1
|
Chen JJ, Wang SD, Ding XL, He SG. Role of H 2O Adsorption in CO Oxidation over Cerium-Oxide Cluster Anions (CeO 2) nO - ( n = 1-4). J Phys Chem Lett 2024; 15:9078-9083. [PMID: 39196996 DOI: 10.1021/acs.jpclett.4c02045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Water (H2O) is ubiquitous in the environment and inevitably participates in many surface reactions, including CO oxidation. Acquiring a fundamental understanding of the roles of H2O molecules in CO oxidation poses a challenging but pivotal task in real-life catalysis. Herein, benefiting from state-of-the-art mass-spectrometric experiments and quantum chemical calculations, we identified that the dissociation of a H2O molecule on each of the cerium oxide cluster anions (CeO2)nO- (n = 1-4) at room temperature can create a new atomic oxygen radical (O•-) that then oxidizes a CO molecule. The size-dependent reactivity of H2O-mediated CO oxidation on (CeO2)nO- clusters was rationalized by the orbital compositions (O2p) and energies of the lowest unoccupied molecular orbitals of active O•- radicals modified by H2O dissociation. Our findings not only provide new insights into H2O-mediated CO oxidation but also demonstrate the importance of H2O in modulating the reactivity of the O•- radicals.
Collapse
Affiliation(s)
- Jiao-Jiao Chen
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
| | - Si-Dun Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing 102206, China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding 071003, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Zhao Z, Wang R, Han D, Ling X, Chen Q. Molecular and Dissociative Adsorbed Water Concentration and Surface Protonic Conduction in Nanocrystalline TiO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406826. [PMID: 39226545 DOI: 10.1002/smll.202406826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Surface protonic conduction in porous nanocrystalline oxides is commonly involved in catalytic processes. The configuration of surface adsorbed water on oxides plays a crucial role in surface protonic conduction. However, studies on the impact of complex surface adsorbed water configuration on the surface water concentration and diffusivity remain limited, and hinder an in-depth understanding of surface proton transport mechanisms, and the design of better surface proton conductors. Here, in situ Raman spectroscopy is utilized to quantitatively identify the contribution of dissociative and molecular adsorbed water components on porous nanocrystalline TiO2 surfaces between 25 and 200 °C. The variations in molecular and dissociative adsorbed water concentration agree with the predominant surface proton conduction mechanisms at three different temperature stages. From 40 to 125 °C, the reduced coverage of molecular adsorbed water layer results in the decreasing proton diffusivity. Water dissociation on the nanocrystalline TiO2 surface is easier in wet N2 than in wet O2, resulting in higher proton conductivity in wet N2; while the surface proton diffusivities in these two atmospheres are similar. The in situ spectroscopy technique enables the improvement of surface proton conducting oxides through quantitative evaluation and modulation of the surface proton concentration and diffusivity.
Collapse
Affiliation(s)
- Zihan Zhao
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Donglin Han
- College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiao Ling
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qianli Chen
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Wei K, Wang X, Ge J. Towards bridging thermo/electrocatalytic CO oxidation: from nanoparticles to single atoms. Chem Soc Rev 2024; 53:8903-8948. [PMID: 39129479 DOI: 10.1039/d3cs00868a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Proton exchange membrane fuel cells (PEMFCs), as a feasible alternative to replace the traditional fossil fuel-based energy converter, contribute significantly to the global sustainability agenda. At the PEMFC anode, given the high exchange current density, Pt/C is deemed the catalyst-of-choice to ensure that the hydrogen oxidation reaction (HOR) occurs at a sufficiently fast pace. The high performance of Pt/C, however, can only be achieved under the premise that high purity hydrogen is used. For instance, in the presence of trace level carbon monoxide, a typical contaminant during H2 production, Pt is severely deactivated by CO surface blockage. Addressing the poisoning issue necessitates for either developing anti-poisoning electrocatalysts or using pre-purified H2 obtained via a thermo-catalysis route. In other words, the CO poisoning issue can be addressed by either thermal-catalysis from the H2 supply side or electrocatalysis at the user side, respectively. In spite of the distinction between thermo-catalysis and electro-catalysis, there are high similarities between the two routes. Essentially, a reduction in the kinetic barrier for the combination of CO to oxygen containing intermediates is required in both techniques. Therefore, bridging electrocatalysis and thermocatalysis might offer new insight into the development of cutting edge catalysts to solve the poisoning issue, which, however, stands as an underexplored frontier in catalysis science. This review provides a critical appraisal of the recent advancements in preferential CO oxidation (CO-PROX) thermocatalysts and anti-poisoning HOR electrocatalysts, aiming to bridge the gap in cognition between the two routes. First, we discuss the differences in thermal/electrocatalysis, CO oxidation mechanisms, and anti-CO poisoning strategies. Second, we comprehensively summarize the progress of supported and unsupported CO-tolerant catalysts based on the timeline of development (nanoparticles to clusters to single atoms), focusing on metal-support interactions and interface reactivity. Third, we elucidate the stability issue and theoretical understanding of CO-tolerant electrocatalysts, which are critical factors for the rational design of high-performance catalysts. Finally, we underscore the imminent challenges in bridging thermal/electrocatalytic CO oxidation, with theory, materials, and the mechanism as the three main weapons to gain a more in-depth understanding. We anticipate that this review will contribute to the cognition of both thermocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Kai Wei
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xian Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Junjie Ge
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang C, Li Y, Li Z, Meng C, Ma Y, Sun X, Ning P, Li K, Wang F. Design Strategies for High-Performance NH 3-SCO Catalysts: Identifying and Modulating Direct Anchoring Sites for Ag on TiO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39155565 DOI: 10.1021/acs.est.4c06499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Ammonia (NH3) slip from diesel vehicle aftertreatment systems and internal combustion engines fueled by NH3 or NH3/H2 poses serious environmental problems. Ag-based catalysts are widely used for the selective catalytic oxidation of NH3 to N2 (NH3-SCO), and their performance is greatly dependent on the state of Ag, which is influenced by the anchoring sites on the support. Despite efforts to identify the direct anchoring sites of metal atoms on TiO2, conflicting views persist. Here, we compared the correlation between Ag dispersion and the content of hydroxyl (OH) groups or defects on TiO2 and conducted density functional theory (DFT) calculations, and the results confirmed that the surface OH groups of TiO2 serve as the direct anchoring sites for Ag. By modulating the OH group content through thermal induction, the optimal OH group content on TiO2-800 resulted in more metallic Ag nanoparticles (Ag0 NPs) in larger sizes, leading to the development of an excellent NH3-SCO catalyst. Moreover, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), kinetic studies, and DFT calculations suggested that more Ag0 NPs in larger sizes on 10Ag/TiO2-800 were conducive to O2 activation and NH3 dissociation. Our findings provide new insights for designing efficient NH3-SCO catalysts, and OH groups as direct anchoring sites could be extended to other metals and supports for the rational design of catalysts.
Collapse
Affiliation(s)
- Chunxue Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yuan Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| | - Zhao Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Caixia Meng
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yixing Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| | - Xin Sun
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| | - Kai Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- National Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, 650500, China
| |
Collapse
|
5
|
Yang L, Huang M, Feng N, Wang M, Xu J, Jiang Y, Ma D, Deng F. Unraveling the atomic structure and dissociation of interfacial water on anatase TiO 2 (101) under ambient conditions with solid-state NMR spectroscopy. Chem Sci 2024; 15:11902-11911. [PMID: 39092109 PMCID: PMC11290427 DOI: 10.1039/d4sc02768j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Anatase TiO2 is a widely used component in photo- and electro-catalysts for water splitting, and the (101) facet of anatase TiO2 is the most commonly exposed surface. A detailed understanding of the behavior of H2O on this surface could provide fundamental insights into the catalytic mechanism. This, however, is challenging due to the complexity of the interfacial environments, the high mobility of interfacial H2O, and the interference from outer-layer H2O. Herein, we investigate the H2O/TiO2 interface using advanced solid-state NMR techniques. The atomic-level structures of surface O sites, OH groups, and adsorbed H2O have been revealed and the detailed interactions among them are identified on the (101) facet of anatase TiO2. By following the quantitative evolution of surface O and OH sites along with H2O loading, it is found that more than 40% of the adsorbed water spontaneously dissociated under ambient conditions on the TiO2 surface at a loading of 0.3 mmol H2O/g, due to the delicate interplay between water-surface and water-water interactions. Our study highlights the importance of understanding the atomic-level structures of H2O on the surface of TiO2 in catalytic reactions. Such knowledge can promote the design of more efficient catalytic systems for renewable energy production involving activation of water molecules.
Collapse
Affiliation(s)
- Longxiao Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Min Huang
- School of Physics, Hubei University Wuhan 430062 P. R. China
| | - Ningdong Feng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Meng Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University Beijing P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences Wuhan 430071 Beijing 100049 P. R. China
| |
Collapse
|
6
|
Kobayashi T, Ikeda T, Nakayama A. Long-range proton and hydroxide ion transfer dynamics at the water/CeO 2 interface in the nanosecond regime: reactive molecular dynamics simulations and kinetic analysis. Chem Sci 2024; 15:6816-6832. [PMID: 38725504 PMCID: PMC11077578 DOI: 10.1039/d4sc01422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
The structural properties, dynamical behaviors, and ion transport phenomena at the interface between water and cerium oxide are investigated by reactive molecular dynamics (MD) simulations employing neural network potentials (NNPs). The NNPs are trained to reproduce density functional theory (DFT) results, and DFT-based MD (DFT-MD) simulations with enhanced sampling techniques and refinement schemes are employed to efficiently and systematically acquire training data that include diverse hydrogen-bonding configurations caused by proton hopping events. The water interfaces with two low-index surfaces of (111) and (110) are explored with these NNPs, and the structure and long-range proton and hydroxide ion transfer dynamics are examined with unprecedented system sizes and long simulation times. Various types of proton hopping events at the interface are categorized and analyzed in detail. Furthermore, in order to decipher the proton and hydroxide ion transport phenomena along the surface, a counting analysis based on the semi-Markov process is formulated and applied to the MD trajectories to obtain reaction rates by considering the transport as stochastic jump processes. Through this model, the coupling between hopping events, vibrational motions, and hydrogen bond networks at the interface are quantitatively examined, and the high activity and ion transport phenomena at the water/CeO2 interface are unequivocally revealed in the nanosecond regime.
Collapse
Affiliation(s)
- Taro Kobayashi
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Tatsushi Ikeda
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, The University of Tokyo Tokyo 113-8656 Japan
| |
Collapse
|
7
|
Jiang L, Li K, Porter WN, Wang H, Li G, Chen JG. Role of H 2O in Catalytic Conversion of C 1 Molecules. J Am Chem Soc 2024; 146:2857-2875. [PMID: 38266172 DOI: 10.1021/jacs.3c13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Due to their role in controlling global climate change, the selective conversion of C1 molecules such as CH4, CO, and CO2 has attracted widespread attention. Typically, H2O competes with the reactant molecules to adsorb on the active sites and therefore inhibits the reaction or causes catalyst deactivation. However, H2O can also participate in the catalytic conversion of C1 molecules as a reactant or a promoter. Herein, we provide a perspective on recent progress in the mechanistic studies of H2O-mediated conversion of C1 molecules. We aim to provide an in-depth and systematic understanding of H2O as a promoter, a proton-transfer agent, an oxidant, a direct source of hydrogen or oxygen, and its influence on the catalytic activity, selectivity, and stability. We also summarize strategies for modifying catalysts or catalytic microenvironments by chemical or physical means to optimize the positive effects and minimize the negative effects of H2O on the reactions of C1 molecules. Finally, we discuss challenges and opportunities in catalyst design, characterization techniques, and theoretical modeling of the H2O-mediated catalytic conversion of C1 molecules.
Collapse
Affiliation(s)
- Lei Jiang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
- Southwest United Graduate School, Kunming 650000, Yunnan, China
| | - William N Porter
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Du T, Meng R, Qian L, Wang Z, Li T, Wu L. Formation of extracellular polymeric substances corona on TiO 2 nanoparticles: Roles of crystalline phase and exposed facets. WATER RESEARCH 2024; 249:120990. [PMID: 38086209 DOI: 10.1016/j.watres.2023.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Nanoparticles (NPs) in the environment can interact with macromolecules in the surrounding environment to form eco-corona on their surfaces, which in turn affects the environmental fate and toxicity of nanoparticles. Wastewater treatment plants containing large amounts of microbial extracellular polymeric substances (EPS) are an important source of NPs into the environment, where the formation of EPS coronas on NPs is critical. However, it remains unclear how the crystalline phase and exposed facets, which are intrinsic properties of NPs, affect the formation of EPS coronas on NPs. This study investigated the formation of EPS corona on three TiO2 NPs (representing the most widely used engineered NPs) with different crystalline phases and exposed facets. The protein type and abundance in EPS coronas on TiO2 NPs varied depending on the crystalline phase and exposed facets. Anatase with {101} facets and {001} facets preferred to adsorb proteins with lower molecular weights and higher H-bonding relevant amino acids, respectively, while EPS corona on rutile with {110} facets had proteins with higher hydrophobicity. In addition, the selective adsorption of proteins was primarily determined by steric hindrance, hydrogen bonding, and hydrophobic interaction between TiO2 NPs and proteins, which were affected by changes in aggregation state, surface hydroxyl density, and hydrophobicity of TiO2 NPs induced by crystalline phase and exposed facets. Moreover, crystalline phase and exposed facets-induced EPS corona changes altered the aggregation state and oxidation potential of TiO2-EPS corona complexes. These findings emphasize the important role of crystalline phase and exposed facets in the environmental behavior of nanoparticles and may provide insights into the safe design of nanoparticles.
Collapse
Affiliation(s)
- Tingting Du
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Ru Meng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Liwen Qian
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ziyan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Tong Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
9
|
Li YB, Si R, Wen B, Wei XL, Seriani N, Yin WJ, Gebauer R. The Role of Water Molecules on Polaron Behavior at Rutile (110) Surface: A Constrained Density Functional Theory Study. J Phys Chem Lett 2024; 15:1019-1027. [PMID: 38253014 DOI: 10.1021/acs.jpclett.3c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the behavior of a polaron in contact with water is of significant importance for many photocatalytic applications. We investigated the influence of water on the localization and transport properties of polarons at the rutile (110) surface by constrained density functional theory. An excess electron at a dry surface favors the formation of a small polaron at the subsurface Ti site, with a preferred transport direction along the [001] axis. As the surface is covered by water, the preferred spatial localization of the polarons is moved from the subsurface to the surface. When the water coverage exceeds half a monolayer, the preferred direction of polaron hopping is changed to the [110] direction toward the surface. This characteristic behavior is related to the Ti3d-orbital occupations and crystal field splitting induced by different distorted structures under water coverage. Our work describes the reduced sites that might eventually play a role in photocatalysis for rutile (110) surfaces in a water environment.
Collapse
Affiliation(s)
- Yun-Bo Li
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Rutong Si
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| | - Bo Wen
- School of Physics and Electronics, Henan University, Kaifeng 475001, China
| | - Xiao-Lin Wei
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Nicola Seriani
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ralph Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
10
|
Yang MY, Wu XP. Level-Shifted Embedded Cluster Method for Modeling the Chemistry of Metal Oxides. J Chem Theory Comput 2024. [PMID: 38300767 DOI: 10.1021/acs.jctc.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The embedded cluster method has been used extensively in the study of the chemical and physical properties of metal oxides. This method has been a popular tool due to its relatively high accuracy and low computational cost. An even more promising option may entail integrating the embedded cluster method with the combined quantum mechanical and molecular mechanical (QM/MM) approach, thereby enabling further consideration of interactions within the entire system for superior results. We aim to accurately model the chemistry of metal oxides using this combined scheme. Here, using the prototypical MgO(100) surface as a test system, with Mg9O14 as the cluster in the quantum mechanical region, we show that the embedded cluster with untailored boundary effective core potentials (ECPs) can have frontier orbital energy levels that substantially deviate from the quantum mechanical reference results. This occurs even when Mg9O9, which retains the stoichiometry of MgO, is used as the cluster in the quantum mechanical region. As a result, the chemical properties of the embedded cluster models differ from those of the quantum mechanical reference model. To address this issue, we propose a new variant of the embedded cluster method called the level-shifted embedded cluster (LSEC) method, which allows the energy levels to be shifted to match the reference levels by tuning the boundary ECPs. Our validation calculations on the adsorption of various adsorbates with different properties on the MgO(100) surface show that the overall performance of QM/MM with the LSEC method is excellent for the adsorption energies, geometries, and charge properties. The excellent performance holds for both the nonstoichiometric and stoichiometric clusters (i.e., Mg9O14 and Mg9O9, respectively), demonstrating the robustness of the LSEC method. We expect that the LSEC method can be combined with QM/MM or used separately for future chemical studies of metal oxides and other ionically bonded systems.
Collapse
Affiliation(s)
- Ming-Yu Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
| |
Collapse
|
11
|
Tran DM, Son JW, Ju TS, Hwang C, Park BH. Dopamine-Regulated Plasticity in MoO 3 Synaptic Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49329-49337. [PMID: 37819637 DOI: 10.1021/acsami.3c06866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.
Collapse
Affiliation(s)
- Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Nematov DD, Burhonzoda AS, Kholmurodov KT, Lyubchyk AI, Lyubchyk SI. A Detailed Comparative Analysis of the Structural Stability and Electron-Phonon Properties of ZrO 2: Mechanisms of Water Adsorption on t-ZrO 2 (101) and t-YSZ (101) Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2657. [PMID: 37836297 PMCID: PMC10574635 DOI: 10.3390/nano13192657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
In this study, we considered the structural stability, electronic properties, and phonon dispersion of the cubic (c-ZrO2), tetragonal (t-ZrO2), and monoclinic (m-ZrO2) phases of ZrO2. We found that the monoclinic phase of zirconium dioxide is the most stable among the three phases in terms of total energy, lowest enthalpy, highest entropy, and other thermodynamic properties. The smallest negative modes were found for m-ZrO2. Our analysis of the electronic properties showed that during the m-t phase transformation of ZrO2, the Fermi level first shifts by 0.125 eV toward higher energies, and then decreases by 0.08 eV in the t-c cross-section. The band gaps for c-ZrO2, t-ZrO2, and m-ZrO2 are 5.140 eV, 5.898 eV, and 5.288 eV, respectively. Calculations based on the analysis of the influence of doping 3.23, 6.67, 10.35, and 16.15 mol. %Y2O3 onto the m-ZrO2 structure showed that the enthalpy of m-YSZ decreases linearly, which accompanies the further stabilization of monoclinic ZrO2 and an increase in its defectiveness. A doping-induced and concentration-dependent phase transition in ZrO2 under the influence of Y2O3 was discovered, due to which the position of the Fermi level changes and the energy gap decreases. It has been established that the main contribution to the formation of the conduction band is made by the p-states of electrons, not only for pure systems, but also those doped with Y2O3. The t-ZrO2 (101) and t-YSZ (101) surface models were selected as optimal surfaces for water adsorption based on a comparison of their surface energies. An analysis of the mechanism of water adsorption on the surface of t-ZrO2 (101) and t-YSZ (101) showed that H2O on unstabilized t-ZrO2 (101) is adsorbed dissociatively with an energy of -1.22 eV, as well as by the method of molecular chemisorption with an energy of -0.69 eV and the formation of a hydrogen bond with a bond length of 1.01 Å. In the case of t-YSZ (101), water is molecularly adsorbed onto the surface with an energy of -1.84 eV. Dissociative adsorption of water occurs at an energy of -1.23 eV, near the yttrium atom. The results show that ab initio approaches are able to describe the mechanism of doping-induced phase transitions in (ZrO2+Y2O3)-like systems, based on which it can be assumed that DFT calculations can also flawlessly evaluate other physical and chemical properties of YSZ, which have not yet been studied quantum chemical research. The obtained results complement the database of research works carried out in the field of the application of biocompatible zirconium dioxide crystals and ceramics in green energy generation, and can be used in designing humidity-to-electricity converters and in creating solid oxide fuel cells based on ZrO2.
Collapse
Affiliation(s)
- Dilshod D. Nematov
- Osimi Tajik Technical University, Dushanbe 734042, Tajikistan
- S.U. Umarov Physical-Technical Institute of NAST, Dushanbe 734042, Tajikistan
| | - Amondulloi S. Burhonzoda
- Osimi Tajik Technical University, Dushanbe 734042, Tajikistan
- S.U. Umarov Physical-Technical Institute of NAST, Dushanbe 734042, Tajikistan
| | - Kholmirzo T. Kholmurodov
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
- Dubna State University, 141980 Dubna, Russia
| | | | | |
Collapse
|
13
|
Su C, Han L, An H, Cai W, Shao X. Structures of water on the surface of anatase TiO 2 studied by diffuse reflectance near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122674. [PMID: 36996517 DOI: 10.1016/j.saa.2023.122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Investigating the structures of water on metal oxides is helpful for understanding the mechanism of the adsorptions in the presence of water. In this work, the structures of adsorbed water molecules on anatase TiO2 (101) were studied by diffuse reflectance near-infrared spectroscopy (DR-NIRS). With resolution enhanced spectrum by continuous wavelet transform (CWT), the spectral features of adsorbed water at different sites were found. In the spectrum of dried TiO2 powder, there is only the spectral feature of the water adsorbed at 5-coordinated titanium atoms (Ti5c). With the increase of the adsorbed water, the spectral feature of the water at 2-coordinated oxygen atoms (O2c) emerges first, and then that of the water interacting with the adsorbed water can be observed. When adenosine triphosphate (ATP) was adsorbed on TiO2, the intensity of the peaks related to the adsorbed water decreases, indicating that the adsorbed water is replaced by ATP due to the strong affinity to Ti5c. Therefore, there is a clear correlation between the peak intensity of the adsorbed water and the adsorbed quantity of ATP. Water can be a NIR spectroscopic probe to detect the quantity of the adsorbed ATP. A partial least squares (PLS) model was established to predict the content of adsorbed ATP by the spectral peaks of water. The recoveries of validation samples are in the range of 92.00-114.96% with the relative standard deviations (RSDs) in a range of 2.13-5.82%.
Collapse
Affiliation(s)
- Changlin Su
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Li Han
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hongle An
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
14
|
Adamsen KC, Petrik NG, Dononelli W, Kimmel GA, Xu T, Li Z, Lammich L, Hammer B, Lauritsen JV, Wendt S. Origin of hydroxyl pair formation on reduced anatase TiO 2(101). Phys Chem Chem Phys 2023; 25:13645-13653. [PMID: 37145025 DOI: 10.1039/d3cp01051a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The interaction of water with metal oxide surfaces is of key importance to several research fields and applications. Because of its ability to photo-catalyze water splitting, reducible anatase TiO2 (a-TiO2) is of particular interest. Here, we combine experiments and theory to study the dissociation of water on bulk-reduced a-TiO2(101). Following large water exposures at room temperature, point-like protrusions appear on the a-TiO2(101) surface, as shown by scanning tunneling microscopy (STM). These protrusions originate from hydroxyl pairs, consisting of terminal and bridging OH groups, OHt/OHb, as revealed by infrared reflection absorption spectroscopy (IRRAS) and valence band experiments. Utilizing density functional theory (DFT) calculations, we offer a comprehensive model of the water/a-TiO2(101) interaction. This model also explains why the hydroxyl pairs are thermally stable up to ∼480 K.
Collapse
Affiliation(s)
- Kræn C Adamsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Nikolay G Petrik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | - Wilke Dononelli
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
- MAPEX Center for Materials and Processes, Bremen Center for Computational Materials Science and Hybrid Materials Interfaces Group, Bremen University, 28359 Bremen, Germany
| | - Greg A Kimmel
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | - Tao Xu
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Zheshen Li
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Lutz Lammich
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjørk Hammer
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Stefan Wendt
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
15
|
Jian JX, Xie LH, Mumtaz A, Baines T, Major JD, Tong QX, Sun J. Interface-Engineered Ni-Coated CdTe Heterojunction Photocathode for Enhanced Photoelectrochemical Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21057-21065. [PMID: 37079896 PMCID: PMC10165602 DOI: 10.1021/acsami.3c01476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoelectrochemical (PEC) water splitting for hydrogen production using the CdTe photocathode has attracted much interest due to its excellent sunlight absorption property and energy band structure. This work presents a study of engineered interfacial energetics of CdTe photocathodes by deposition of CdS, TiO2, and Ni layers. A heterostructure CdTe/CdS/TiO2/Ni photocathode was fabricated by depositing a 100-nm n-type CdS layer on a p-type CdTe surface, with 50 nm TiO2 as a protective layer and a 10 nm Ni layer as a co-catalyst. The CdTe/CdS/TiO2/Ni photocathode exhibits a high photocurrent density (Jph) of 8.16 mA/cm2 at 0 V versus reversible hydrogen electrode (VRHE) and a positive-shifted onset potential (Eonset) of 0.70 VRHE for PEC hydrogen evolution under 100 mW/cm2 AM1.5G illumination. We further demonstrate that the CdTe/CdS p-n junction promotes the separation of photogenerated carriers, the TiO2 layer protects the electrode from corrosion, and the Ni catalyst improves the charge transfer across the electrode/electrolyte interface. This work provides new insights for designing noble metal-free photocathodes toward solar hydrogen development.
Collapse
Affiliation(s)
- Jing-Xin Jian
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Luo-Han Xie
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Asim Mumtaz
- School of Physics, Electronics & Technology, University of York, Heslington, York YO10 5DD, U.K
| | - Tom Baines
- Department of Physics, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Jonathan D Major
- Department of Physics, Stephenson Institute for Renewable Energy, University of Liverpool, Liverpool L69 7ZF, U.K
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, and Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, P. R. China
| | - Jianwu Sun
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
16
|
Unexpectedly Spontaneous Water Dissociation on Graphene Oxide Supported by Copper Substrate. J Colloid Interface Sci 2023; 642:112-119. [PMID: 37001450 DOI: 10.1016/j.jcis.2023.03.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023]
Abstract
Water dissociation is of fundamental importance in scientific fields and has drawn considerable interest in diverse technological applications. However, the high activation barrier of breaking the OH bond within the water molecule has been identified as the bottleneck, even for the water adsorbed on the graphene oxide (GO). Herein, using the density functional theory calculations, we demonstrate that the water molecule can be spontaneously dissociated on GO supported by the (111) surface of the copper substrate (Copper-GO). This process involves a proton transferring from water to the interfacial oxygen group, and a hydroxide covalently bonding to GO. Compared to that on GO, the water dissociation barrier on Copper-GO is significantly decreased to be less than or comparable to thermal fluctuations. This is ascribed to the orbital-hybridizing interaction between copper substrate and GO, which enhances the reaction activity of interfacial oxygen groups along the basal plane of GO for water dissociation. Our work provides a novel strategy to access water dissociation via the substrate-enhanced reaction activity of interfacial oxygen groups on GO and indicates that the substrate can serve as an essential key to tuning the catalytic performance of various two-dimensional material devices.
Collapse
|
17
|
Kozerozhets IV, Panasyuk GP, Semenov EA, Avdeeva VV, Danchevskaya MN, Simonenko NP, Vasiliev MG, Kozlova LO, Ivakin YD. Recrystallization of nanosized boehmite in an aqueous medium. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2022.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
An W, Yue X, Zou J, Zhang L, Fu YC, Yan R. A Form of Non-Volatile Solid-like Hexadecane Found in Micron-Scale Silica Microtubule. MATERIALS (BASEL, SWITZERLAND) 2022; 16:9. [PMID: 36614348 PMCID: PMC9820975 DOI: 10.3390/ma16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Anomalous solid-like liquids at the solid-liquid interface have been recently reported. The mechanistic factors contributing to these anomalous liquids and whether they can stably exist at high vacuum are interesting, yet unexplored, questions. In this paper, thin slices of silica tubes soaked in hexadecane were observed under a transmission electron microscope at room temperature. The H-spectrum of hexadecane in the microtubules was measured by nuclear magnetic resonance. On the interior surface of these silica tubes, 0.2-30 μm in inside diameter (ID), a layer (12-400 nm) of a type of non-volatile hexadecane was found with thickness inversely correlated with the tube ID. A sample of this anomalous hexadecane in microtubules 0.4 μm in ID was found to be formable by an ion beam. Compared with the nuclear magnetic resonance H-spectroscopy of conventional hexadecane, the characteristic peaks of this abnormal hexadecane were shifted to the high field with a broader characteristic peak, nuclear magnetic resonance hydrogen spectroscopy spectral features typical of that of solids. The surface density of these abnormal hexadecanes was found to be positively correlated with the silanol groups found on the interior silica microtubular surface. This positive correlation indicates that the high-density aggregation of silanol is an essential factor for forming the abnormal hexadecane reported in this paper.
Collapse
Affiliation(s)
- Weiqing An
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiangan Yue
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Jirui Zou
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Lijuan Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yu-Chun Fu
- Department of Chemical Engineering, National Chung Cheng University, Taiwan 621301, China
| | - Rongjie Yan
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
- Key Laboratory of Petroleum Engineering Ministry of Education, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
19
|
Cheng Y, Li RZ, Xu XY, Lu L. Density functional theory study of the reaction between VO− and water. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Chen J, Wu XP, Hope MA, Lin Z, Zhu L, Wen Y, Zhang Y, Qin T, Wang J, Liu T, Xia X, Wu D, Gong XQ, Tang W, Ding W, Liu X, Chen L, Grey CP, Peng L. Surface differences of oxide nanocrystals determined by geometry and exogenously coordinated water molecules. Chem Sci 2022; 13:11083-11090. [PMID: 36320476 PMCID: PMC9517059 DOI: 10.1039/d2sc03885d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 09/06/2024] Open
Abstract
Determining the different surfaces of oxide nanocrystals is key in developing structure-property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Michael A Hope
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Lei Zhu
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yixiao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tian Qin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Jia Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Tao Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University Shanghai 200092 China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology Nanjing 210094 China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry, Research Institute of Industrial Catalysis, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weiping Tang
- State Key Laboratory of Space Power Technology, Shanghai Institute of Space Power-Sources (SISP), Shanghai Academy of Spaceflight Technology Shanghai 200245 China
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
| | - Liwei Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Sciences, Shanghai Jiao Tong University Shanghai 200240 China
- i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences Suzhou 215123 China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
- Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210093 China
- Frontiers Science Center for Critical Earth Material Cycling (FSC-CEMaC), Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
21
|
Muramoto E, Patel DA, Chen W, Sautet P, Sykes ECH, Madix RJ. Direct Observation of Solvent–Reaction Intermediate Interactions in Heterogeneously Catalyzed Alcohol Coupling. J Am Chem Soc 2022; 144:17387-17398. [DOI: 10.1021/jacs.2c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eri Muramoto
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Wei Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Robert J. Madix
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
22
|
Gu H, Lan J, Liu Y, Ling C, Wei K, Zhan G, Guo F, Jia F, Ai Z, Zhang L, Liu X. Water Enables Lattice Oxygen Activation of Transition Metal Oxides for Volatile Organic Compound Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huayu Gu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jintong Lan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yi Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cancan Ling
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Kai Wei
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guangming Zhan
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
23
|
A critical assessment of the roles of water molecules and solvated ions in acid-base-catalyzed reactions at solid-water interfaces. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Cazzaniga M, Micciarelli M, Gabas F, Finocchi F, Ceotto M. Quantum Anharmonic Calculations of Vibrational Spectra for Water Adsorbed on Titania Anatase(101) Surface: Dissociative versus Molecular Adsorption. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12060-12073. [PMID: 35928238 PMCID: PMC9340806 DOI: 10.1021/acs.jpcc.2c02137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The interaction of water molecules and hydroxyl groups with titanium dioxide (TiO2) surfaces is ubiquitous and very important in anatase nanoparticle photocatalytic processes. Infrared spectroscopy, assisted by ab initio calculations of vibrational frequencies, can be a powerful tool to elucidate the mechanisms behind water adsorption. However, a straightforward comparison between measurements and calculations remains a challenging task because of the complexity of the physical phenomena occurring on nanoparticle surfaces. Consequently, severe computational approximations, such as harmonic vibrational ones, are usually employed. In the present work we partially address this complexity issue by overcoming some of the standard approximations used in theoretical simulations and employ the Divide and Conquer Semiclassical Initial Value Representation (DC-SCIVR) molecular dynamics. This method allows to perform simulations of vibrational spectra of large dimensional systems accounting not only for anharmonicities, but also for nuclear quantum effects. We apply this computational method to water and deuterated water adsorbed on the ideal TiO2 anatase(101) surface, contemplating both the molecular and the dissociated adsorption processes. The results highlight not only the presence of an anharmonic shift of the frequencies in agreement with the experiments, but also complex quantum mechanical spectral signatures induced by the coupling of molecular vibrational modes with the surface ones, which are different in the hydrogenated case from the deuterated one. These couplings are further analyzed by exploiting the mode subdivision performed during the divide and conquer procedure.
Collapse
Affiliation(s)
- Marco Cazzaniga
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Micciarelli
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Fabio Gabas
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Fabio Finocchi
- Sorbonne
Université, CNRS, Institut des NanoSciences
de Paris (INSP), 4 Place
Jussieu, Paris F- 75005, France
| | - Michele Ceotto
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
25
|
Conversion of Alcohols on Stoichiometric and Reduced Rutile TiO2 (110): Point Defects Meet Bifunctionality in Oxide (Photo-)Chemistry. Catal Letters 2022. [DOI: 10.1007/s10562-022-04077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractOxidic (photo-)catalysts have the potential to play an important role to efficiently implement sustainable feedstocks and green energy sources into future energy technologies. They may be used not only for solar energy harvesting, but also for hydrogen production or being essential for the fabrication of fine chemicals. Therefore, it is crucial to develop a detailed understanding of how the atomistic environment of the catalyst can be designed in order to promote distinct reaction pathways to influence the final product distribution of chemical reactions. In this perspective article, we survey the surface (photo-)chemistry of methanol on rutile TiO2 surfaces and hybrid catalysts based thereon. Especially the role of the surface bifunctionality by Lewis acidic and basic sites combined with the strong impact of point defects such as reduced titanium sites (mainly Ti3+ interstitials) shall be illuminated. It is shown how the selective activation of either O–H, C–H or C–O bonds in the methanol molecule can be used to tune not only the overall conversion, but to switch between oxidative and reductive routes in favor of either deoxygenation, partial oxidation or C–C coupling reactions. Especially the latter ones are of particular interest to introduce methanol from green sources such as biomass as a sustainable feedstock into already existing petrochemical technologies.
Graphical Abstract
Collapse
|
26
|
Guo J, Jiang Y. Submolecular Insights into Interfacial Water by Hydrogen-Sensitive Scanning Probe Microscopy. Acc Chem Res 2022; 55:1680-1692. [PMID: 35678704 DOI: 10.1021/acs.accounts.2c00111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusWater-solid interfaces have attracted extensive attention because of their crucial roles in a wide range of chemical and physical processes, such as ice nucleation and growth, dissolution, corrosion, heterogeneous catalysis, and electrochemistry. To understand these processes, enormous efforts have been made to obtain a molecular-level understanding of the structure and dynamics of water on various solid surfaces. By the use of scanning probe microscopy (SPM), many remarkable structures of H-bonding networks have been directly visualized, significantly advancing our understanding of the delicate competition between water-water and water-solid interactions. Moreover, the detailed dynamics of water molecules, such as diffusion, clustering, dissociation, and intermolecular and intramolecular proton transfer, have been investigated in a well-controlled manner by tip manipulation. However, resolving the submolecular structure of surface water has remained a great challenge for a long time because of the small size and light mass of protons. Discerning the position of hydrogen in water is not only crucial for the accurate determination of the structure of H-bonding networks but also indispensable in probing the proton transfer dynamics and the quantum nature of protons.In this Account, we focus on the recent advances in the H-sensitive SPM technique and its applications in probing the structures, dynamics, and nuclear quantum effects (NQEs) of surface water and ion hydrates at the submolecular level. First, we introduce the development of high-resolution scanning tunneling microscopy/spectroscopy (STM/S) and qPlus-based atomic force microscopy (qPlus-AFM), which allow access to the degrees of freedom of protons in both real and energy space. qPlus-AFM even allows imaging of interfacial water in a weakly perturbative manner by measuring the high-order electrostatic force between the CO-terminated tip and the polar water molecule, which enables the subtle difference of OH directionality to be discerned. Next we showcase the applications of H-sensitive STM/AFM in addressing several key issues related to water-solid interfaces. The surface wetting behavior and the H-bonding structure of low-dimensional ice on various hydrophilic and hydrophobic solid surfaces are characterized at the atomic scale. Then we discuss the quantitative assessment of NQEs of surface water, including proton tunneling and quantum delocalization. Moreover, the weakly perturbative and H-sensitive SPM technique can be also extended to investigations of water-ion interactions on solid surfaces, revealing the effect of hydration structure on the interfacial ion transport. Finally, we provide an outlook on the further directions and challenges for SPM studies of water-solid interfaces.
Collapse
Affiliation(s)
- Jing Guo
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China.,Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China.,Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China.,CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
27
|
Pei W, Wang P, Zhou S, Zhao J. Inverse Design of Nanoclusters for Light-Controlled CO 2-HCOOH Interconversion. J Phys Chem Lett 2022; 13:2523-2532. [PMID: 35285226 DOI: 10.1021/acs.jpclett.2c00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With global push of hydrogen economy, efficient scenarios for hydrogen storage, transportation, and generation are indispensable. Here we devise a strategy for controllable hydrogen fuel storage and retrieval via light-switched CO2-to-HCOOH interconversion. To realize it, palladium sulfide nanocluster catalysts with multiple specific functionalities are directly searched by our home-developed inverse design approach based on genetic algorithm (IDOGA) and ab initio calculations. Over 500 low-energy PdxSy (x + y ≤ 30) clusters are sieved through a multiobjective function combining stability, activity, optical absorption, and reduction capability of photocarriers. The structure-property relationships and key factors governing the trade-off among these stringent criteria are disclosed. Finally, 14 candidate PdxSy clusters with proper sulfidation degree and high stability in an aqueous environment have been screened. Our IDOGA program provides a general approach for inverse search of nanoclusters with any designated elemental compositions and functionalities for any device applications.
Collapse
Affiliation(s)
- Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Pengju Wang
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| |
Collapse
|
28
|
Sun Y, Shi H, Yuan H, Li Z, Zhang J, Zhou D, Li Z, Shao X. Unveiling the Atomic Structure and Growth Dynamics of One-Dimensional Water on ZnO(10-10). J Phys Chem Lett 2022; 13:1554-1562. [PMID: 35137584 DOI: 10.1021/acs.jpclett.1c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorption and organization state of water on the metal oxide surface is of critical importance for wide fields where interface chemistry dominates. On the technically important ZnO(10-10) surface, we found water assembles into an one-dimensional (1D) chain structure at submonolayer coverage instead of the well-known half-dissociated two-dimensional (2D) island. With a combination of high resolution scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we clearly distinguished the single and double water chains, which are composed of dissociated monomers and half-dissociated dimers, respectively. Moreover, we unambiguously determined that single water molecules dissociate spontaneously before agglomerating into ordered phase, which is contrary to the proposition of previous studies. These results have deepened our understandings of the adsorbed water species on the ZnO surface, which may bring new insights into the mechanisms of water-stimulated surface reactions.
Collapse
Affiliation(s)
- Yuniu Sun
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Hong Shi
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Hao Yuan
- HFNL, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Li
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Jiefu Zhang
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Dandan Zhou
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
| | - Zhenyu Li
- HFNL, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Shao
- Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Jakub Z, Meier M, Kraushofer F, Balajka J, Pavelec J, Schmid M, Franchini C, Diebold U, Parkinson GS. Rapid oxygen exchange between hematite and water vapor. Nat Commun 2021; 12:6488. [PMID: 34759277 PMCID: PMC8580966 DOI: 10.1038/s41467-021-26601-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-Fe2O3) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.
Collapse
Affiliation(s)
- Zdenek Jakub
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Central European Institute of Technology (CEITEC), Brno University of Technology, Brno, Czech Republic
| | - Matthias Meier
- Institute of Applied Physics, TU Wien, Vienna, Austria
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria
| | | | - Jan Balajka
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Jiri Pavelec
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | | | - Cesare Franchini
- University of Vienna, Faculty of Physics and Center for Computational Materials Science, Vienna, Austria
- Alma Mater Studiorum-Università di Bologna, Bologna, Italy
| | | | | |
Collapse
|
30
|
Highly photocatalytic electrospun Zr/Ag Co-doped titanium dioxide nanofibers for degradation of dye. J Colloid Interface Sci 2021; 603:594-603. [PMID: 34217947 DOI: 10.1016/j.jcis.2021.06.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/23/2022]
Abstract
Photodegradation has attracted much attention in wastewater treatment owing to its nontoxicity, high efficiency, and mild reaction conditions. Recently, Zr/Ag co-doped titanium dioxide (TiO2) nanoparticles have been synthesized and showed high photocatalytic activity for dye, but these nanoparticles tend to aggregate together, leading to reduced catalytic sites, which is disadvantageous for their practical application. Therefore, Zr/Ag-co-doped TiO2 nanofibers were prepared using an electrospinning method. For comparison, TiO2 nanofibers and Zr-doped TiO2 nanofibers were also fabricated. The synthesized catalysts were characterized by X-ray diffraction, UV-visible absorption spectroscopy, diffuse reflectance spectroscopy, scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, zeta potentials, photoluminescence, and electrochemical impedance spectroscopy. Compared with TiO2 nanofibers and Zr-doped TiO2, Zr/Ag co-doped TiO2 nanofibers have significantly enhanced photocatalytic activity for Congo red owing to the synergetic effects of Zr, Ag, and Ti. The photodegradation of Congo red followed a pseudo-first-order kinetic model. The optimal Zr/Ag-co-doped TiO2 nanofibers with 2 wt% Ag and a mass ratio of ZrO2 to TiO2 of 1:9 exhibits the best photocatalytic activity and the corresponding kinetic constant of 0.0405 min-1 is 12 times higher than that of TiO2 nanofibers. This work will provide data and a technology base for the synthesis of future materials with high photocatalytic activity.
Collapse
|
31
|
Jian X, Xin K, Hu J, Zhang L, Wang X, Wang G. Infrared Spectroscopy of Solvation in the TaO 2+ Hydrolysis Reaction. J Phys Chem A 2021; 125:5054-5060. [PMID: 34085828 DOI: 10.1021/acs.jpca.1c03185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solvent effect of the TaO2+ reaction with water molecules in the gas phase is examined. Stoichiometric TaO2(H2O)n+ cations are generated by the laser vaporization of a tantalum metal target in the pulsed supersonic expansion of H2O/He mixed gas. The infrared photodissociation spectra of TaO2(H2O)n+ cations are measured using the argon-tagging technology in the 2800-3850 cm-1 region. Density functional theory calculations are carried out to identify the observed infrared bands and elucidate the reaction mechanism. In the TaO2+ reaction with one H2O molecule, both the hydrated adduct H2O-TaO2+ and dihydroxide TaO(OH)2+ are generated. The coexistence of tetrahydroxide Ta(OH)4+ and hydrated dihydroxide H2O-TaO(OH)2+ is seen when the second H2O molecule is involved. However, only the hydrated H2O-Ta(OH)4+ product is obtained in the TaO2 reaction with three H2O molecules. Theoretical calculations indicate that in the reaction, the formation of a six-membered cyclic transition state through the hydrogen bond lowers the energy barrier significantly, which promotes the transfer of the hydrogen of hydrated adducts to generate di- and tetrahydroxides.
Collapse
Affiliation(s)
- Xianhui Jian
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ke Xin
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Luning Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guanjun Wang
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
32
|
Wang R, Klein ML, Carnevale V, Borguet E. Investigations of water/oxide interfaces by molecular dynamics simulations. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| | - Michael L. Klein
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University Philadelphia Pennsylvania USA
- Department of Biology Temple University Philadelphia Pennsylvania USA
| | - Eric Borguet
- Department of Chemistry Temple University Philadelphia Pennsylvania USA
- Center for Complex Materials from First Principles (CCM) Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
33
|
Hao YC, Chen LW, Li J, Guo Y, Su X, Shu M, Zhang Q, Gao WY, Li S, Yu ZL, Gu L, Feng X, Yin AX, Si R, Zhang YW, Wang B, Yan CH. Metal-organic framework membranes with single-atomic centers for photocatalytic CO 2 and O 2 reduction. Nat Commun 2021; 12:2682. [PMID: 33976220 PMCID: PMC8113524 DOI: 10.1038/s41467-021-22991-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 04/07/2021] [Indexed: 01/09/2023] Open
Abstract
The demand for sustainable energy has motivated the development of artificial photosynthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO2, O2, N2) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal-organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO2, O2) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH2-UiO-66) particles can reduce CO2 to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420 nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO2 gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420 nm. A similar strategy can be applied to the photocatalytic O2-to-H2O2 conversions, suggesting the wide applicability of our catalyst and reaction interface designs. Photoreduction of permanent gas faces challenges in reactant diffusion and activation at the three-phase interface. Here the authors showed porous metal-organic framework membranes decorated by metal single atoms can boost the photoreduction of CO2 and O2 at the high-throughput gas-solid interface.
Collapse
Affiliation(s)
- Yu-Chen Hao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Li-Wei Chen
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Jiani Li
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Yu Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Xin Su
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Miao Shu
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wen-Yan Gao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Siwu Li
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Zi-Long Yu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiao Feng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, P. R. China.
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Bo Wang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China. .,Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, P. R. China.
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
34
|
Melani G, Nagata Y, Saalfrank P. Vibrational energy relaxation of interfacial OH on a water-covered α-Al 2O 3(0001) surface: a non-equilibrium ab initio molecular dynamics study. Phys Chem Chem Phys 2021; 23:7714-7723. [PMID: 32857089 DOI: 10.1039/d0cp03777j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered α-Al2O3(0001) surface. In our NE-AIMD approach, after exciting selected O-H bonds their coupling to surface phonons and to the water adlayer is analyzed in detail, by following both the energy flow in time, as well as the time-evolution of Vibrational Density of States (VDOS) curves. The latter are obtained from Time-dependent Correlation Functions (TCFs) and serve as prototypical, generic representatives of time-resolved vibrational spectra. As most important results, (i) we find a few-picosecond lifetime of the excited modes and (ii) identify both hydrogen-bonded aluminols and water molecules in the adsorbed water layer as main dissipative channels, while the direct coupling to Al2O3 surface phonons is of minor importance on the timescales of interest. Our NE-AIMD/TCF methodology is powerful for complex adsorbate systems, in principle even reacting ones, and opens a way towards time-resolved vibrational spectroscopy.
Collapse
Affiliation(s)
- Giacomo Melani
- Institut für Chemie, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
35
|
Agosta L, Dzugutov M, Hermansson K. Supercooled liquid-like dynamics in water near a fully hydrated titania surface: Decoupling of rotational and translational diffusion. J Chem Phys 2021; 154:094708. [PMID: 33685161 DOI: 10.1063/5.0039693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report an ab initio molecular dynamics (MD) simulation investigating the effect of a fully hydrated surface of TiO2 on the water dynamics. It is found that the universal relation between the rotational and translational diffusion characteristics of bulk water is broken in the water layers near the surface with the rotational diffusion demonstrating progressive retardation relative to the translational diffusion when approaching the surface. This kind of rotation-translation decoupling has so far only been observed in the supercooled liquids approaching glass transition, and its observation in water at a normal liquid temperature is of conceptual interest. This finding is also of interest for the application-significant studies of the water interaction with fully hydrated nanoparticles. We note that this is the first observation of rotation-translation decoupling in an ab initio MD simulation of water.
Collapse
Affiliation(s)
- Lorenzo Agosta
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| | - Mikhail Dzugutov
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| | - Kersti Hermansson
- Department of Chemistry-Ångström, Uppsala University, S-75121 Uppsala, Sweden
| |
Collapse
|
36
|
Kozerozhets IV, Panasyuk GP, Semenov EA, Vasil’ev MG, Nikiforova GE, Voroshilov IL. Effect of Alkaline Medium on Hydrothermal Synthesis of Boehmite. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621030104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Islas-Vargas C, Guevara-García A, Galván M. Electronic structure behavior of PbO 2, IrO 2, and SnO 2 metal oxide surfaces (110) with dissociatively adsorbed water molecules as a function of the chemical potential. J Chem Phys 2021; 154:074704. [PMID: 33607881 DOI: 10.1063/5.0035208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A detailed analysis of the electronic structure of three different electrochemical interfaces as a function of the chemical potential (μ) is performed using the grand canonical density functional theory in the joint density functional theory formulation. Changes in the average number of electrons and the density of states are also described. The evaluation of the global softness, which measures the tendency of the system to gain or lose electrons, is straightforward under this formalism. The observed behavior of these quantities depends on the electronic nature of the electrochemical interfaces.
Collapse
Affiliation(s)
- Claudia Islas-Vargas
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| | - Alfredo Guevara-García
- CONACYT-Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| | - Marcelo Galván
- Universidad Autónoma Metropolitana Iztapalapa, Departamento de Química, CP 09340 México, Mexico
| |
Collapse
|
38
|
He J, Zhang H, Yue T, Sun W, Hu Y, Zhang C. Effects of Hydration on the Adsorption of Benzohydroxamic Acid on the Lead-Ion-Activated Cassiterite Surface: A DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2205-2212. [PMID: 33529028 DOI: 10.1021/acs.langmuir.0c03575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The strategy of enhancing the surface activity by preadsorption of metal ions (surface activation) is an effective way to promote the adsorption of surfactant on surfaces, which is very important in surface process engineering. However, the adsorption mechanism of surfactant (collector) on the surface preadsorbed by metal ions in the explicit solution phase is still poorly understood. Herein, the effects of hydration on the adsorption of benzohydroxamic acid (BHA) onto the oxide mineral surface before and after lead-ion activation are investigated by first-principles calculations, owing to its importance in the field of flotation. The results show that the direct adsorption of BHA on the hydrated surface is not thermodynamically allowed in the absence of metal ions. However, the adsorption of BHA onto the lead-ion-activated surface possesses a very low barrier and a very negative reaction energy difference, indicating that the adsorption of BHA on hydrated Pb2+ at cassiterite surface is very favorable in both thermodynamics and kinetics. In addition, the adsorption of BHA results in the dehydration of hydrated Pb2+. More interestingly, the surface hydroxyl groups could participate in and may promote the coordination adsorption through proton transfer. This work sheds some new lights on understanding the roles of interfacial water and the mechanisms of metal-ion surface activation.
Collapse
Affiliation(s)
- Jianyong He
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Hongliang Zhang
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Tong Yue
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Wei Sun
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yuehua Hu
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Chenyang Zhang
- Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
- Key Laboratory of Hunan Province for Comprehensive Utilization of Complex Copper-Lead Zinc Associated Metal Resources, Hunan Research Institute for Nonferrous Metals, Changsha 410100, China
| |
Collapse
|
39
|
Abstract
Abstract
Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy.
Graphic Abstract
Collapse
|
40
|
Yu X, Roth JP, Wang J, Sauter E, Nefedov A, Heißler S, Pacchioni G, Wang Y, Wöll C. Chemical Reactivity of Supported ZnO Clusters: Undercoordinated Zinc and Oxygen Atoms as Active Sites. Chemphyschem 2020; 21:2553-2564. [PMID: 33118300 PMCID: PMC7756222 DOI: 10.1002/cphc.202000747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Indexed: 11/06/2022]
Abstract
The growth of ZnO clusters supported by ZnO-bilayers on Ag(111) and the interaction of these oxide nanostructures with water have been studied by a multi-technique approach combining temperature-dependent infrared reflection absorption spectroscopy (IRRAS), grazing-emission X-ray photoelectron spectroscopy, and density functional theory calculations. Our results reveal that the ZnO bilayers exhibiting graphite-like structure are chemically inactive for water dissociation, whereas small ZnO clusters formed on top of these well-defined, yet chemically passive supports show extremely high reactivity - water is dissociated without an apparent activation barrier. Systematic isotopic substitution experiments using H2 16 O/D2 16 O/D2 18 O allow identification of various types of acidic hydroxyl groups. We demonstrate that a reliable characterization of these OH-species is possible via co-adsorption of CO, which leads to a red shift of the OD frequency due to the weak interaction via hydrogen bonding. The theoretical results provide atomic-level insight into the surface structure and chemical activity of the supported ZnO clusters and allow identification of the presence of under-coordinated Zn and O atoms at the edges and corners of the ZnO clusters as the active sites for H2 O dissociation.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Jannik P. Roth
- Dipartimento di Scienza dei MaterialiUniversità Milano-BicoccaVia R. Cozzi 5520125MilanoItaly
| | - Junjun Wang
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Eric Sauter
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Alexei Nefedov
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Stefan Heißler
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Gianfranco Pacchioni
- Dipartimento di Scienza dei MaterialiUniversità Milano-BicoccaVia R. Cozzi 5520125MilanoItaly
| | - Yuemin Wang
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| | - Christof Wöll
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-Leopoldshafen76344Germany
| |
Collapse
|
41
|
O’Carroll D, English NJ. Self-ordering water molecules at TiO2 interfaces: Advances in structural classification. J Chem Phys 2020; 153:064502. [DOI: 10.1063/5.0011510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dáire O’Carroll
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niall J. English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
42
|
Tayyebi E, Hussain J, Skúlason E. Why do RuO 2 electrodes catalyze electrochemical CO 2 reduction to methanol rather than methane or perhaps neither of those? Chem Sci 2020; 11:9542-9553. [PMID: 34094219 PMCID: PMC8161686 DOI: 10.1039/d0sc01882a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The electrochemical CO2 reduction reaction (CO2RR) on RuO2 and RuO2-based electrodes has been shown experimentally to produce high yields of methanol, formic acid and/or hydrogen while methane formation is not detected. This CO2RR selectivity on RuO2 is in stark contrast to copper metal electrodes that produce methane and hydrogen in the highest yields whereas methanol is only formed in trace amounts. Density functional theory calculations on RuO2(110) where only adsorption free energies of intermediate species are considered, i.e. solvent effects and energy barriers are not included, predict however, that the overpotential and the potential limiting step for both methanol and methane are the same. In this work, we use both ab initio molecular dynamics simulations at room temperature and total energy calculations to improve the model system and methodology by including both explicit solvation effects and calculations of proton–electron transfer energy barriers to elucidate the reaction mechanism towards several CO2RR products: methanol, methane, formic acid, CO and methanediol, as well as for the competing H2 evolution. We observe a significant difference in energy barriers towards methane and methanol, where a substantially larger energy barrier is calculated towards methane formation than towards methanol formation, explaining why methanol has been detected experimentally but not methane. Furthermore, the calculations show why RuO2 also catalyzes the CO2RR towards formic acid and not CO(g) and methanediol, in agreement with experimental results. However, our calculations predict RuO2 to be much more selective towards H2 formation than for the CO2RR at any applied potential. Only when a large overpotential of around −1 V is applied, can both formic acid and methanol be evolved, but low faradaic efficiency is predicted because of the more facile H2 formation. Energy barriers are calculated for the electrochemical CO2 reduction reaction on the RuO2(110) surface towards methanol, methane, formic acid, methanediol, CO and the competing H2 formation and compared with experimental literature.![]()
Collapse
Affiliation(s)
- Ebrahim Tayyebi
- Science Institute, University of Iceland VR-III 107 Reykjavík Iceland
| | - Javed Hussain
- Science Institute, University of Iceland VR-III 107 Reykjavík Iceland
| | - Egill Skúlason
- Science Institute, University of Iceland VR-III 107 Reykjavík Iceland .,Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland VR-III 107 Reykjavík Iceland
| |
Collapse
|
43
|
Zhang L, Qiang Y. DYE-CATALYST INTERACTIONS IN A WATER-SPLITTING SYSTEM: A FIRST-PRINCIPLES INVESTIGATION OF INTERFACIAL STRUCTURES BASED ON COUMARIN343/[FeFe](mcbdt)(CO)6/NiO. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620070057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Zhou G, Huang L. A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1786086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Guobing Zhou
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| | - Liangliang Huang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
45
|
Chen J, Hope MA, Lin Z, Wang M, Liu T, Halat DM, Wen Y, Chen T, Ke X, Magusin PCMM, Ding W, Xia X, Wu XP, Gong XQ, Grey CP, Peng L. Interactions of Oxide Surfaces with Water Revealed with Solid-State NMR Spectroscopy. J Am Chem Soc 2020; 142:11173-11182. [PMID: 32459963 DOI: 10.1021/jacs.0c03760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrous materials are ubiquitous in the natural environment and efforts have previously been made to investigate the structures and dynamics of hydrated surfaces for their key roles in various chemical and physical applications, with the help of theoretical modeling and microscopy techniques. However, an overall atomic-scale understanding of the water-solid interface, including the effect of water on surface ions, is still lacking. Herein, we employ ceria nanorods with different amounts of water as an example and demonstrate a new approach to explore the water-surface interactions by using solid-state NMR in combination with density functional theory. NMR shifts and relaxation time analysis provide detailed information on the local structure of oxygen ions and the nature of water motion on the surface: the amount of molecularly adsorbed water decreases rapidly with increasing temperature (from room temperature to 150 °C), whereas hydroxyl groups are stable up to 150 °C, and dynamic water molecules are found to instantaneously coordinate to the surface oxygen ions. The applicability of dynamic nuclear polarization for selective detection of surface oxygen species is also compared to conventional NMR with surface selective isotopic-labeling: the optimal method depends on the feasibility of enrichment and the concentration of protons in the sample. These results provide new insight into the interfacial structure of hydrated oxide nanostructures, which is important to improve performance for various applications.
Collapse
Affiliation(s)
- Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Michael A Hope
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Meng Wang
- College of Chemistry and Molecular Engineering (CCME), Peking University, Beijing 100871, China
| | - Tao Liu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - David M Halat
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Teng Chen
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Pieter C M M Magusin
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Weiping Ding
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin-Ping Wu
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| |
Collapse
|
46
|
Röckert A, Kullgren J, Broqvist P, Alwan S, Hermansson K. The water/ceria(111) interface: Computational overview and new structures. J Chem Phys 2020; 152:104709. [PMID: 32171203 DOI: 10.1063/1.5142724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Thin film structures of water on the CeO2(111) surface for coverages between 0.5 and 2.0 water monolayers have been optimized and analyzed using density functional theory (optPBE-vdW functional). We present a new 1.0 ML structure that is both the lowest in energy published and features a hydrogen-bond network extending the surface in one-dimension, contrary to what has been found in the literature, and contrary to what has been expected due to the large bulk ceria cell dimension. The adsorption energies for the monolayer and multilayered water structures agree well with experimental temperature programmed desorption results from the literature, and we discuss the stability window of CeO2(111) surfaces covered with 0.5-2.0 ML of water.
Collapse
Affiliation(s)
- Andreas Röckert
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Jolla Kullgren
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Peter Broqvist
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Seif Alwan
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| | - Kersti Hermansson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box-538, Uppsala SE-75121, Sweden
| |
Collapse
|
47
|
Margineda J, English NJ. Dynamical and structural properties of adsorbed water molecules at the TiO2 anatase-(1 0 1) surface: Importance of interfacial hydrogen-bond rearrangements. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Ahmad F, Agusta MK, Maezono R, Dipojono HK. DFT + U study of H 2O adsorption and dissociation on stoichiometric and nonstoichiometric CuO(1 1 1) surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:045001. [PMID: 31585452 DOI: 10.1088/1361-648x/ab4b34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surface interaction through adsorption and dissociation between H2O and metal oxides plays an important role in many industrial as well as fundamental processes. To gain further insights on the interaction, this study performs dispersion-corrected Hubbard-corrected density functional theory calculations in H2O adsorption and dissociation on stoichiometric and nonstoichiometric CuO(1 1 1) surfaces. The nonstoichiometric surfaces consist of oxygen vacancy defect and oxygen-preadsorbed surfaces. This study finds that H2O is chemically adsorbed on the top of Cusub and Cusub-Cusub bridge due to the interaction of its p orbital with d orbital of Cu. The adsorption is found to be the strongest on the surface with the oxygen vacancy defect, followed by the stoichiometric surface, and the oxygen-preadsorbed surface. The oxygen vacancy increases the reactivity for H2O adsorption and reduces the reaction energy required for H2O dissociation on the surface. However, the surface modification by the oxygen-preadsorbed significantly reduces the barrier energy for H2O dissociation when compared with the other surfaces.
Collapse
Affiliation(s)
- Faozan Ahmad
- Engineering Physics Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia. Theoretical Physics Division, Department of Physics, Bogor Agricultural University, Jl. Raya Darmaga, Bogor, Indonesia. Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia
| | | | | | | |
Collapse
|
49
|
Tan S, Feng H, Zheng Q, Cui X, Zhao J, Luo Y, Yang J, Wang B, Hou JG. Interfacial Hydrogen-Bonding Dynamics in Surface-Facilitated Dehydrogenation of Water on TiO 2(110). J Am Chem Soc 2020; 142:826-834. [PMID: 31842546 DOI: 10.1021/jacs.9b09132] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular-level understanding of the dehydrogenation of interfacial water molecules on metal oxides and their interactive nature relies on the ability to track the motion of light and small hydrogen atoms, which is known to be difficult. Here, we report precise measurements of the surface-facilitated water dehydrogenation process at terminal Ti sites of TiO2(110) using scanning tunneling microscopy. Our measured hydrogen-bond dynamics of H2O and D2O reveal that the vibrational and electronic excitations dominate the sequential transfer of two H (D) atoms from a H2O (D2O) molecule to adjacent surface oxygen sites, manifesting the active participation of the oxide surface in the dehydrogenation processes. Our results show that, at the stoichiometric Ti5c sites, individual H2O molecules are energetically less stable than the dissociative form, where a barrier is expected to be as small as approximately 70-120 meV on the basis of our experimental and theoretical results. Moreover, our results reveal that interfacial hydrogen bonds can effectively assist H atom transfer and exchange across the surface. The revealed quantitative hydrogen-bond dynamics provide a new atomistic mechanism for water interactions on metal oxides in general.
Collapse
Affiliation(s)
- Shijing Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Hao Feng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Qijing Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Xuefeng Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - J G Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics (CAS) , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
50
|
Chen L, Ngo D, Luo J, Gong Y, Xiao C, He X, Yu B, Qian L, Kim SH. Dependence of water adsorption on the surface structure of silicon wafers aged under different environmental conditions. Phys Chem Chem Phys 2019; 21:26041-26048. [PMID: 31746864 DOI: 10.1039/c9cp04776j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most materials exposed to ambient air can adsorb water molecules and the adsorption capability strongly depends on the surface property. The water contact angle has been widely used as a measure for surface wettability; however, a question can still be asked whether the water contact angle can be used as an adequate sole predictor for water adsorption on the surface in humid air. In this paper, HF-etched silicon wafers were aged (oxidized) under different environmental conditions at room temperature to grow surface layers with varying water contact angles from ∼0° (fully hydrophilic) to ∼83° (highly hydrophobic), and water adsorption as a function of relative humidity (RH) was studied on such surfaces. The thickness and structure of the adsorbed water layer were found to depend on not only the surface wettability on each surface, but also the history of surface oxidation conditions. In particular, the silicon wafer surface oxidized in liquid water uptakes significantly more water from humid air than the fully-hydroxylated native oxide surface (SiOx/OH), even though its water contact angle is higher than that on the SiOx/OH surface. This could be attributed to the formation of a gel-like structure during oxidation in liquid water.
Collapse
Affiliation(s)
- Lei Chen
- Tribology Research Institute, Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dien Ngo
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Jiawei Luo
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Yunfei Gong
- Tribology Research Institute, Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Chen Xiao
- Tribology Research Institute, Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xin He
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| | - Bingjun Yu
- Tribology Research Institute, Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Linmao Qian
- Tribology Research Institute, Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|