1
|
Scarpi-Luttenauer M, Boubegtiten-Fezoua Z, Hellwig P, Chaumont A, Vincent B, Barloy L, Mobian P. Spectroscopic evidence of the interaction of titanium(IV) coordination complexes with a phosphate head group in phospholipids. Dalton Trans 2025; 54:4556-4565. [PMID: 39943814 DOI: 10.1039/d4dt02966f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Biological membranes are potentially involved in the transport of metal ions, such as Ti(IV), and, sometimes, their associated ligands. Understanding the interactions of Ti(IV) ions and complexes with biological membranes provides a basis for elucidating the action mechanism of titanium anticancer drugs. Herein, we investigated the interactions of two neutral titanium(IV) complexes, viz. [H2Ti(Cat)3] (1) and [H2Ti(Napht)3] (2), incorporated into DOPC multi-bilayers using ATR-FTIR spectroscopy. Infrared results showed that complexes 1 and 2, when interacting with DOPC multi-bilayers, highly affected the hydration of the lipid phosphate group and its mobility, revealing that the phosphate group is the main group involved in the interactions of complexes 1 and 2 with DOPC phospholipids. NMR studies involving complex 1 and DOPC dissolved in deuterated DMSO solution were performed, and interactions between the Ti complex and DOPC phosphate group could be evidenced. DFT calculations of model complexes were in good agreement with experimental data, and the stability of three model complexes was estimated. On the basis of the obtained data, it can be suggested that the oxygen atom(s) of the phosphato group of the DOPC ligand acted as donor atoms for Ti.
Collapse
Affiliation(s)
| | | | - Petra Hellwig
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| | - Alain Chaumont
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| | - Bruno Vincent
- Université de Strasbourg, CNRS, UAR 2042, F-67000 Strasbourg, France
| | - Laurent Barloy
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| | - Pierre Mobian
- Université de Strasbourg, CNRS, UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
2
|
Trommenschlager A, Mabrouk N, Racoeur C, Godard A, Balan C, Dubrez L, Bettaïeb A, Husson J, Le Gendre P, Paul C, Bodio E. From the Design of Innovative Ti-Pt Heterometallic Complexes to the Development of Highly Anti-Proliferative Water-Soluble Cationic Titanocenes. Chembiochem 2024; 25:e202400099. [PMID: 38749920 DOI: 10.1002/cbic.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Indexed: 07/27/2024]
Abstract
Two innovative early/late Ti-Pt-heterobimetallic complexes were synthesized, characterized, and screened in cell-based assays using several human (SW480 and MDA-MB-231) and murine cancer cell lines (CT26 and EMT6) as well as a non-cancerous cell line (HMEC). The combination of the two metals - titanium(IV) and platinum (IV) - in a single molecule led to a synergistic biological activity (higher anti-proliferative properties than a mixture of each of the corresponding monometallic complexes). This study also investigated the benefits of associating a metal-free terpyridine moiety (with intrinsic biological activity) with a water-soluble titanocene fragment. The present work reveals that these combinations results in water-soluble titanocene compounds displaying an anti-proliferative activity down to the submicromolar level. One of these complexes induced an antitumor effect in vivo in CT26 tumor bearing BALB/C mice. The terpyridine moiety was also used to track the complex in vitro by multiphoton microscopy imaging.
Collapse
Affiliation(s)
- Audrey Trommenschlager
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR CNRS 6302), Université de Bourgogne, 21000, Dijon, France
| | - Nesrine Mabrouk
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269) EPHE, PSL Research University, 75000, Paris, France, Université de Bourgogne, 21000, Dijon, France
| | - Cindy Racoeur
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269) EPHE, PSL Research University, 75000, Paris, France, Université de Bourgogne, 21000, Dijon, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR CNRS 6302), Université de Bourgogne, 21000, Dijon, France
| | - Cédric Balan
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR CNRS 6302), Université de Bourgogne, 21000, Dijon, France
| | - Laurence Dubrez
- LNC UMR1231, Institut National de la Santé et de la Recherche Médicale (Inserm), Université de Bourgogne, 21000, Dijon, France
| | - Ali Bettaïeb
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269) EPHE, PSL Research University, 75000, Paris, France, Université de Bourgogne, 21000, Dijon, France
| | - Jérôme Husson
- Institut UTINAM UMR6213, Univ. de Franche-Comté, 25030, Besançon Cedex, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR CNRS 6302), Université de Bourgogne, 21000, Dijon, France
| | - Catherine Paul
- Laboratoire d'Immunologie et Immunothérapie des Cancers (LIIC, EA7269) EPHE, PSL Research University, 75000, Paris, France, Université de Bourgogne, 21000, Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB UMR CNRS 6302), Université de Bourgogne, 21000, Dijon, France
| |
Collapse
|
3
|
de Azevedo-França JA, Borba-Santos LP, de Matos LMC, Galvão BVD, Araujo-Lima CF, Felzenszwalb I, de Souza W, Horn A, Neves ES, Rozental S, Navarro M. Anti-Sporothrix Activity of Novel Copper-Itraconazole Complexes. ChemMedChem 2024; 19:e202400054. [PMID: 38669597 DOI: 10.1002/cmdc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
A series of new metal complexes, [Cu(ITZ)2Cl2] ⋅ 5H2O (1), [Cu(NO3)2(ITZ)2] ⋅ 3H2O ⋅ C4H10O (2) and [Cu(ITZ)2)(PPh3)2]NO3 ⋅ 5H2O (3) were synthesized by a reaction of itraconazole (ITZ) with the respective copper salts under reflux. The metal complexes were characterized by elemental analyses, molar conductivity, 1H and 13C{1H} nuclear magnetic resonance, UV-Vis, infrared and EPR spectroscopies. The antifungal activity of these metal complexes was evaluated against the main sporotrichosis agents: Sporothrix brasiliensis, Sporothrix schenkii, and Sporothrix globosa. All three new compounds inhibited the growth of S. brasiliensis and S. schenckii at lower concentrations than the free azole, with complex 2 able to kill all species at 4 μM and induce more pronounced alterations in fungal cells. Complexes 2 and 3 exhibited higher selectivity and no mutagenic effect at the concentration that inhibited fungal growth and affected fungal cells. The strategy of coordinating itraconazole (ITZ) to copper was successful, since the corresponding metal complexes were more effective than the parent drug. Particularly, the promising antifungal activity of the Cu-ITZ complexes makes them potential candidates for the development of an alternative drug to treat mycoses.
Collapse
Affiliation(s)
| | - Luana Pereira Borba-Santos
- Laboratório de Biologia Celular de Fungos, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Letícia Mota Candal de Matos
- Laboratório de Inovação Farmacêutica e Tecnológica, Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Bárbara Verena Dias Galvão
- Laboratório de Mutagênese Ambiental, Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Carlos Fernando Araujo-Lima
- Laboratório de Inovação Farmacêutica e Tecnológica, Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Israel Felzenszwalb
- Laboratório de Mutagênese Ambiental, Departamento de Biofísica e Biometria, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Adolfo Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Eduardo S Neves
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | - Sonia Rozental
- Laboratório de Biologia Celular de Fungos, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Maribel Navarro
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brasil
| |
Collapse
|
4
|
Mandal A, Berquist EJ, Herbert JM. A new parameterization of the DFT/CIS method with applications to core-level spectroscopy. J Chem Phys 2024; 161:044114. [PMID: 39051834 DOI: 10.1063/5.0220535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange-correlation functionals are used, which is partly traceable to systemic issues with TD-DFT's description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn-Sham orbitals, which is known as "DFT/CIS." This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT's low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.
Collapse
Affiliation(s)
- Aniket Mandal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Akhtar R, Gaurav K, Khan S. Applications of low-valent compounds with heavy group-14 elements. Chem Soc Rev 2024; 53:6150-6243. [PMID: 38757535 DOI: 10.1039/d4cs00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Over the last two decades, the low-valent compounds of group-14 elements have received significant attention in several fields of chemistry owing to their unique electronic properties. The low-valent group-14 species include tetrylenes, tetryliumylidene, tetrylones, dimetallenes and dimetallynes. These low-valent group-14 species have shown applications in various areas such as organic transformations (hydroboration, cyanosilylation, N-functionalisation of amines, and hydroamination), small molecule activation (e.g. P4, As4, CO2, CO, H2, alkene, and alkyne) and materials. This review presents an in-depth discussion on low-valent group-14 species-catalyzed reactions, including polymerization of rac-lactide, L-lactide, DL-lactide, and caprolactone, followed by their photophysical properties (phosphorescence and fluorescence), thin film deposition (atomic layer deposition and vapor phase deposition), and medicinal applications. This review concisely summarizes current developments of low-valent heavier group-14 compounds, covering synthetic methodologies, structural aspects, and their applications in various fields of chemistry. Finally, their opportunities and challenges are examined and emphasized.
Collapse
Affiliation(s)
- Ruksana Akhtar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Kumar Gaurav
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Shabana Khan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
6
|
Gomez-Lopez S, Serrano R, Cohen B, Martinez-Argudo I, Lopez-Sanz L, Guadamillas MC, Calero R, Ruiz MJ. Novel Titanocene Y derivative with albumin affinity exhibits improved anticancer activity against platinum resistant cells. J Inorg Biochem 2024; 254:112520. [PMID: 38460481 DOI: 10.1016/j.jinorgbio.2024.112520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The antitumor activity of Ti(IV)-based compounds put them in the spotlight for cancer treatment in the past, but their lack of stability in vivo due to a high rate of hydrolysis has hindered their development as antitumor drugs. As a possible solution for this problem, we have reported a synthesis strategy through which we combined a titanocene fragment, a tridentate ligand, and a long aliphatic chain. This strategy allowed us to generate a titanium compound (Myr-Ti) capable of interacting with albumin, highly stable in water and with cytotoxic activity in tumor cells[1]. Following a similar strategy, now we report the synthesis of a new compound (Myr-TiY) derived from titanocene Y that shows antitumoral activity in a cisplatin resistant model with a 50% inhibitory concentration (IC50) of 41-76 μM. This new compound shows high stability and a strong interaction with human serum albumin. Myr-TiY has a significant antiproliferative and proapoptotic effect on the tested cancer cells and shows potential tumor selectivity when assayed in non-tumor human epithelial cells being more selective (1.3-3.8 times) for tumor cells than cisplatin. These results lead us to think that the described synthesis strategy could be useful to generate compounds for the treatment of both cisplatin-sensitive and cisplatin-resistant cancers.
Collapse
Affiliation(s)
- Sergio Gomez-Lopez
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Rosario Serrano
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Boiko Cohen
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Física, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; INAMOL, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Isabel Martinez-Argudo
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Laura Lopez-Sanz
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Marta Carmen Guadamillas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Raul Calero
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Maria Jose Ruiz
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; Departamento de Química Orgánica, Inorgánica y Bioquímica, Universidad de Castilla-La Mancha, 45071 Toledo, Spain; INAMOL, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| |
Collapse
|
7
|
Thanigachalam S, Pathak M. Bioactive O^N^O^ Schiff base appended homoleptic titanium(iv) complexes: DFT, BSA/CT-DNA interactions, molecular docking and antitumor activity against HeLa and A549 cell lines. RSC Adv 2024; 14:13062-13082. [PMID: 38655487 PMCID: PMC11034360 DOI: 10.1039/d3ra08574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 04/26/2024] Open
Abstract
Five new homoleptic derivatives of titanium(iv) have been developed and characterized by physicochemical techniques. Metal complexes, TiH2L1 [(C38H26N6O4)Ti], TiH2L2 [(C38H24F2N6O4)Ti], TiH2L3 [(C38H24Cl2N6O4)Ti], TiH2L4 [(C38H24Br2N6O4)Ti] and TiH2L5 [(C38H24N8O8)Ti], were obtained by treating Ti(OPri)4 with appropriate ONO ligands (H2L1-H2L5) in anhydrous THF as solvent. The electronic structures and properties of titanium(iv) complexes (TiH2L1-TiH2L5) and ligands (H2L1-H2L5) were examined by DFT studies. The stability of all synthesized derivatives was assessed by a UV-visible technique using 10% DMSO, GSH medium and n-octanol/water systems. The binding interactions of BSA and CT-DNA with respective titanium(iv) complexes were successfully evaluated by employing UV-visible absorption, fluorescence, circular dichroism (CD) techniques and docking studies. The in vitro cytotoxicity of TiH2L2, TiH2L3 and TiH2L4 complexes was assessed against HeLa (human epithelioid cervical cancer cells) and A549 (lung carcinoma) cell lines. The IC50 values of TiH2L2, TiH2L3 and TiH2L4 were observed to be 28.8, 14.7 and 31.2 μg mL-1 for the HeLa cell line and 38.2, 32.9 and 67.78 μg mL-1 for A549 cells, respectively. Complex TiH2L3 exhibited remarkably induced cell cycle arrest in the G1 phase and 77.99% ROS production selectivity in the HeLa cell line.
Collapse
Affiliation(s)
- Sathish Thanigachalam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore 632014 Tamilnadu India
| |
Collapse
|
8
|
Musa M, Abid M, Bradshaw TD, Boocock DJ, Coveney C, Argent SP, Woodward S. Probing the Mechanism of Action of Bis(phenolato) Amine (ONO Donor Set) Titanium(IV) Anticancer Agents. J Med Chem 2024; 67:2732-2744. [PMID: 38331433 PMCID: PMC10895680 DOI: 10.1021/acs.jmedchem.3c01874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
The need for anticancer therapies that overcome metallodrug resistance while minimizing adverse toxicities is targeted, herein, using titanium coordination complexes. Octahedral titanium(IV) trans,mer-[Ti{R1N(CH2-2-MeO-4-R1-C6H2)2}2] [R1 = Et, allyl, n-Pr, CHO, F, CH2(morpholino), the latter from the formyl derivative; R2 = Me, Et; not all combinations] are attained from Mannich reactions of commercial 2-methoxyphenols (27-74% overall yield, 2 steps). These crystalline (four X-ray structures) Ti(IV)-complexes are active against MCF-7, HCT-116, HT-29, PANC-1, and MDA-MB-468 cancer cell lines (GI50 = 0.5-38 μM). Their activity and cancer selectivity (vs nontumor MRC-5 cells) typically exceeds that of cisplatin (up to 16-fold). Proteomic analysis (in MCF-7) supported by other studies (G2/M cell cycle arrest, ROS generation, γH2AX production, caspase activation, annexin positivity, western blot, and kinase screens in MCF-7 and HCT-116) suggest apoptosis elicited by more than one mechanism of action. Comparison of these data to the modes of action proposed for salan Ti(IV) complexes is made.
Collapse
Affiliation(s)
- Mustapha Musa
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
| | - Mohammed Abid
- Department
of Chemistry, College of Science, University
of Anbar, Anbarshire 31001, Iraq
| | - Tracey D. Bradshaw
- BDI,
School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - David J. Boocock
- School
of Science and Technology, Nottingham Trent
University, Clifton, Nottingham NG11 8NS, U.K.
| | - Clare Coveney
- School
of Science and Technology, Nottingham Trent
University, Clifton, Nottingham NG11 8NS, U.K.
| | - Stephen P. Argent
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
| | - Simon Woodward
- GSK
Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Triumph Road, Nottingham NG7 2TU, U.K.
| |
Collapse
|
9
|
Kumar N, Kaushal R, Awasthi P. A Comprehensive Review on the Development of Titanium Complexes as Cytotoxic Agents. Curr Top Med Chem 2024; 24:2117-2128. [PMID: 39108106 DOI: 10.2174/0115680266317770240718080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 10/22/2024]
Abstract
After the discovery of cis-platin, the first metal-based anticancer drugs, budotitane, and titanocene dichloride entered clinical trials. These two classes of complexes were effective against those cell lines that are resistant to cis-platin and other platinum-based drugs. However, the main limitation of these complexes is their low hydrolytic stability. After these two classes, a third generation titanium based complex, i.e. diaminebis(phenolato)bis(alkoxo) titanium(IV), was invented, which showed more hydrolytic stability and high cytotoxicity than budotitane and titanocene dichloride. The Hydrolytic stability of complexes plays an important role in cytotoxicity. Earlier research showed that hydrolytically less stable complexes decompose rapidly into non-bioavailable moiety and become inactive. The mechanism of Ti(IV) complexes of diaminebis(phenolato) bis(alkoxo) is under investigation and is presumed to involve Endoplasmic Reticulum (ER) stress, which leads to apoptosis. The proposed mechanism involves the removal of ligands from the titanium complex and the binding of the Ti center to transferrin protein and its release inside the cell. Also, the structure of the ligand plays a key role in the cytotoxicity of complexes; as the bulkiness of the ligand increased, the cytotoxic nature of complexes decreased.
Collapse
Affiliation(s)
- Nitesh Kumar
- Department of Chemistry, Government College Jhandutta, District Bilaspur, Himachal Pradesh, 174031, India
| | - Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India
| | - Pamita Awasthi
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, 177005, India
| |
Collapse
|
10
|
Yang M, Liu N, Wang P, Zhao T. Synthesis and cytotoxicity study of water soluble 8-hydroxyquinoline stabilized zirconium(Ⅳ) complexes. INORG CHEM COMMUN 2023; 153:110795. [DOI: 10.1016/j.inoche.2023.110795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Visbal G, Justo RMS, dos Santos da Silva e Miranda G, Teixeira de Macedo Silva S, de Souza W, Rodrigues JCF, Navarro M. Zinc(II)-Sterol Hydrazone Complex as a Potent Anti-Leishmania Agent: Synthesis, Characterization, and Insight into Its Mechanism of Antiparasitic Action. Pharmaceutics 2023; 15:pharmaceutics15041113. [PMID: 37111599 PMCID: PMC10142724 DOI: 10.3390/pharmaceutics15041113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Searching for new alternatives for treating leishmaniasis, we present the synthesis, characterization, and biological evaluation against Leishmania amazonensis of the new ZnCl2(H3)2 complex. H3 is 22-hydrazone-imidazoline-2-yl-chol-5-ene-3β-ol, a well-known bioactive molecule functioning as a sterol Δ24-sterol methyl transferase (24-SMT) inhibitor. The ZnCl2(H3)2 complex was characterized by infrared, UV-vis, molar conductance measurements, elemental analysis, mass spectrometry, and NMR experiments. The biological results showed that the free ligand H3 and ZnCl2(H3)2 significantly inhibited the growth of promastigotes and intracellular amastigotes. The IC50 values found for H3 and ZnCl2(H3)2 were 5.2 µM and 2.5 µM for promastigotes, and 543 nM and 32 nM for intracellular amastigotes, respectively. Thus, the ZnCl2(H3)2 complex proved to be seventeen times more potent than the free ligand H3 against the intracellular amastigote, the clinically relevant stage. Furthermore, cytotoxicity assays and determination of selectivity index (SI) revealed that ZnCl2(H3)2 (CC50 = 5 μΜ, SI = 156) is more selective than H3 (CC50 = 10 μΜ, SI = 20). Furthermore, as H3 is a specific inhibitor of the 24-SMT, free sterol analysis was performed. The results showed that H3 was not only able to induce depletion of endogenous parasite sterols (episterol and 5-dehydroepisterol) and their replacement by 24-desalkyl sterols (cholesta-5,7,24-trien-3β-ol and cholesta-7,24-dien-3β-ol) but also its zinc derivative resulting in a loss of cell viability. Using electron microscopy, studies on the fine ultrastructure of the parasites showed significant differences between the control cells and parasites treated with H3 and ZnCl2(H3)2. The inhibitors induced membrane wrinkle, mitochondrial injury, and abnormal chromatin condensation changes that are more intense in the cells treated with ZnCl2(H3)2.
Collapse
|
12
|
Shpilt Z, Melamed-Book N, Tshuva EY. An anticancer Ti(IV) complex increases mitochondrial reactive oxygen species levels in relation with hypoxia and endoplasmic-reticulum stress: A distinct non DNA-related mechanism. J Inorg Biochem 2023; 243:112197. [PMID: 36963201 DOI: 10.1016/j.jinorgbio.2023.112197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
PhenolaTi is a promising Ti(IV) anticancer complex, with high stability and cytotoxicity, without notable toxic side-effects. Its cellular mechanism was proposed to relate to ER stress. Herein, we investigated the downstream effects of this mode of action in two cancer cell lines: ovarian carcinoma A2780 and cervical adenocarcinoma HeLa. First, although Ti(IV) is a non-redox metal, the formation of mitochondrial reactive oxygen species (ROS) was detected with live-cell imaging. Then, we inspected the effect of the mitochondrial ROS on cytotoxicity, using two methods: (a) addition of compounds that either elevate or reduce the mitochondrial glutathione concentration, thus affecting the oxidative state of the cells; and (b) scavenging mitochondrial ROS. Unlike the results observed for cisplatin, neither method influenced the cytotoxicity of phenolaTi, implying that ROS formation was a mere side effect of its activity. Additionally, live cell imaging displayed the hypoxia induced by phenolaTi, which can be associated with ROS formation. Overall, the results support the notion that ER-stress is the main cellular mechanism of phenolaTi, leading to hypoxia and mitochondrial ROS. The distinct mechanism of phenolaTi, which is different from that of cisplatin, combined with its stability and favorable anticancer properties, altogether make it a strong chemotherapeutic drug candidate.
Collapse
Affiliation(s)
- Zohar Shpilt
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Naomi Melamed-Book
- The Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- Institute of Chemistry, the Hebrew University of Jerusalem, Jerusalem 9190401, Israel..
| |
Collapse
|
13
|
Biological Use of Nanostructured Silica-Based Materials Functionalized with Metallodrugs: The Spanish Perspective. Int J Mol Sci 2023; 24:ijms24032332. [PMID: 36768659 PMCID: PMC9917151 DOI: 10.3390/ijms24032332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.
Collapse
|
14
|
Scarpi-Luttenauer M, Galentino K, Orvain C, Cecchini M, Gaiddon C, Mobian P. TiO4N2 complexes formed with 1,10-phenanthroline ligands containing a donor-acceptor hydrogen bond site: synthesis, cytotoxicity and docking experiments. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Scarpi-Luttenauer M, Mobian P, Barloy L. Synthesis, structure and functions of discrete titanium-based multinuclear architectures. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Levina A, Crans DC, Lay PA. Advantageous Reactivity of Unstable Metal Complexes: Potential Applications of Metal-Based Anticancer Drugs for Intratumoral Injections. Pharmaceutics 2022; 14:790. [PMID: 35456624 PMCID: PMC9026487 DOI: 10.3390/pharmaceutics14040790] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Injections of highly cytotoxic or immunomodulating drugs directly into the inoperable tumor is a procedure that is increasingly applied in the clinic and uses established Pt-based drugs. It is advantageous for less stable anticancer metal complexes that fail administration by the standard intravenous route. Such hydrophobic metal-containing complexes are rapidly taken up into cancer cells and cause cell death, while the release of their relatively non-toxic decomposition products into the blood has low systemic toxicity and, in some cases, may even be beneficial. This concept was recently proposed for V(V) complexes with hydrophobic organic ligands, but it can potentially be applied to other metal complexes, such as Ti(IV), Ga(III) and Ru(III) complexes, some of which were previously unsuccessful in human clinical trials when administered via intravenous injections. The potential beneficial effects include antidiabetic, neuroprotective and tissue-regenerating activities for V(V/IV); antimicrobial activities for Ga(III); and antimetastatic and potentially immunogenic activities for Ru(III). Utilizing organic ligands with limited stability under biological conditions, such as Schiff bases, further enhances the tuning of the reactivities of the metal complexes under the conditions of intratumoral injections. However, nanocarrier formulations are likely to be required for the delivery of unstable metal complexes into the tumor.
Collapse
Affiliation(s)
- Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Debbie C. Crans
- Department of Chemistry and the Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Peter A. Lay
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Profitt LA, Baxter RHG, Valentine AM. Superstoichiometric Binding of the Anticancer Agent Titanocene Dichloride by Human Serum Transferrin and the Accompanying Lobe Closure. Biochemistry 2022; 61:795-803. [PMID: 35373558 DOI: 10.1021/acs.biochem.1c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Titanocene dichloride (TDC) is an anticancer agent that delivers Ti(IV) into each of the two Fe(III) binding sites of bilobal human serum transferrin (Tf). This protein has been implicated in the selective transport of Ti(IV) to cells. How Ti(IV) might be released from the Tf Fe(III) binding site has remained a question, and crystal structures have raised issues about lobe occupancy and lobe closure in Ti(IV)-loaded Tf, compared with the Fe(III)-loaded form. Here, inductively coupled plasma optical emission spectroscopy reveals that Tf can stabilize toward hydrolytic precipitation more than 2 equiv of Ti, implying superstoichiometric binding beyond the two Fe(III) binding sites. Further studies support the inability of TDC to induce a complete lobe closure of Tf. Fluorescence data for TDC binding at low equivalents of TDC support an initial protein conformational change and lobe closure upon Ti binding, whereas data at higher equivalents support an open lobe configuration. Spectroscopic titration reveals less intense protein-metal electronic transitions as TDC equivalents are increased. Denaturing urea-PAGE gels and small angle X-ray scattering studies support an open lobe conformation. The concentrations of bicarbonate used in some earlier studies are demonstrated here to cause a pH change over time, which may contribute to variation in the apparent molar absorptivity associated with Ti(IV) binding in the Fe binding site. Finally, Fe(III)-bound holo-Tf still stabilizes TDC toward hydrolytic precipitation, a finding that underscores the importance of the interactions of Tf and TDC outside the Fe(III) binding site and suggests possible new pathways of Ti introduction to cells.
Collapse
Affiliation(s)
- Lauren A Profitt
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Richard H G Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Ann M Valentine
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
18
|
Binding of the anticancer Ti(IV) complex phenolaTi to serum proteins: Thermodynamic and kinetic aspects. J Inorg Biochem 2022; 232:111817. [DOI: 10.1016/j.jinorgbio.2022.111817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
|
19
|
Rousselle B, Massot A, Privat M, Dondaine L, Trommenschlager A, Bouyer F, Bayardon J, Ghiringhelli F, Bettaieb A, Goze C, Paul C, Malacea-Kabbara R, Bodio E. Conception and evaluation of fluorescent phosphine-gold complexes: from synthesis to in vivo investigations. ChemMedChem 2022; 17:e202100773. [PMID: 35254001 DOI: 10.1002/cmdc.202100773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Indexed: 11/11/2022]
Abstract
A phosphine gold(I) and phosphine-phosphonium gold(I) complexes bearing a fluorescent coumarin moiety were synthesized and characterized. Both complexes displayed interesting photophysical properties: good molar absorption coefficient, good quantum yield of fluorescence, and ability to be tracked in vitro thanks to two-photon imaging. Their in vitro and in vivo biological properties were evaluated onto cancer cell lines both human and murine and into CT26 tumor-bearing BALB/c mice. They displayed moderate to strong antiproliferative properties and the phosphine-phosphonium gold(I) complex induced significant in vivo anti-cancer effect.
Collapse
Affiliation(s)
- Benjamin Rousselle
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Aurélie Massot
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Malorie Privat
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | - Lucile Dondaine
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB and LIIC, FRANCE
| | | | - Florence Bouyer
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM 1231, FRANCE
| | - Jérôme Bayardon
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - François Ghiringhelli
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, INSERM UMR 1231, FRANCE
| | - Ali Bettaieb
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | - Christine Goze
- Université Bourgogne Franche-Comté: Universite Bourgogne Franche-Comte, ICMUB, FRANCE
| | - Catherine Paul
- EPHE PSL: Ecole Pratique des Hautes Etudes, LIIC, FRANCE
| | | | - Ewen Bodio
- Burgundy University, Institut de Chimie Moleculaire de l'Universite de Bourgogne - UMR CNRS 6302, 9 avenue Alain Savary, BP 47870, 21078, Dijon, FRANCE
| |
Collapse
|
20
|
Simon J, Horstmann Née Gruschka C, Mix A, Stammler A, Oldengott J, Bögge H, Glaser T. Evaluation of the binding mode of a cytotoxic dinuclear nickel complex to two neighboring phosphates of the DNA backbone. Dalton Trans 2022; 51:2863-2875. [PMID: 35098951 DOI: 10.1039/d1dt03813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol-ligands has been designed to bind covalently to two neighboring phosphate diester groups in the backbone of DNA. The dinuclear CuII and NiII complexes bind to DNA resulting in the inhibition of DNA synthesis in PCR experiments and in a cytotoxicity that is stronger for human cancer cells than for human stem cells of the same proliferation rate. These experiments support but cannot prove that the dinuclear complexes bind as intended to two neighboring phosphate ester groups of the DNA backbone. Here, we evaluate the potential binding mode of the cytotoxic dinuclear NiII complex using simple phosphate diester models (dimethyl phosphate and diphenyl phosphate). Depending on the reaction conditions, the phosphate diesters bind to the NiII ions in a bridging or in a terminal coordination mode. The latter occurs by substitution of two coordinated acetates by the phosphate diesters. This reaction has been followed by NMR spectroscopy, which demonstrates that the substitution of acetate by phosphate is thermodynamically strongly favored, while the exchange with excess phosphate is fast on the NMR time scale. The molecular structure of the NiII complex with two coordinated diphenyl phosphates served as a model for the computational evaluation of the binding to the DNA backbone. This combined experimental and computational study suggests a monodentate coordination mode of the DNA phosphate diesters to the NiII ions that is assisted by hydrogen bonds with water ligands.
Collapse
Affiliation(s)
- Jasmin Simon
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Claudia Horstmann Née Gruschka
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Andreas Mix
- Lehrstuhl für Anorganische Chemie und Strukturchemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Anja Stammler
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Jan Oldengott
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Hartmut Bögge
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| |
Collapse
|
21
|
Lamač M, Dunlop D, Lang K, Kubát P. Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Exploring Titanium(IV) Complexes as Potential Antimicrobial Compounds. Antibiotics (Basel) 2022; 11:antibiotics11020158. [PMID: 35203761 PMCID: PMC8868518 DOI: 10.3390/antibiotics11020158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Due to the rapid mutation of pathogenic microorganisms, drug-resistant superbugs have evolved. Antimicrobial-resistant germs may share their resistance genes with other germs, making them untreatable. The search for more combative antibiotic compounds has led researchers to explore metal-based strategies centered on perturbing the bioavailability of essential metals in microbes and examining the therapeutic potential of metal complexes. Given the limited knowledge on the application of titanium(IV), in this work, eight Ti(IV) complexes and some of their corresponding ligands were screened by the Community for Open Antimicrobial Drug Discovery for antimicrobial activity. The compounds were selected for evaluation because of their low cytotoxic/antiproliferative behavior against a human non-cancer cell line. At pH 7.4, these compounds vary in terms of their solution stability and ligand exchange lability; therefore, an assessment of their solution behavior provides some insight regarding the importance of the identity of the metal compound to the antimicrobial therapeutic potential. Only one compound, Ti(deferasirox)2, exhibited promising inhibitory activity against the Gram-positive bacteria methicillin-resistant Staphylococcus aureus and minimal toxicity against human cells. The ability of this compound to undergo transmetalation with labile Fe(III) sources and, as a consequence, inhibit Fe bioavailability and ribonucleotide reductase is evaluated as a possible mechanism for its antibiotic effect.
Collapse
|
23
|
Marloye M, Inam H, Moore CJ, Mertens TR, Ingels A, Koch M, Nowicki MO, Mathieu V, Pritchard JR, Awuah SG, Lawler SE, Meyer F, Dufrasne F, Berger G. Self-assembled ruthenium and osmium nanosystems display a potent anticancer profile by interfering with metabolic activity. Inorg Chem Front 2022; 9:2594-2607. [PMID: 36311556 PMCID: PMC9610622 DOI: 10.1039/d2qi00423b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic ruthenium and osmium complexes auto-assemble to nanosystems that poison mitochondria and show highly promising in vitro and in vivo anticancer activity.
Collapse
Affiliation(s)
- Mickaël Marloye
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Haider Inam
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Connor J. Moore
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Tyler R. Mertens
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Aude Ingels
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Marilin Koch
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michal O. Nowicki
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
- ULB Cancer Research Center (UCRC), Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Justin R. Pritchard
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Sean E. Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Franck Meyer
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Gilles Berger
- Microbiology, Bioorganic & Macromolecular Chemistry Unit, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Scarpi-Luttenauer M, Kyritsakas N, Chaumont A, Mobian P. Chemistry on the Complex: Derivatization of TiO 4 N 2 -Based Complexes and Application to Multi-Step Synthesis. Chemistry 2021; 27:17910-17920. [PMID: 34767287 DOI: 10.1002/chem.202103235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 01/15/2023]
Abstract
The chemistry on octahedral TiO4 N2 -complexes is described. The Ti(IV)-based precursors are composed of two 3,3'-diphenyl-2,2'-biphenolato ligands (1) and one substituted 1,10-phenanthroline ligand (2-5). The application of imine condensation, palladium-catalyzed C-C bond formation or copper-catalysed azide-alkyne cycloaddition allowed the grafting of various new groups onto these species. In particular Sonogashira reactions permitted to observe an excellent conversion of the starting complexes. This systematic study enabled to compile the factors required to preserve the framework of the complexes in the course of a chemical transformation. Thanks to this chemistry realized on the complex, the Ti(1)2 fragment was used as a protecting group to develop a multi-step synthesis of a bis-phenanthroline compound (12), for which the synthesis without this protection failed. Thus, a dinuclear complex [Ti2 (1)4 (12)] was first prepared starting from complex precursor bearing an acetylenic function via a Hay coupling reaction. This was followed by a deprotection step affording 12. Overall, this work illustrates how the Ti(1)2 fragment could be an useful tool for the preparation of unprecedented diimine compounds.
Collapse
Affiliation(s)
- Matthieu Scarpi-Luttenauer
- Laboratoire de Synthèse et fonctions des Architectures Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Nathalie Kyritsakas
- Laboratoire de Tectonique Moléculaire, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Alain Chaumont
- Laboratoire de Modélisation et Simulations Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| | - Pierre Mobian
- Laboratoire de Synthèse et fonctions des Architectures Moléculaires, Université de Strasbourg, CNRS, CMC UMR 7140, 67000, Strasbourg, France
| |
Collapse
|
25
|
Bruni PS, Schürch S. Mass Spectrometric Evaluation of β-Cyclodextrins as Potential Hosts for Titanocene Dichloride. Int J Mol Sci 2021; 22:ijms22189789. [PMID: 34575951 PMCID: PMC8467183 DOI: 10.3390/ijms22189789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Bent metallocene dichlorides (Cp2MCl2, M = Ti, Mo, Nb, …) have found interest as anti-cancer drugs in order to overcome the drawbacks associated with platinum-based therapeutics. However, they suffer from poor hydrolytic stability at physiological pH. A promising approach to improve their hydrolytic stability is the formation of host-guest complexes with macrocyclic structures, such as cyclodextrins. In this work, we utilized nanoelectrospray ionization tandem mass spectrometry to probe the interaction of titanocene dichloride with β-cyclodextrin. Unlike the non-covalent binding of phenylalanine and oxaliplatin to β-cyclodextrin, the mixture of titanocene and β-cyclodextrin led to signals assigned as [βCD + Cp2Ti–H]+, indicating a covalent character of the interaction. This finding is supported by titanated cyclodextrin fragment ions occurring from collisional activation. Employing di- and trimethylated β-cyclodextrins as hosts enabled the elucidation of the influence of the cyclodextrin hydroxy groups on the interaction with guest structures. Masking of the hydroxy groups was found to impair the covalent interaction and enabling the encapsulation of the guest structure within the hydrophobic cavity of the cyclodextrin. Findings are further supported by breakdown curves obtained by gas-phase dissociation of the various complexes.
Collapse
|
26
|
Serrano R, Martinez-Argudo I, Fernandez-Sanchez M, Pacheco-Liñan PJ, Bravo I, Cohen B, Calero R, Ruiz MJ. New titanocene derivative with improved stability and binding ability to albumin exhibits high anticancer activity. J Inorg Biochem 2021; 223:111562. [PMID: 34364140 DOI: 10.1016/j.jinorgbio.2021.111562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 11/15/2022]
Abstract
Titanium-based therapies have emerged as a promising alternative for the treatment of cancer patients, particularly those with cisplatin resistant tumors. Unfortunately, some titanium compounds show stability and solubility problems that have hindered their use in clinical practice. Here, we designed and synthesized a new titanium complex containing a titanocene fragment, a tridentate ligand to improve its stability in water, and a long aliphatic chain, designed to facilitate a non-covalent interaction with albumin, the most abundant protein in human serum. The stability and human serum albumin affinity of the resulting titanium complex was investigated by UV-Vis absorption and fluorescence spectroscopy techniques. Complex [TiCp2{(OOC)2py-O-myr}] (3) (myr = C14H29, py = pyridine) and its analogous [TiCp2{(OOC)2py-OH}] (4), lacking the aliphatic chain, showed improved stability in phosphate saline buffer compared with [TiCp2Cl2] (1). 3 showed a strong interaction with human serum albumin in a 1:1 stoichiometry. The cytotoxic effect of 3 was higher compared to [TiCp2Cl2] in tumor cell lines and showed potential tumor selectivity when assayed in non-tumor human epithelial cells. Finally, 3 showed an antiproliferative effect on cancer cells, decreasing the population in the S phase, and increasing apoptotic cells in a significant manner. All this makes the novel Ti(IV) compound 3 a firm candidate to continue further studies of its therapeutic potential in vitro and in vivo.
Collapse
Affiliation(s)
- Rosario Serrano
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain
| | - Isabel Martinez-Argudo
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Ciencia y Tecnología Agroforestal y Genética, Spain
| | - Miguel Fernandez-Sanchez
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain
| | - Pedro J Pacheco-Liñan
- Universidad de Castilla-La Mancha, Facultad de Farmacia, 02071 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain
| | - Ivan Bravo
- Universidad de Castilla-La Mancha, Facultad de Farmacia, 02071 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain
| | - Boiko Cohen
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Spain; Universidad de Castilla-La Mancha, INAMOL, 45071 Toledo, Spain
| | - Raul Calero
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain.
| | - Maria Jose Ruiz
- Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales y Bioquímica, 45071 Toledo, Spain; Universidad de Castilla-La Mancha, Departamento de Química Orgánica, Inorgánica y Bioquímica, Spain
| |
Collapse
|
27
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Mariani D, Ghasemishahrestani Z, Freitas W, Pezzuto P, Costa-da-Silva AC, Tanuri A, Kanashiro MM, Fernandes C, Horn A, Pereira MD. Antitumoral synergism between a copper(II) complex and cisplatin improves in vitro and in vivo anticancer activity against melanoma, lung and breast cancer cells. Biochim Biophys Acta Gen Subj 2021; 1865:129963. [PMID: 34246719 DOI: 10.1016/j.bbagen.2021.129963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intrinsic resistance of cancer cells is a major concern for the success of chemotherapy, and this undesirable feature stimulates further research into the design of new compounds and/or alternative multiple drug chemotherapy protocols. METHODS In this study, we investigated the antitumoral potential of the coordination compounds [Cu(HPClNOL)Cl]Cl (1), [Fe(HPClNOL)Cl2]NO3(2) and [Mn(HPClNOL)Cl2] (3). Using the human, MCF-7 and A549, and the murine melanoma, B16-F10, cell lines, we determined the cytotoxicity, DCFH oxidation, disruption of mitochondrial membrane potential (ΔΨm), Sub-G1 and TUNEL positive cells, and caspase 8 and 9 activities. Fractional inhibitory concentration (FIC) and xenograft models were also assessed to evaluate the efficacy of antitumoral potential. RESULTS We observed that only complex 1 was cytotoxic. The treatment of cancer cells with complex 1 triggered ROS generation and promoted the disruption of ΔΨm. Complex 1 increased the number of Sub-G1 and TUNEL positive cells, and the measurement of caspase 8 and 9 activity confirmed that apoptosis was triggered by the intrinsic pathway. FIC demonstrated that the combination of complex 1 with cisplatin was additive for the A549 cells whilst it was synergic for MCF-7 and B16-F10. Treatment with complex 1, either alone or combined with cisplatin, reduced tumor growth on xenograft models. CONCLUSIONS The present study brings new clues regarding the mechanism of action of [Cu(HPClNOL)Cl]Cl, either alone or in combination with cisplatin. GENERAL SIGNIFICANCE These results indicate that complex 1, administered either singly or in combination with current drugs, has real potential for use in cancer therapy.
Collapse
Affiliation(s)
- D Mariani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Z Ghasemishahrestani
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil
| | - W Freitas
- Universidade Federal do Sul da Bahia, Teixeira de Freitas, BA, Brazil
| | - P Pezzuto
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - A C Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, United States
| | - A Tanuri
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brazil
| | - M M Kanashiro
- Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - C Fernandes
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - A Horn
- Departamento de Química, Universidade Federal de Santa Catarina, Brazil
| | - M D Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Gaur K, Pérez Otero SC, Benjamín-Rivera JA, Rodríguez I, Loza-Rosas SA, Vázquez Salgado AM, Akam EA, Hernández-Matias L, Sharma RK, Alicea N, Kowaleff M, Washington AV, Astashkin AV, Tomat E, Tinoco AD. Iron Chelator Transmetalative Approach to Inhibit Human Ribonucleotide Reductase. JACS AU 2021; 1:865-878. [PMID: 34240081 PMCID: PMC8243325 DOI: 10.1021/jacsau.1c00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 05/04/2023]
Abstract
Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.
Collapse
Affiliation(s)
- Kavita Gaur
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Sofia C. Pérez Otero
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Josué A. Benjamín-Rivera
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Israel Rodríguez
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Sergio A. Loza-Rosas
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | | | - Eman A. Akam
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| | - Liz Hernández-Matias
- Department
of Biology, University of Puerto Rico Río
Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Rohit K. Sharma
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Nahiara Alicea
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Martin Kowaleff
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Anthony V. Washington
- Department
of Biology, University of Puerto Rico Río
Piedras Campus, San Juan, Puerto Rico 00931, United States
| | - Andrei V. Astashkin
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| | - Elisa Tomat
- Department
of Chemistry and Biochemistry, The University
of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, United States
| | - Arthur D. Tinoco
- Department
of Chemistry, University of Puerto Rico
Río Piedras Campus, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
30
|
Nahari G, Tshuva EY. Synthesis of asymmetrical diaminobis(alkoxo)-bisphenol compounds and their C 1-symmetrical mono-ligated titanium(iv) complexes as highly stable highly active antitumor compounds. Dalton Trans 2021; 50:6423-6426. [PMID: 33949509 PMCID: PMC8130176 DOI: 10.1039/d1dt00219h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Asymmetrical 2,2'-((ethane-1,2-diylbis((2-hydroxyethyl)azanediyl))bis(methylene))diphenol substituted compounds and their C1-symmetrical diaminobis(phenolato)-bis(alkoxo) titanium(iv) complexes were synthesized, with one symmetrical analogue. X-ray crystallography corroborated tight ligand binding. Different substitutions on the two aromatic rings enabled fine-tuning of the complex properties, giving enhanced solubility, high anticancer activity (IC50 < 4 μM), and significant hydrolytic stability.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of JerusalemJerusalem 9190401Israel
| | - Edit Y. Tshuva
- The Institute of Chemistry, The Hebrew University of JerusalemJerusalem 9190401Israel
| |
Collapse
|
31
|
Nahari G, Hoffman RE, Tshuva EY. From medium to endoplasmic reticulum: Tracing anticancer phenolato titanium(IV) complex by 19F NMR detection. J Inorg Biochem 2021; 221:111492. [PMID: 34051630 DOI: 10.1016/j.jinorgbio.2021.111492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 05/12/2021] [Indexed: 01/12/2023]
Abstract
Titanium(IV) complexes of diaminobis(phenolato)-bis(alkoxo) ligands are promising anticancer drugs, showing marked in-vivo efficacy with no toxic side-effects in mice, hence, it is of interest to elucidate their mechanism of action. Herein, we employed a fluoro-substituted derivative, FenolaTi, for mechanistic analysis of the active species and its cellular target by quantitative 19F NMR detection to reveal its biodistribution and reactivity in extracellular and intracellular matrices. Upon administration to the serum-containing medium, FenolaTi interacted with bovine serum albumin. 20 h post administration, the cellular accumulation of FenolaTi derivatives was estimated as 37% of the administered compound, in a concentration three orders-of-magnitude higher than the administered dose, implying that active membrane transportation facilitates cellular penetration. An additional 19% of the administered dose that was detected in the extracellular environment had originated from post-apoptotic cells. In the cell, interaction with cellular proteins was detected. Although some intact Ti(IV) complex localized in the nucleus, no signals for isolated DNA fractions were detected and no reactivity with nuclear proteins was observed. Interestingly, higher accumulation of FenolaTi-derived compounds in the endoplasmic reticulum (ER) and interaction with proteins therein were detected, supporting the role of the ER as a possible target for cytotoxic bis(phenolato)-bis(alkoxo) Ti(IV) complexes.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Roy E Hoffman
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
32
|
Terra WDS, Bull ÉS, Morcelli SR, Moreira RR, Maciel LLF, Almeida JCDA, Kanashiro MM, Fernandes C, Horn A. Antitumor activity via apoptotic cell death pathway of water soluble copper(II) complexes: effect of the diamino unit on selectivity against lung cancer NCI-H460 cell line. Biometals 2021; 34:661-674. [PMID: 33813688 DOI: 10.1007/s10534-021-00302-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
The cytotoxicity against five human tumor cell lines (THP-1, U937, Molt-4, Colo-205 and NCI-H460) of three water soluble copper(II) coordination compounds containing the ligands 3,3'-(ethane-1,2-diylbis(azanediyl))dipropanamide (BCEN), 3,3'-(piperazine-1,4-diyl)dipropanamide (BPAP) or 3,3'-and (1,4-diazepane-1,4-diyl)dipropanamide (BPAH) are reported in this work. The ligands contain different diamine units (ethylenediamine, piperazine or homopiperazine) and two propanamide units attached to the diamine centers, resulting in N2O2 donor sets. The complex containing homopiperazine unit presented the best antiproliferative effect and selectivity against lung cancer cell line NCI-H460, showing inhibitory concentration (IC50) of 58 μmol dm-3 and Selectivity Index (SI) > 3.4. The mechanism of cell death promoted by the complex was investigated by Sub-G1 cell population analysis and annexin V and propidium iodide (PI) labeling techniques, suggesting that the complex promotes death by apoptosis. Transmission electron microscopy investigations are in agreement with the results presented by mitochondrial membrane potential analysis and also show the impairment of other organelles, including endoplasmic reticulum.
Collapse
Affiliation(s)
- Wagner da S Terra
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Instituto Federal Fluminense, Campos dos Goytacazes, RJ, 28030-130, Brazil
| | - Érika S Bull
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Instituto Federal Fluminense, Campos dos Goytacazes, RJ, 28030-130, Brazil
| | - Samila R Morcelli
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Secretaria de Educação do Espírito Santo, Mimoso Do Sul, ES, 29400-000, Brazil
| | - Rafaela R Moreira
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Centro Federal de Educação Tecnológica, Nova Friburgo, RJ, 28635-080, Brazil
| | - Leide Laura F Maciel
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - João Carlos de A Almeida
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Milton M Kanashiro
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
33
|
Antifungal promising agents of zinc(II) and copper(II) derivatives based on azole drug. J Inorg Biochem 2021; 219:111401. [PMID: 33756392 DOI: 10.1016/j.jinorgbio.2021.111401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
A series of new metal complexes, [Zn(KTZ)2(Ac)2]·H2O (1), [Zn(KTZ)2Cl2]·0.4CH3OH (2), [Zn(KTZ)2(H2O)(NO3)](NO3) (3), [Cu(KTZ)2(Ac)2]·H2O (4), [Cu(KTZ)2Cl2]·3.2H2O (5), [Cu(KTZ)2(H2O)(NO3)](NO3)·H2O (6), were synthesized by a reaction of ketoconazole (KTZ) with their respective zinc or copper salts under mild conditions. Similarly, six corresponding metal-CTZ (clotrimazole) complexes [Zn(CTZ)2(Ac)2]·4H2O (7), [Zn(CTZ)2Cl2] (8), [Zn(CTZ)2(H2O)(NO3)](NO3)·4H2O (9), [Cu(CTZ)2(Ac)2]·H2O (10), [Cu(CTZ)2Cl2]·2H2O (11), [Cu(CTZ)2(H2O)(NO3)](NO3)·2H2O (12), were obtained. These metal complexes were characterized by elemental analyses, molar conductivity, 1H and 13C{1H} nuclear magnetic resonance, UV/Vis, and infrared spectroscopies. Further, the crystal structure for complexes 7 and 10 was determined by single-crystal X-ray diffraction. The antifungal activity of these metal complexes was evaluated against three fungal species of medical relevance: Candida albicans, Cryptococcus neoformans, and Sporothrix brasiliensis. Complexes 1 and 3 exhibited the greatest antifungal activity with a broad spectrum of action at low concentrations and high selectivity. Some morphological changes induced by these metal complexes in S. brasiliensis cells included yeast-hyphae conversion, an increase in cell size and cell wall damage. The strategy of coordination of clinic drugs (KTZ and CTZ) to zinc and copper was successful, since the corresponding metal complexes were more effective than the parent drug. Particularly, the promising antifungal activities displayed by Zn-KTZ complexes make them potential candidates for the development of an alternative drug to treat mycoses.
Collapse
|
34
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
35
|
Norouzi P, Ghiasi R. Theoretical understanding the effects of external electric field on the hydrolysis of anticancer drug titanocene dichloride. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1781272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Parva Norouzi
- Department of Chemistry, Faculty of Basic Science, Arak Branch, Islamic Azad University, Arak, Iran
| | - Reza Ghiasi
- Department of Chemistry, Faculty of Basic Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
36
|
Mahawar P, Wasson MK, Sharma MK, Jha CK, Mukherjee G, Vivekanandan P, Nagendran S. A Prelude to Biogermylene Chemistry*. Angew Chem Int Ed Engl 2020; 59:21377-21381. [PMID: 33462912 DOI: 10.1002/anie.202004551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 11/07/2022]
Abstract
The biological applications of germylenes remain unrealised owing to their unstable nature. We report the isolation of air-, water-, and culture-medium-stable germylene DPMGeOH (3; DPM=dipyrromethene ligand) and its potential biological application. Compound 3 exhibits antiproliferative effects comparable to that of cisplatin in human cancer cells. The cytotoxicity of compound 3 on normal epithelial cells is minimal and is similar to that of the currently used anticancer drugs. These findings provide a framework for a plethora of biological studies using germylenes and have important implications for low-valent main-group chemistry.
Collapse
Affiliation(s)
- Pritam Mahawar
- Department of Chemistry, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Mishi Kaushal Wasson
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India.,Amity Institute of Virology and Immunology, Amity University, Noida, Sector 125, Uttar Pradesh, 201303, India
| | - Mahendra Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Chandan Kumar Jha
- Department of Chemistry, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Goutam Mukherjee
- Department of Chemistry, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| | - Selvarajan Nagendran
- Department of Chemistry, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
37
|
Mahawar P, Wasson MK, Sharma MK, Jha CK, Mukherjee G, Vivekanandan P, Nagendran S. A Prelude to Biogermylene Chemistry**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pritam Mahawar
- Department of Chemistry Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| | - Mishi Kaushal Wasson
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
- Amity Institute of Virology and Immunology Amity University Noida, Sector 125 Uttar Pradesh 201303 India
| | - Mahendra Kumar Sharma
- Department of Chemistry Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| | - Chandan Kumar Jha
- Department of Chemistry Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| | - Goutam Mukherjee
- Department of Chemistry Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| | - Selvarajan Nagendran
- Department of Chemistry Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas New Delhi 110016 India
| |
Collapse
|
38
|
Nahari G, Braitbard O, Larush L, Hochman J, Tshuva EY. Effective Oral Administration of an Antitumorigenic Nanoformulated Titanium Complex. ChemMedChem 2020; 16:108-112. [PMID: 32657024 DOI: 10.1002/cmdc.202000384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Orally administered anticancer drugs facilitate treatment, but the acidic conditions in the stomach often challenge their availability. PhenolaTi is a TiIV -based nontoxic anticancer drug with marked in-vivo efficacy. We report that nanoformulation protects phenolaTi from decomposition in stomach-like conditions. This is evidenced by similar NMR characteristics and similar in-vitro cytotoxicity toward murine (CT-26) and human (HT-29) colon cancer cells before and after incubation of nanoformulated phenolaTi (phenolaTi-F) at pH 2, unlike results with the unformulated form of the complex. Furthermore, administration of phenolaTi-F in animal drinking water revealed a notable inhibition of tumor growth in Balb/c and immune-deficient (Nude) mice inoculated with CT-26 and HT-29 cells, respectively. In-vivo efficacy was at least similar to that of the corresponding intraperitoneal treatment with phenolaTi-F and the clinically employed oral drug, capecitabine. No body weight loss or clinical signs of toxicity were evident in the phenolaTi-F-treated animals. These findings demonstrate a new convenient mode of cancer treatment through oral administration by safe titanium-based drugs.
Collapse
Affiliation(s)
- Gilad Nahari
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Liraz Larush
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Edit Y Tshuva
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
39
|
Miller M, Mellul A, Braun M, Sherill-Rofe D, Cohen E, Shpilt Z, Unterman I, Braitbard O, Hochman J, Tshuva EY, Tabach Y. Titanium Tackles the Endoplasmic Reticulum: A First Genomic Study on a Titanium Anticancer Metallodrug. iScience 2020; 23:101262. [PMID: 32585595 PMCID: PMC7322074 DOI: 10.1016/j.isci.2020.101262] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 12/23/2022] Open
Abstract
PhenolaTi is an advanced non-toxic anticancer chemotherapy; this inert bis(phenolato)bis(alkoxo) Ti(IV) complex demonstrates the intriguing combination of high and wide efficacy with no detected toxicity in animals. Here we unravel the cellular pathways involved in its mechanism of action by a first genome study on Ti(IV)-treated cells, using an attuned RNA sequencing-based available technology. First, phenolaTi induced apoptosis and cell-cycle arrest at the G2/M phase in MCF7 cells. Second, the transcriptome of the treated cells was analyzed, identifying alterations in pathways relating to protein translation, DNA damage, and mitochondrial eruption. Unlike for common metallodrugs, electrophoresis assay showed no inhibition of DNA polymerase activity. Reduced in vitro cytotoxicity with added endoplasmic reticulum (ER) stress inhibitor supported the ER as a putative cellular target. Altogether, this paper reveals a distinct ER-related mechanism by the Ti(IV) anticancer coordination complex, paving the way for wider applicability of related techniques in mechanistic analyses of metallodrugs.
Collapse
Affiliation(s)
- Maya Miller
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anna Mellul
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Maya Braun
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Emiliano Cohen
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Zohar Shpilt
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ori Braitbard
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Jacob Hochman
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Edit Y Tshuva
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research-Israel-Canada, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| |
Collapse
|
40
|
Reilley DJ, Fuller JT, Nechay MR, Victor M, Li W, Ruberry JD, Mujika JI, Lopez X, Alexandrova AN. Toxic and Physiological Metal Uptake and Release by Human Serum Transferrin. Biophys J 2020; 118:2979-2988. [PMID: 32497515 PMCID: PMC7300305 DOI: 10.1016/j.bpj.2020.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/03/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022] Open
Abstract
An atomistic understanding of metal transport in the human body is critical to anticipate the side effects of metal-based therapeutics and holds promise for new drugs and drug delivery designs. Human serum transferrin (hTF) is a central part of the transport processes because of its ubiquitous ferrying of physiological Fe(III) and other transition metals to tightly controlled parts of the body. There is an atomistic mechanism for the uptake process with Fe(III), but not for the release process, or for other metals. This study provides initial insight into these processes for a range of transition metals-Ti(IV), Co(III), Fe(III), Ga(III), Cr(III), Fe(II), Zn(II)-through fully atomistic, extensive quantum mechanical/discrete molecular dynamics sampling and provides, to our knowledge, a new technique we developed to calculate relative binding affinities between metal cations and the protein. It identifies protonation of Tyr188 as a trigger for metal release rather than protonation of Lys206 or Lys296. The study identifies the difficulty of metal release from hTF as potentially related to cytotoxicity. Simulations identify a few critical interactions that stabilize the metal binding site in a flexible, nuanced manner.
Collapse
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jack T Fuller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Michael R Nechay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Marie Victor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Institut Lumire Matire, Villeurbanne, France
| | - Wei Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Josiah D Ruberry
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California
| | - Jon I Mujika
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Xabier Lopez
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia, International Physics Center, Donostia, Euskadi, Spain
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
41
|
Wang Y, García‐Peñas A, Gómez‐Ruiz S, Stadler FJ. Surrounding Interactions on Phase Transition Temperature Promoted by Organometallic Complexes in Functionalized Poly(
N
‐isopropylacrylamide‐
co
‐dopamine methacrylamide) Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yu Wang
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
| | - Alberto García‐Peñas
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen University Shenzhen 518060 P. R. China
| | - Santiago Gómez‐Ruiz
- COMET‐NANO GroupDepartamento de Biología y GeologíaFísica y Química InorgánicaESCETUniversidad Rey Juan Carlos Calle Tulipán s/n Móstoles Madrid 28933 Spain
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdong Research Center for Interfacial Engineering of Functional MaterialsNanshan District Key Laboratory for Biopolymers and Safety EvaluationShenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
42
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
43
|
Woods JJ, Lovett J, Lai B, Harris HH, Wilson JJ. Redox Stability Controls the Cellular Uptake and Activity of Ruthenium‐Based Inhibitors of the Mitochondrial Calcium Uniporter (MCU). Angew Chem Int Ed Engl 2020; 59:6482-6491. [DOI: 10.1002/anie.202000247] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - James Lovett
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Barry Lai
- Advanced Photon Source X-ray Science Division Argonne National Laboratory Argonne IL 60439 USA
| | - Hugh H. Harris
- Department of Chemistry The University of Adelaide Adelaide SA 5005 Australia
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
44
|
Reilley DJ, Hennefarth MR, Alexandrova AN. The Case for Enzymatic Competitive Metal Affinity Methods. ACS Catal 2020; 10:2298-2307. [PMID: 34012720 PMCID: PMC8130888 DOI: 10.1021/acscatal.9b04831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- David J Reilley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Matthew R Hennefarth
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
45
|
Fernandez-Vega L, Ruiz Silva VA, Domínguez-González TM, Claudio-Betancourt S, Toro-Maldonado RE, Capre Maso LC, Ortiz KS, Pérez-Verdejo JA, González JR, Rosado-Fraticelli GT, Meléndez FP, Betancourt Santiago FM, Rivera-Rivera DA, Navarro CM, Bruno Chardón AC, Vera AO, Tinoco AD. Evaluating Ligand Modifications of the Titanocene and Auranofin Moieties for the Development of More Potent Anticancer Drugs. INORGANICS 2020; 8. [PMID: 34046448 PMCID: PMC8152503 DOI: 10.3390/inorganics8020010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over time platinum-based anticancer drugs have dominated the market, but their side effects significantly impact the quality of life of patients. Alternative treatments are being developed all over the world. The titanocene and auranofin families of compounds, discovered through an empirical search for other metal-based therapeutics, hold tremendous promise to improve the outcomes of cancer treatment. Herein we present a historical perspective of these compounds and review current efforts focused on the evolution of their ligands to improve their physiological solution stability, cancer selectivity, and antiproliferative performance, guided by a clear understanding of the coordination chemistry and aqueous speciation of the metal ions, of the cytotoxic mechanism of action of the compounds, and the external factors that limit their therapeutic potential. Newer members of these families of compounds and their combination in novel bimetallic complexes are the result of years of scientific research. We believe that this review can have a positive impact in the development and understanding of the metal-based drugs of gold, titanium, and beyond.
Collapse
|
46
|
Šimková L, Svoboda J, Pinkas J, Skoupilová H, Hrstka R, Dunlop D, Lamač M, Gyepes R, Ludvík J. Electrochemical Study of Highly Substituted Titanocene Dihalides. ELECTROANAL 2019. [DOI: 10.1002/elan.201900464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ludmila Šimková
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Jan Svoboda
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Jiří Pinkas
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Hana Skoupilová
- Regional Centre for Applied and Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied and Molecular OncologyMasaryk Memorial Cancer Institute Žlutý kopec 7 65653 Brno Czech Republic
| | - David Dunlop
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Martin Lamač
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Róbert Gyepes
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
- Department of Inorganic ChemistryCharles University Hlavova 2030 128 43 Prague 2 Czech Republic
| | - Jiří Ludvík
- J. Heyrovský Institute of Physical ChemistryCzech Academy of Sciences Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| |
Collapse
|
47
|
|
48
|
Development and future prospects of selective organometallic compounds as anticancer drug candidates exhibiting novel modes of action. Eur J Med Chem 2019; 175:269-286. [PMID: 31096151 DOI: 10.1016/j.ejmech.2019.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/30/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023]
|
49
|
Abid M, Nouch R, Bradshaw TD, Lewis W, Woodward S. Tripodal O-N-O Bis
-Phenolato Amine Titanium(IV) Complexes Show High in vitro Anti-Cancer Activity. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammed Abid
- Department of Chemistry; College of Science; University of Anbar; Western side of Ramadi City Anbarshire Republic of Iraq
- GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Triumph Road Nottingham NG7 2TU United Kingdom
| | - Ryan Nouch
- GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Triumph Road Nottingham NG7 2TU United Kingdom
| | - Tracey D. Bradshaw
- School of Pharmacy, Centre for Biomolecular Sciences; College of Science; University Park Nottingham NG7 2RD United Kingdom
| | - William Lewis
- GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Triumph Road Nottingham NG7 2TU United Kingdom
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry; University of Nottingham; Triumph Road Nottingham NG7 2TU United Kingdom
| |
Collapse
|
50
|
Konkankit CC, King AP, Knopf KM, Southard TL, Wilson JJ. In Vivo Anticancer Activity of a Rhenium(I) Tricarbonyl Complex. ACS Med Chem Lett 2019; 10:822-827. [PMID: 31098006 DOI: 10.1021/acsmedchemlett.9b00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The rhenium(I) complex fac-[Re(CO)3(2,9-dimethyl-1,10-phenanthroline)(OH2)]+ (1) was previously shown to exhibit potent in vitro anticancer activity in a manner distinct from conventional platinum-based drugs (J. Am. Chem. Soc. 2017, 139, 14302-14314). In this study, we report further efforts to explore its aqueous speciation and antitumor activity. The cellular uptake of 1 was measured in A2780 and cisplatin-resistant A2780CP70 ovarian cancer cells by inductively coupled plasma mass spectrometry, revealing similar uptake efficiency in both cell lines. High accumulation in the mitochondria was observed, contradicting prior fluorescence microscopy studies. The luminescence of 1 is highly dependent on pH and coordination environment, making fluorescence microscopy somewhat unreliable for determining compound localization. The in vivo anticancer activity of 1 was evaluated in mice bearing patient-derived ovarian cancer tumor xenografts. These studies conclusively show that 1 is capable of inhibiting tumor growth, providing further credibility for the use of these compounds as anticancer agents.
Collapse
Affiliation(s)
- Chilaluck C. Konkankit
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kevin M. Knopf
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Teresa L. Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|