, White City Campus, London, W12 0BZ, UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.
| |
Collapse
|
10
|
Wang S, Han H, Lei X, Ma J, Tao Z, Ren Y. Cellulose nanofibers produced from spaghetti squash peel by deep eutectic solvents and ultrasonication. Int J Biol Macromol 2024; 261:129777. [PMID: 38286364 DOI: 10.1016/j.ijbiomac.2024.129777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
In this study, the cellulose nanofibers (CNFs) derived from spaghetti squash peel (SSP) were prepared using a novel approach involving deep eutectic solvent (DES) pretreatment coupled with ultrasonication. Molecular dynamics (MD) simulations revealed that the number of hydrogen bonds influences the viscosity and density of DES systems, and experimental viscosity (ηexp) confirmed consistency with the computed viscosity (ηMD) trends. After DES pretreatment and ultrasonication, the cellulose content of ChCl/oxalic acid (ChCl/OA) CNF (35.63%) and ChCl/formic acid (ChCl/FA) (32.46%) is higher than ChCl/Urea CNF (28.27%). The widths of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF were 19.83, 11.34, and 18.27 nm, respectively, showing a network-like fiber distribution. Compared with SSP (29.76%) and non-ultrasonic samples, the crystallinity index of ChCl/OA CNF, ChCl/FA CNF, and ChCl/Urea CNF was improved by ultrasonication. The thermal decomposition residue of ChCl/OA CNF (25.54%), ChCl/FA CNF (18.54%), and ChCl/Urea CNF (23.62%) was lower than that of SSP (29.57%). These results demonstrate that CNFs can be prepared from SSP via DES pretreatment combined with ultrasonication. The lowest viscosity observed in the formic acid DES group (ηexp of 18 mPa·s), the ChCl/FA CNF exhibits excellent stability (Zeta potential of -37.6 mV), which can provide a promising prospect for utilization in biomass by-products and applications in the materials field.
Collapse
Affiliation(s)
- Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ze Tao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
11
|
Kalhor P, Sun Z, Yu Z. Spectroscopic and Computational Study of ZnCl 2-Methanol Low-Melting-Temperature Mixtures. J Phys Chem B 2024. [PMID: 38424008 DOI: 10.1021/acs.jpcb.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Alcoholic electrolyte mixtures have wide applications in industries. In this study, a series of mixtures composed of ZnCl2 and methanol (MeOH) with ZnCl2 mol % from 6.7 to 25 were prepared, and their spectral, structural, and thermodynamic properties were studied using infrared (IR) spectroscopy, differential scanning calorimetry (DSC), and density functional theory (DFT) calculations. The DFT-assisted analysis of excess spectra, supported by 2D-correlation spectroscopy, led to the identification of the major constituents of ZnCl2-MeOH mixtures, namely, MeOH monomer, MeOH dimer, and ZnCl2-3MeOH complex, produced after dissociation of MeOH trimer which represents the bulk methanol. The Hirshfeld charge analysis showed that in the competition between the O-H···Cl hydrogen bond (H-bond) and Zn ← O coordination bond to transfer charge in ZnCl2-MeOH complexes, the latter always dominates, making MeOH positively charged. The phase diagram of the binary system showed the presence of V-shaped glass transition temperatures (Tg), characteristic of low-melting mixture solvents (LoMMSs). The present study provides insights into the microscopic properties of the system and sheds light on the understanding of the general principles to prepare deep-eutectic solvents (DESs) or LoMMSs using inorganic salts and alcoholic compounds.
Collapse
Affiliation(s)
- Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany
| | - Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Di Muzio S, Palumbo O, Trequattrini F, Paolone A. Binary Mixtures of Choline Acetate and Tetrabutylammonium Acetate with Natural Organic Acids by Vibrational Spectroscopy and Molecular Dynamics Simulations. J Phys Chem B 2024; 128:857-870. [PMID: 38224560 DOI: 10.1021/acs.jpcb.3c06407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We present a study of several mixtures obtained by the mixing of two organic acetate-based salts (choline acetate, ChAc, or tetrabutylammonium acetate, TBAAc) with three different natural organic acids (ascorbic acid, AA, citric acid, CA, and maleic acid, MA). The structures of the starting materials and of the mixtures were characterized by infrared spectroscopy (FT-IR) and classic molecular dynamics simulations (MD). The thermal behavior was characterized by differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The obtained mixtures, especially the ChAc-based ones, strongly tend to vitrify at low temperatures and are stable up to 100-150 °C. The FTIR measurements suggest the formation of a strong H-bond network: the coordination between acids and ChAc or TBAAc takes place by the donation of the H-bond by the acids to the oxygen of the acetate anion, which acts as an acceptor (HBA). The comparison with MD analysis indicates that acids predominantly exploit their more acidic hydrogens. In particular, we observe the progressive shift of νC═O and νOH when the ratios of acids increase. The structural differences between the two studied cations influence the spatial distribution of the components in the mixture bulk phases. In particular, the analysis of the theoretical structure function I(q) of the TBAAc-based systems shows the presence of important prepeaks at low q, a sign of the formation of apolar domain, due to the nanosegregation of the alkyl chains.
Collapse
Affiliation(s)
- Simone Di Muzio
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Science, University of L'Aquila, Via Vetoio 1, 67100 L'Aquila, Italy
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Trequattrini
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
- Department of Physics, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Annalisa Paolone
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Shayestehpour O, Zahn S. Efficient Molecular Dynamics Simulations of Deep Eutectic Solvents with First-Principles Accuracy Using Machine Learning Interatomic Potentials. J Chem Theory Comput 2023; 19:8732-8742. [PMID: 37972596 PMCID: PMC10720642 DOI: 10.1021/acs.jctc.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
In recent years, deep eutectic solvents emerged as highly tunable and ecofriendly alternatives to common organic solvents and liquid electrolytes. In the present work, the ability of machine learning (ML) interatomic potentials for molecular dynamics (MD) simulations of these liquids is explored, showcasing a trained neural network potential for a 1:2 ratio mixture of choline chloride and urea (reline). Using the ML potentials trained on density functional theory data, MD simulations for large systems of thousands of atoms and nanosecond-long time scales are feasible at a fraction of the computational cost of the target first-principles simulations. The obtained structural and dynamical properties of reline from MD simulations using our machine learning models are in good agreement with the first-principles MD simulations and experimental results. Running a single MD simulation is highlighted as a general shortcoming of typical first-principles studies if the dynamic properties are investigated. Furthermore, velocity cross-correlation functions are employed to study the collective dynamics of the molecular components in reline.
Collapse
Affiliation(s)
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Malik A, Kashyap HK. Solvation Shell Anatomy of H 2S and CO Dissolved in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:10392-10403. [PMID: 37983272 DOI: 10.1021/acs.jpcb.3c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Rising atmospheric concentrations of anthropogenic hydrogen sulfide (H2S) and carbon monoxide (CO) as a result of industrialization have encouraged researchers to explore innovative technologies for capturing these gases. Deep eutectic solvents (DESs) are an alternative media for mitigating H2S and CO emissions. Herein, we have employed ab initio molecular dynamics simulations to investigate the structures of the nearest-neighbor solvation shells surrounding H2S and CO when they are dissolved in reline and ethaline DESs. We aim to delineate the structural arrangement responsible for favorable H2S and CO capture by analyzing the key interactions between H2S and CO solutes with various components of the DESs. We observe that in the reline-H2S system, chloride and carbonyl oxygen of urea are found to have the closest distance interaction with hydrogen atoms of the H2S solute. The sulfur atom of H2S is found to be predominantly solvated by hydrogen and oxygen atoms of urea molecules and the hydroxyl hydrogen of choline cations. The chloride ions and ethylene glycol molecules predominantly govern the solvation of H2S in the ethaline-H2S system. In both the DESs, H2S is solvated by the hydroxyl group of the choline cations rather than by their ammonium group. In the reline-CO system, all the atoms of urea along with chloride dominate the immediate solvation shell around CO. In the ethaline-CO system, hydroxyl oxygen and hydrogen atoms of ethylene glycol are found in the nearest solvation structure around CO. Both the DESs exhibit a stronger solvent-solute charge-transfer tendency toward the H2S solute compared to CO.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
15
|
Zhu C, He X, Shi Y, Wang Z, Hao B, Chen W, Yang H, Zhang L, Ji H, Liu J, Yan C, Zhou J, Qian T. Strong Replaces Weak: Design of H-Bond Interactions Enables Cryogenic Aqueous Zn Metal Batteries. ACS NANO 2023; 17:21614-21625. [PMID: 37916674 DOI: 10.1021/acsnano.3c06687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Despite the numerous advantages of aqueous Zn batteries, their practical application under cryogenic conditions is hindered by the freezing of the electrolyte because the abundance of hydrogen bonds (H-bonds) between H2O molecules drives the aqueous system to transform to an orderly frozen structure. Here, a design of H-bond interactions based on the guiding ideology of "strong replaces weak" is proposed. The strong H-bonds formed between introduced eutectic components and water molecules break down the weak H-bonds in the original water molecule network, which contributes to an ultralow freezing point and a high ionic conductivity of 1.7 mS cm-1 at -40 °C. Based on multiperspective theoretical simulations and tailor-made in situ cooling Raman characterizations, it has been demonstrated that substituting weak H-bonds with strong H-bonds facilitates the structural reshaping of Zn2+ solvation and remodeling of the H-bond network in the electrolyte. Endowed with this advantage, reversible and stable Zn plating/stripping behaviors could be realized at -40 °C, and the full cells display a high discharge capacity (200 mA h g-1) at -40 °C with ∼75% capacity retention after 1000 cycles. This study will expand the design philosophy of antifreezing aqueous electrolytes and provide a perspective to promote the adoption of Zn metal batteries for cryogenic environment large-scale energy storage.
Collapse
Affiliation(s)
- Changhao Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Xuye He
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Yun Shi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Zhenkang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Baojiu Hao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Wanhao Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Hao Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, People's Republic of China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, People's Republic of China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, People's Republic of China
| | - Jinqiu Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, People's Republic of China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215006, People's Republic of China
| |
Collapse
|
16
|
Hinz Y, Beerwerth J, Böhmer R. Anion dynamics and motional decoupling in a glycerol-choline chloride deep eutectic solvent studied by one- and two-dimensional 35Cl NMR. Phys Chem Chem Phys 2023; 25:28130-28140. [PMID: 37818622 DOI: 10.1039/d3cp03668e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Chlorine-35 is among the few nuclides that provide an experimental handle on the anion dynamics in choline based deep eutectic solvents. By combining several nuclear magnetic resonance (NMR) techniques, the present work examines the Cl- motions within glyceline, a glycerol : choline chloride 2 : 1 solution, in a large temperature range down to the glass transition temperature Tg. The applied methods include spin relaxometry, second-order line shape analysis, as well as two-dimensional central-transition exchange and stimulated-echo spectroscopy. The finding of unstructured central-transition NMR spectra characterized by a relatively small average quadrupolar coupling attests to a highly disordered, essentially nondirectional anionic coordination in glyceline. For temperatures larger than about 1.3Tg the chlorine motions are well coupled to those of the glycerol and the choline moieties. At lower temperatures the local translational anion dynamics become Arrhenian and increasingly faster than the motion of glyceline's matrix molecules. Upon further cooling, the overall ionic conductivity continues to display a super-Arrhenius behavior, implying that the choline cations rather than the Cl anions dominate the long-range charge transport also near Tg.
Collapse
Affiliation(s)
- Yannik Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Joachim Beerwerth
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
17
|
Li D, Wang X, Hou X, Sun S, Chen X, Zhang H. Synthesis of hydrophilic glyceryl monocaffeate with economical catalyst cation-exchange resin Amberlyst-35. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4676-4684. [PMID: 36905092 DOI: 10.1002/jsfa.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Caffeic acid (CA) has anti-oxidation and anti-inflammatory. However, the poor hydrophilicity of CA limits its biological activities. In this work, hydrophilic glyceryl monocaffeate (GMC) was synthesized by esterification using different caffeoyl donors (deep eutectic solvent and solid CA). Cation-exchange resins were used as the catalysts. The effects of reaction conditions were also investigated. RESULTS The mass transfer limitation of esterification was eliminated using deep eutectic solvent. Compared with the previous catalysts (immobilized lipase Novozym 435), an economic cation-exchange resin, Amberlyst-35 (A-35), showed good catalytic performance for GMC preparation. The activation energies of GMC synthesis and CA conversion were 43.71 kJ mol-1 and 43.07 kJ mol-1 , respectively. The optimal reaction conditions were a temperature reaction of 90 °C, catalyst load of 7%, glycerol/CA molar ratio of 5:1 (mol mol-1 ), and reaction time of 24 h, which resulted in a maximum GMC yield and CA conversion of 69.75 ± 1.03% and 82.23 ± 2.02%, respectively. CONCLUSION The results of the work showed a promising alternative for the synthesis of GMC. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dami Li
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xinying Wang
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xuebei Hou
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Shangde Sun
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Xiaowei Chen
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| | - Hao Zhang
- School of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
- Henan Engineering Research Center of Oilseed Deep Processing, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
18
|
Xiao Z, Liu M, Bi W, Chen DDY. Ionic liquid as hydrogen bond acceptor in the extraction of nutritional natural products. Food Chem 2023; 412:135589. [PMID: 36736187 DOI: 10.1016/j.foodchem.2023.135589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/02/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
In-depth studies of the extraction mechanism using deep eutectic solvents (DES), especially extraction through the formation of a deep eutectic system (DESys), revealed commonalities between the DES- and ionic liquids (IL)-based extraction systems. New applications of ILs and DES for extraction of nutritional natural products were presented. In this study, the extraction behavior of choline chloride (ChCl) and 1-(2-hydroxyethyl)-3-methylimidazolium chloride ([HMIm][Cl]) in DES and IL, respectively, in mechanochemical extraction of target compounds from Moringa oleifera leaves was systematically studied. The results suggested that both extraction methods were based on the formation of a DESys, either a normal DESys or an IL DESys. Considering the DESys-based one-step extraction improves the extraction efficiency and reduces the preparation time, the same idea can be used in IL for performance improvement. By formation of a new IL deep eutectic system based on hydrogen bond interaction in extraction, similar improvement was obtained.
Collapse
Affiliation(s)
- Zhixin Xiao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
19
|
Zhao L, Zhang Z, Jiang H, Guo Y, Chen Z, Wang X, Jing X. Hydrophilic and hydrophobic deep eutectic solvent-based extraction to determine parathion in cereals by digital image colorimetry integrated with smartphones. Talanta 2023; 265:124831. [PMID: 37339538 DOI: 10.1016/j.talanta.2023.124831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/23/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
To determine parathion in cereals, hydrophilic and hydrophobic deep eutectic solvents (DESs) were used by digital image colorimetry with smartphones. In the solid-liquid extraction part, hydrophilic DESs were used as extractants to extract parathion from cereals. In the liquid-liquid microextraction part, hydrophobic DESs dissociated into terpineol and tetrabutylammonium bromide in situ. The dissociated hydrophilic tetrabutylammonium ions reacted with parathion extracted in hydrophilic DESs under alkaline conditions to produce a yellow product, which was extracted and concentrated by dispersed organic phase terpinol. Digital image colorimetry integrated with the use of a smartphone was used for quantitative analysis. The limit of detection and quantification were 0.003 mg kg-1 and 0.01 mg kg-1, respectively. The recoveries for parathion were 94.8-106.2% with a relative standard deviation less than 3.6%. The proposed method was applied to analyze parathion in cereal samples: the method has the potential to be applied to pesticide residue analysis in food products.
Collapse
Affiliation(s)
- Luyao Zhao
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhuoting Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Haijuan Jiang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yan Guo
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhenjia Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xiaowen Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xu Jing
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
20
|
Shumilin I, Tanbuz A, Harries D. Deep Eutectic Solvents for Efficient Drug Solvation: Optimizing Composition and Ratio for Solubility of β-Cyclodextrin. Pharmaceutics 2023; 15:pharmaceutics15051462. [PMID: 37242704 DOI: 10.3390/pharmaceutics15051462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Deep eutectic solvents (DESs) show promise in pharmaceutical applications, most prominently as excellent solubilizers. Yet, because DES are complex multi-component mixtures, it is challenging to dissect the contribution of each component to solvation. Moreover, deviations from the eutectic concentration lead to phase separation of the DES, making it impractical to vary the ratios of components to potentially improve solvation. Water addition alleviates this limitation as it significantly decreases the melting temperature and stabilizes the DES single-phase region. Here, we follow the solubility of β-cyclodextrin (β-CD) in DES formed by the eutectic 2:1 mole ratio of urea and choline chloride (CC). Upon water addition to DES, we find that at almost all hydration levels, the highest β-CD solubility is achieved at DES compositions that are shifted from the 2:1 ratio. At higher urea to CC ratios, due to the limited solubility of urea, the optimum composition allowing the highest β-CD solubility is reached at the DES solubility limit. For mixtures with higher CC concentration, the composition allowing optimal solvation varies with hydration. For example, β-CD solubility at 40 wt% water is enhanced by a factor of 1.5 for a 1:2 urea to CC mole ratio compared with the 2:1 eutectic ratio. We further develop a methodology allowing us to link the preferential accumulation of urea and CC in the vicinity of β-CD to its increased solubility. The methodology we present here allows a dissection of solute interactions with DES components that is crucial for rationally developing improved drug and excipient formulations.
Collapse
Affiliation(s)
- Ilan Shumilin
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Ahmad Tanbuz
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University, Jerusalem 9190401, Israel
- The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
21
|
Swebocki T, Barras A, Abderrahmani A, Haddadi K, Boukherroub R. Deep Eutectic Solvents Comprising Organic Acids and Their Application in (Bio)Medicine. Int J Mol Sci 2023; 24:ijms24108492. [PMID: 37239842 DOI: 10.3390/ijms24108492] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Over the last years, we observed a significant increase in the number of published studies that focus on the synthesis and characterization of deep eutectic solvents (DESs). These materials are of particular interest mainly due to their physical and chemical stability, low vapor pressure, ease of synthesis, and the possibility of tailoring their properties through dilution or change of the ratio of parent substances (PS). DESs, considered as one of the greenest families of solvents, are used in many fields, such as organic synthesis, (bio)catalysis, electrochemistry, and (bio)medicine. DESs applications have already been reported in various review articles. However, these reports mainly described these components' basics and general properties without focusing on the particular, PS-wise, group of DESs. Many DESs investigated for potential (bio)medical applications comprise organic acids. However, due to the different aims of the reported studies, many of these substances have not yet been investigated thoroughly, which makes it challenging for the field to move forward. Herein, we propose distinguishing DESs comprising organic acids (OA-DESs) as a specific group derived from natural deep eutectic solvents (NADESs). This review aims to highlight and compare the applications of OA-DESs as antimicrobial agents and drug delivery enhancers-two essential fields in (bio)medical studies where DESs have already been implemented and proven their potential. From the survey of the literature data, it is evident that OA-DESs represent an excellent type of DESs for specific biomedical applications, owing to their negligible cytotoxicity, fulfilling the rules of green chemistry and being generally effective as drug delivery enhancers and antimicrobial agents. The main focus is on the most intriguing examples and (where possible) application-based comparison of particular groups of OA-DESs. This should highlight the importance of OA-DESs and give valuable clues on the direction the field can take.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Kamel Haddadi
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN-Institut d'Electronique de Microélectronique et de Nanotechnologie, 59000 Lille, France
| |
Collapse
|
22
|
Aguzin A, Dominguez-Alfaro A, Criado-Gonzalez M, Velasco-Bosom S, Picchio ML, Casado N, Mitoudi-Vagourdi E, Minari RJ, Malliaras GG, Mecerreyes D. Direct ink writing of PEDOT eutectogels as substrate-free dry electrodes for electromyography. MATERIALS HORIZONS 2023. [PMID: 37067040 DOI: 10.1039/d3mh00310h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Deep Eutectic Solvents (DES) are a new class of ionic conductive compounds attracting significant attention as greener alternatives to costly ionic liquids. Herein, we developed novel mixed ionic-electronic conducting materials by simple mixing of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and various DES as additives. The DES addition induces the supramolecular assembly and gelification of PEDOT:PSS forming eutectogels triggered by extensive hydrogen bonding and charge stabilization. The eutectogels feature boosts the mixed ionic-electronic conductivity of PEDOT:PSS up to 368 S cm-1, unveiling great potential as flexible bioelectronics. All the PEDOT:PSS/DES gels showed shear-thinning behavior and viscosity values ranging from 100 to 1000 Pa s. The eutectogels show good injectability with almost instantaneous elastic recovery, making them ideal materials for direct ink writing (DIW). As proof of that, PEDOT:PSS/DES (choline chloride:lactic acid) was 3D printed in different patterns, annealed at high temperature, and assembled into adhesive electrodes. This way tattoos-like electrodes, denoted as Eutecta2 were fabricated and placed in vivo on the forearm and the thumb of human volunteers for electromyography measurements. Eutecta2 hexagonal patterns showed excellent conformability, and their signal-to-noise ratio (SNR) was higher than Ag/AgCl commercial electrodes for thumb motion measurements. Furthermore, forearm motion was measured after 14 days with similar values of SNR, demonstrating long-term stability and reusability. All in all, our findings revealed that DES could be used as inexpensive and safe additives to direct the self-assembly of PEDOT:PSS into supramolecular eutectogels inks for flexible bioelectronics.
Collapse
Affiliation(s)
- Ana Aguzin
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Antonio Dominguez-Alfaro
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastián, Gipuzkoa 20018, Spain.
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
| | - Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastián, Gipuzkoa 20018, Spain.
| | - Santiago Velasco-Bosom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
| | - Matías L Picchio
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastián, Gipuzkoa 20018, Spain.
| | - Nerea Casado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastián, Gipuzkoa 20018, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Eleni Mitoudi-Vagourdi
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
| | - Roque J Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, Donostia-San Sebastián, Gipuzkoa 20018, Spain.
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
23
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
24
|
Malik A, Kashyap HK. Solvation Shell Structures of Ammonia in Reline and Ethaline Deep Eutectic Solvents. J Phys Chem B 2023; 127:2499-2510. [PMID: 36912865 DOI: 10.1021/acs.jpcb.2c07929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Because of increasing atmospheric anthropogenic ammonia (NH3) emission, researchers are devising new techniques to capture NH3. Deep eutectic solvents (DESs) are found as potential media for NH3 mitigation. In the present study, we have carried out ab initio molecular dynamics (AIMD) simulations to decipher the solvation shell structures of an ammonia solute in reline (1:2 mixture of choline chloride and urea) and ethaline (1:2 mixture of choline chloride and ethylene glycol) DESs. We aim to resolve the fundamental interactions which help stabilize NH3 in these DESs, focusing on the structural arrangement of the DES species in the nearest solvation shell around NH3 solute. In reline, the hydrogen atoms of NH3 are preferentially solvated by chloride anions and the carbonyl oxygen atoms of urea. The nitrogen atom of NH3 renders hydrogen bonding with hydroxyl hydrogen of the choline cation. The positively charged head groups of the choline cations prefer to stay away from NH3 solute. In ethaline, strong hydrogen bonding interaction exists between the nitrogen atom of NH3 and hydroxyl hydrogen atoms of ethylene glycol. The hydrogen atoms of NH3 are found to be solvated by hydroxyl oxygen atoms of ethylene glycol and choline cation. While ethylene glycol molecules play a crucial role in solvating NH3, the chloride anions remain passive in deciding the first solvation shell. In both the DESs, choline cations approach NH3 from their hydroxyl group side. We observe slightly stronger solute-solvent charge transfer and hydrogen bonding interaction in ethaline than those in reline.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
25
|
Chatterjee S, Chowdhury T, Bagchi S. Does variation in composition affect dynamics when approaching the eutectic composition? J Chem Phys 2023; 158:114203. [PMID: 36948840 DOI: 10.1063/5.0139153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Deep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions. Our results show that although the time-averaged solvent structures around a dissolved solute are comparable across compositions, both the solvent fluctuations and solute reorientation dynamics show distinct differences. We show that these subtle changes in solute and solvent dynamics with changing compositions arise from the variations in the fluctuations of the different intercomponent hydrogen bonds.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
26
|
Mero A, Koutsoumpos S, Giannios P, Stavrakas I, Moutzouris K, Mezzetta A, Guazzelli L. Comparison of physicochemical and thermal properties of choline chloride and betaine-based deep eutectic solvents: the influence of hydrogen bond acceptor and hydrogen bond donor nature and their molar ratios. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
27
|
Synergy of a Deep Eutectic Solvent and Tea Saponin on Foam Flooding EOR in a High Salinity Clay Mineral Rich Heavy Oil Reservoir. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
28
|
Freeman JS, Mamme MH, Ustarroz J, Warr GG, Li H, Atkin R. Molecular Resolution Nanostructure and Dynamics of the Deep Eutectic Solvent-Graphite Interface as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204993. [PMID: 36627266 DOI: 10.1002/smll.202204993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.
Collapse
Affiliation(s)
- Justin S Freeman
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mesfin Haile Mamme
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Jon Ustarroz
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Université Libre de Bruxelles, Boulevard du Triomphe 2, Brussels, 1050, Belgium
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
29
|
Schlicht S, Drummer D. Eutectic In Situ Modification of Polyamide 12 Processed through Laser-Based Powder Bed Fusion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2050. [PMID: 36903165 PMCID: PMC10003968 DOI: 10.3390/ma16052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Laser-based powder bed fusion (LPBF) of polymers allows for the additive manufacturing of dense components with high mechanical properties. Due to inherent limitations of present material systems suitable for LPBF of polymers and required high processing temperatures, the present paper investigates the in situ modification of material systems using powder blending of p-aminobenzoic acid and aliphatic polyamide 12, followed by subsequent laser-based additive manufacturing. Prepared powder blends exhibit a considerable reduction of required processing temperatures dependent on the fraction of p-aminobenzoic acid, allowing for the processing of polyamide 12 at a build chamber temperature of 141.5 °C. An elevated fraction of 20 wt% of p-aminobenzoic acid allows for obtaining a considerably increased elongation at break of 24.65% ± 2.87 while exhibiting a reduced ultimate tensile strength. Thermal investigations demonstrate the influence of the thermal material history on thermal properties, associated with the suppression of low-melting crystalline fractions, yielding amorphous material properties of the previously semi-crystalline polymer. Based on complementary infrared spectroscopic analysis, the increased presence of secondary amides can be observed, indicating the influence of both covalently bound aromatic groups and hydrogen-bound supramolecular structures on emerging material properties. The presented approach represents a novel methodology for the energy-efficient in situ preparation of eutectic polyamides, potentially allowing for the manufacturing of tailored material systems with adapted thermal, chemical, and mechanical properties.
Collapse
Affiliation(s)
- Samuel Schlicht
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
- Collaborative Research Center 814, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
| | - Dietmar Drummer
- Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
- Collaborative Research Center 814, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany
| |
Collapse
|
30
|
Wu JD, Ding Y, Zhu F, Gu Y, Wang WW, Sun L, Mao BW, Yan JW. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode. Molecules 2023; 28:molecules28052300. [PMID: 36903545 PMCID: PMC10005209 DOI: 10.3390/molecules28052300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.
Collapse
Affiliation(s)
- Jie-Du Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Zhu
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| |
Collapse
|
31
|
Buchner R, Agieienko V. Ethaline and related systems: may be not “deep” eutectics but clearly interesting ionic liquids. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2022-1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Ethaline, the 1:2 molar ratio mixture of ethylene glycol (EG) and choline chloride (ChCl), is generally regarded as a typical type III deep eutectic solvent (DES). However, careful differential scanning calorimetry (DSC) of EG + ChCl mixtures surprisingly revealed that the liquidus lines of the phase diagram apparently follow the predictions for an ideal binary non-electrolyte mixture. Applying broad-band dielectric relaxation spectroscopy to room-temperature solutions of ChCl, and of the related salts choline iodide and chlorocholine chloride, in EG up to saturation, we explored the possible reasons for this conundrum. It appears that in these solutions free ions are rather scarce. Instead, contact ion pairs and larger aggregates predominate.
Collapse
Affiliation(s)
- Richard Buchner
- Physical & Theoretical Chemistry , Universität Regensburg , Regensburg , Germany
| | - Vira Agieienko
- Nanotechnology and Biotechnology Department , Nizhny Novgorod State Technical University n a R E Alekseev , Niznij Novgorod , Nižegorodskaâ , Russian Federation
| |
Collapse
|
32
|
Benito C, Alcalde R, Atilhan M, Aparicio S. High - Pressure properties of type V Natural Deep Eutectic Solvents: the case of menthol : thymol. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Del Mar Contreras-Gámez M, Galán-Martín Á, Seixas N, da Costa Lopes AM, Silvestre A, Castro E. Deep eutectic solvents for improved biomass pretreatment: Current status and future prospective towards sustainable processes. BIORESOURCE TECHNOLOGY 2023; 369:128396. [PMID: 36503832 DOI: 10.1016/j.biortech.2022.128396] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pretreatment processes - recognized as critical steps for efficient biomass refining - have received much attention over the last two decades. In this context, deep eutectic solvents (DES) have emerged as a novel alternative to conventional solvents representing a step forward in achieving more sustainable processes with both environmental and economic benefits. This paper presents an updated review of the state-of-the-art of DES-based applications in biorefinery schemes. Besides describing the fundamentals of DES composition, synthesis, and recycling, this study presents a comprehensive review of existing techno-economic and life cycle assessment studies. Challenges, barriers, and perspectives for the scale-up of DES-based processes are also discussed.
Collapse
Affiliation(s)
- María Del Mar Contreras-Gámez
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Ángel Galán-Martín
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain
| | - Nalin Seixas
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - André M da Costa Lopes
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal; CECOLAB - Collaborative Laboratory Towards Circular Economy, R. Nossa Senhora da Conceição, Oliveira do Hospital, 3405-155, Portugal
| | - Armando Silvestre
- CICECO - Aveiro Institute of Materials, Chemistry Department, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, Jaén 23071, Spain.
| |
Collapse
|
34
|
Agieienko V, Neklyudov V, Buchner R. Why Does Ethaline Apparently Behave as an Ideal Binary Mixture? J Phys Chem Lett 2022; 13:10805-10809. [PMID: 36375079 DOI: 10.1021/acs.jpclett.2c02901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phase diagram mixtures of the salt choline chloride (ChCl) with ethylene glycol (EG) surprisingly seem to behave as ideal binary nonelectrolyte mixtures [Agieienko, V.; Buchner, R. Phys. Chem. Chem. Phys.2022, 24, 5265]. To shed some light on this conundrum, results of broad-band dielectric relaxation spectroscopy (DRS) and quantum-chemical calculations are reported for solutions of ChCl, choline iodide (ChI), and chlorocholine chloride (ClChCl), in EG up to saturation at 298.15 K. The data revealed that all three solutes are only weakly solvated in the sense that on average per equivalent of solute only one EG OH-group is dynamically affected. While contact ion pairs are significant for solute concentrations of ≲1 M, free cation concentrations are rather low. Instead, over the entire concentration range a large fraction of the dipolar cations could not be detected by DRS. We argue that the latter are embedded in large solute aggregates, explaining thus the phase diagram of ChCl + EG and the very low ionicity of all systems.
Collapse
Affiliation(s)
- Vira Agieienko
- Laboratory of Engineering Chemistry, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina av., 603022Nizhny Novgorod, Russia
- Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minin str., 603950Nizhny Novgorod, Russia
| | - Vadim Neklyudov
- Wolfson Department of Chemical Engineering, Technion─IIT, Haifa32000, Israel
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040Regensburg, Germany
| |
Collapse
|
35
|
Stephens NM, Smith EA. Structure of Deep Eutectic Solvents (DESs): What We Know, What We Want to Know, and Why We Need to Know It. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14017-14024. [PMID: 36346803 DOI: 10.1021/acs.langmuir.2c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep eutectic solvents (DESs) are a tunable class of solvents with many advantageous properties including good thermal stability, facile synthesis, low vapor pressure, and low-to-negligible toxicity. DESs are composed of hydrogen bond donors and acceptors that, when combined, significantly decrease the freezing point of the resulting solvent. DESs have distinct interfacial and bulk structural heterogeneity compared to traditional solvents, in part due to various intramolecular and intermolecular interactions. Many of the physiochemical properties observed for DESs are influenced by structure. However, our understanding of the interfacial and bulk structure of DESs is incomplete. To fully exploit these solvents in a range of applications including catalysis, separations, and electrochemistry, a better understanding of DES structure must be obtained. In this Perspective, we provide an overview of the current knowledge of the interfacial and bulk structure of DESs and suggest future research directions to improve our understanding of this important information.
Collapse
Affiliation(s)
- Nicole M Stephens
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Emily A Smith
- Ames National Laboratory, U.S. Department of Energy, Ames, Iowa 50011-3111, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
36
|
Engelbrecht LDV, Ji X, Carbonaro CM, Laaksonen A, Mocci F. MD simulations explain the excess molar enthalpies in pseudo-binary mixtures of a choline chloride-based deep eutectic solvent with water or methanol. Front Chem 2022; 10:983281. [DOI: 10.3389/fchem.2022.983281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The addition of molecular liquid cosolvents to choline chloride (ChCl)-based deep eutectic solvents (DESs) is increasingly investigated for reducing the inherently high bulk viscosities of the latter, which represent a major obstacle for potential industrial applications. The molar enthalpy of mixing, often referred to as excess molar enthalpy HE—a property reflecting changes in intermolecular interactions upon mixing—of the well-known ChCl/ethylene glycol (1:2 molar ratio) DES mixed with either water or methanol was recently found to be of opposite sign at 308.15 K: Mixing of the DES with water is strongly exothermic, while methanol mixtures are endothermic over the entire mixture composition range. Knowledge of molecular-level liquid structural changes in the DES following cosolvent addition is expected to be important when selecting such “pseudo-binary” mixtures for specific applications, e.g., solvents. With the aim of understanding the reason for the different behavior of selected DES/water or methanol mixtures, we performed classical MD computer simulations to study the changes in intermolecular interactions thought to be responsible for the observed HE sign difference. Excess molar enthalpies computed from our simulations reproduce, for the first time, the experimental sign difference and composition dependence of the property. We performed a structural analysis of simulation configurations, revealing an intriguing difference in the interaction modes of the two cosolvents with the DES chloride anion: water molecules insert between neighboring chloride anions, forming ionic hydrogen-bonded bridges that draw the anions closer, whereas dilution of the DES with methanol results in increased interionic separation. Moreover, the simulated DES/water mixtures were found to contain extended hydrogen-bonded structures containing water-bridged chloride pair arrangements, the presence of which may have important implications for solvent applications.
Collapse
|
37
|
Chatterjee S, Deshmukh SH, Bagchi S. Does Viscosity Drive the Dynamics in an Alcohol-Based Deep Eutectic Solvent? J Phys Chem B 2022; 126:8331-8337. [PMID: 36200737 DOI: 10.1021/acs.jpcb.2c06521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep eutectic solvents, consisting of heterogeneous nanodomains of hydrogen-bonded networks, have evolved into a range of viscous fluids that find applications in several fields. As viscosity is known to influence the dynamics of other neoteric solvents like ionic liquids, understanding the effect of viscosity on deep eutectic solvents is crucial to realize their full potential. Herein, we combine polarization-selective pump-probe spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to elucidate the impact of viscosity on the dynamics of an alcohol-based deep eutectic solvent, ethaline. We compare the solvent fluctuation and solute reorientation time scales in ethaline with those in ethylene glycol, an ethaline constituent. Interestingly, we find that the solute's reorientation apparently scales the bulk viscosity of the solvent, but the same is not valid for the overall solvation dynamics. Using the variations in the estimated intercomponent hydrogen bond lifetimes, we show that a dissolved solute does not sense the bulk viscosity of the deep eutectic solvent; instead, it senses domain-specific local viscosity determined by the making and breaking of the hydrogen bond network. Our results indicate that understanding the domain-specific local environment experienced by the dissolved solute is of utmost importance in deep eutectic solvents.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Samadhan H Deshmukh
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
38
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
39
|
Choe G, Tang X, Wang R, Wu K, Jin Jeong Y, Kyu An T, Hyun Kim S, Mi L. Printing of self-healable gelatin conductors engineered for improving physical and electrical functions: Exploring potential application in soft actuators and sensors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Malik A, Kashyap HK. Solvent Organization around Methane Dissolved in Archetypal Reline and Ethaline Deep Eutectic Solvents as Revealed by AIMD Investigation. J Phys Chem B 2022; 126:6472-6482. [PMID: 35977089 DOI: 10.1021/acs.jpcb.2c02406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the rising concentration of harmful greenhouse gases like methane in the atmosphere, researchers are striving for developing novel techniques for capturing these gases. Recently, neoteric liquids such as deep eutectic solvents (DESs) have emerged as an efficient means of sequestration of methane. Herein, we have performed ab initio molecular dynamics (AIMD) simulations to elucidate the solvation structure around a methane molecule dissolved in reline and ethaline DESs. We aim to elicit the structural organization of different constituents of the DESs in the vicinity of methane, particularly highlighting the key interactions that stabilize such gases in DESs. We observe quite different solvation structures of methane in the two DESs. In ethaline, chloride ions play an active role in solvating methane. Instead, in reline, chloride ions do not interact much with the methane molecule in the first solvation shell. In reline, choline cations approach the methane molecule from their hydroxyl group side, whereas urea molecules approach methane from their carbonyl oxygen as well as amide group sides. In ethaline, ethylene glycol and Cl- dominate the nearest neighbor solvation structure around the methane molecule. In both the DESs, we do not observe any significant methane-DES charge transfer interactions, apart from what is present between choline cation and Cl- anion.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Hemant K Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
41
|
Bener M, Şen FB, Önem AN, Bekdeşer B, Çelik SE, Lalikoglu M, Aşçı YS, Capanoglu E, Apak R. Microwave-assisted extraction of antioxidant compounds from by-products of Turkish hazelnut (Corylus avellana L.) using natural deep eutectic solvents: Modeling, optimization and phenolic characterization. Food Chem 2022; 385:132633. [PMID: 35279500 DOI: 10.1016/j.foodchem.2022.132633] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/28/2022]
Abstract
An environmentally friendly method using natural deep eutectic solvents (NADES) and microwave-assisted extraction (MAE) for the recovery of bioactive compounds from hazelnut pomace (a hazelnut oil process by-product) was developed to contribute to their sustainable valorization. Eight different NADES were prepared for the extraction of antioxidant constituents from hazelnut pomace, and choline chloride:1,2-propylene glycol (CC-PG) was determined as the most suitable NADES, considering their extraction efficiency and physicochemical properties. After selecting suitable NADES, operational parameters for the MAE process of antioxidants from hazelnut pomace were optimized and modeled using response surface methodology. For the highest recovery of antioxidants, the operational parameters of the MAE process were found to be 24% water, 38 min, 92 °C and 18 mL/0.1 g-DS. Under optimized conditions, extracts of both pomace as a by-product and unprocessed hazelnut flours of three different hazelnut samples (Tombul, Çakıldak, and Palaz) were prepared, and their antioxidant capacities were evaluated by spectrophotometric methods. Antioxidant capacities of CC-PG extracts of all hazelnut samples were 2-3 times higher than those of ethanolic extracts. In addition, phenolic characterization of the prepared extracts was carried out using the UPLC-PDA-ESI-MS/MS system. The results of this study suggest that hazelnut by-products can potentially be considered an important and readily available source of natural antioxidants. Furthermore, the modeled MAE procedure has the potential to create an effective and sustainable alternative for pharmaceutical and food industries.
Collapse
Affiliation(s)
- Mustafa Bener
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih, 34126 Istanbul, Turkey.
| | - Furkan Burak Şen
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Ayşe Nur Önem
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Burcu Bekdeşer
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Saliha Esin Çelik
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey
| | - Melisa Lalikoglu
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemical Engineering, Avcilar, 34320 Istanbul, Turkey
| | - Yavuz Selim Aşçı
- Istanbul University, Faculty of Science, Department of Chemistry, Fatih, 34126 Istanbul, Turkey
| | - Esra Capanoglu
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Maslak, 34469 Istanbul, Turkey
| | - Reşat Apak
- Istanbul University-Cerrahpasa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320 Istanbul, Turkey.
| |
Collapse
|
42
|
Hoppe J, Byzia E, Szymańska M, Drozd R, Smiglak M. Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chem 2022; 384:132498. [DOI: 10.1016/j.foodchem.2022.132498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022]
|
43
|
An effect of choline lactate based low transition temperature mixtures on the lipase catalytic properties. Colloids Surf B Biointerfaces 2022; 216:112518. [PMID: 35594750 DOI: 10.1016/j.colsurfb.2022.112518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022]
Abstract
A new series of low transition temperature mixures (LTTM) based on choline lactate quaternary ammonium salt and various hydrogen bond donors was prepared and characterized towards their physicochemical properties and usability as an enzymatic reaction mixture for lipase-catalyzed transesterification reactions. Studies of low transition temperature mixtures have shown a long-term stabilizing effect for lipase as well as a positive influence on lipase thermal stability. In the case of Ch[Lac]:Gly: EthGly increasing the stability of lipase by 8 °C (up to 55.2 °C) compared to the control sample. Conducted transesterification reactions were characterized by high yields - up to 98% - and high purity of the obtained products.
Collapse
|
44
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
45
|
Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. J Colloid Interface Sci 2022; 616:121-128. [DOI: 10.1016/j.jcis.2022.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
|
46
|
Zhang Y, Liu C, Wang J, Ren S, Song Y, Quan P, Fang L. Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Hinz Y, Böhmer R. Deuteron magnetic resonance study of glyceline deep eutectic solvents: Selective detection of choline and glycerol dynamics. J Chem Phys 2022; 156:194506. [PMID: 35597634 DOI: 10.1063/5.0088290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glyceline, a green solvent considered for various electrochemical applications, represents a multi-component glass former. Viewed from this perspective, the choline cation and the hydrogen bond donor glycerol, the two major constituents forming this deep eutectic solvent, were studied using nuclear magnetic resonance in a selective manner by means of suitably deuteron-labeled isotopologues. Carried out from far above to far below the glass transition temperature, measurements and analyses of the spin-lattice and spin-spin relaxation times reveal that the reorientational dynamics of the components, i.e., of glycerol as well as of chain deuterated choline chloride are slightly different. Possible implications of this finding regarding the hydrogen-bonding pattern in glyceline are discussed. Furthermore, the deuterated methyl groups in choline chloride are exploited as sensitive probes of glyceline's supercooled and glassy states. Apart from spin relaxometry, a detailed line shape analysis of the CD3 spectra yields valuable insights into the broad intermolecular and intramolecular energy barrier distributions present in this binary mixture.
Collapse
Affiliation(s)
- Yannik Hinz
- Experimental Physics III, Technical University Dortmund, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Experimental Physics III, Technical University Dortmund, D-44221 Dortmund, Germany
| |
Collapse
|
48
|
Shayestehpour O, Zahn S. Ion Correlation in Choline Chloride-Urea Deep Eutectic Solvent (Reline) from Polarizable Molecular Dynamics Simulations. J Phys Chem B 2022; 126:3439-3449. [PMID: 35500254 DOI: 10.1021/acs.jpcb.1c10671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, deep eutectic solvents (DESs) emerged as highly tunable and environmentally friendly alternatives to common ionic liquids and organic solvents. In this work, a polarizable model based on the CHARMM Drude polarizable force field is developed for a 1:2 ratio mixture of choline chloride/urea (reline) DES. To successfully reproduce the structure of the liquid as compared to first-principles molecular dynamics simulations, a damping factor was introduced to correct the observed over-binding between the chloride and the hydrogen bonding site of choline. Investigated radial distributions reveal the formation of hydrogen bonds between all the constituents of reline and similar interactions for chloride and urea's oxygen atoms, which could contribute to the melting point depression of the mixture. Predicted dynamic properties from our polarizable force field are in good agreement with experiments, showing significant improvements over nonpolarizable models. Similar to some ionic liquids, an oscillatory behavior in the velocity autocorrelation function of the anion is visible, which can be interpreted as a rattling motion of the lighter anion surrounded by the heavier cations. The obtained results for ionic conductivity of reline show some degree of correlated ion motion in this DES. However, a joint diffusion of ion pairs cannot be observed during the simulations.
Collapse
Affiliation(s)
- Omid Shayestehpour
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
49
|
Dziubinska-Kühn K, Pupier M, Matysik J, Viger-Gravel J, Karg B, Kowalska M. Time-Dependent Hydrogen Bond Network Formation in Glycerol-Based Deep Eutectic Solvents. Chemphyschem 2022. [PMID: 35452172 DOI: 10.1002/cphc.202100806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last few years, Deep Eutectic Solvents have gained popularity as a novel class of green solvents, due to their feasible synthesis and overall low production costs. The properties of glycerol (Gly)-based Deep Eutectic Solvents are frequently associated with the formation of an extended hydrogen bond network. In this study, two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy is employed to analyse the effect of glycerol oversaturation of the hydrogen bond acceptor, choline chloride (ChCl) on the structural arrangement of glyceline (molar ratio 1 : 2 ChCl:Gly), selected to represent Gly-based Deep Eutectic Solvents. The rearrangement of glycerol molecules, additionally trapping water molecules inside of isolated clusters, is revealed during a time-resolved analysis, performed in the presence of various fractions of water added to solvent. 200 % oversaturated Deep Eutectic Solvent (1 : 4 ChCl:Gly) is found to be a suitable cryoprotectant candidate, based on the revealed glycerol-water interactions.
Collapse
Affiliation(s)
- Katarzyna Dziubinska-Kühn
- CERN, Esplanade des Particules 1, 1211, Geneva, Switzerland.,Institute of Analytical Chemistry, University of Leipzig, D-, 04103, Leipzig, Germany
| | - Marion Pupier
- Department of Organic Chemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Jörg Matysik
- Institute of Analytical Chemistry, University of Leipzig, D-, 04103, Leipzig, Germany
| | - Jasmine Viger-Gravel
- Department of Organic Chemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Beatrice Karg
- CERN, Esplanade des Particules 1, 1211, Geneva, Switzerland.,Department of Nuclear and Particle Physics, University of Geneva, 1211, Geneva, Switzerland
| | | |
Collapse
|
50
|
An efficient low melting mixture mediated green approach for the synthesis of 2-substituted benzothiazoles and benzimidazoles. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|