1
|
Tsai YS, Yang SC, Yang TH, Wu CH, Lin TC, Kung CW. Sulfonate-Functionalized Metal-Organic Framework as a Porous "Proton Reservoir" for Boosting Electrochemical Reduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62185-62194. [PMID: 39486896 PMCID: PMC11565520 DOI: 10.1021/acsami.4c14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
The electrochemical reduction reaction of nitrate (NO3RR) is an attractive route to produce ammonia at ambient conditions, but the conversion from nitrate to ammonia, which requires nine protons, has to compete with both the two-proton process of nitrite formation and the hydrogen evolution reaction. Extensive research efforts have thus been made in recent studies to develop electrocatalysts for the NO3RR facilitating the production of ammonia. Rather than designing another better electrocatalyst, herein, we synthesize an electrochemically inactive, porous, and chemically robust zirconium-based metal-organic framework (MOF) with enriched intraframework sulfonate groups, SO3-MOF-808, as a coating deposited on top of the catalytically active copper-based electrode. Although both the overall reaction rate and electrochemically active surface area of the electrode are barely affected by the MOF coating, with negatively charged sulfonate groups capable of enriching more protons near the electrode surface, the MOF coating significantly promotes the selectivity of the NO3RR toward the production of ammonia. In contrast, the use of MOF coating with positively charged trimethylammonium groups to repulse protons strongly facilitates the conversion of nitrate to nitrite, with selectivity of more than 90% at all potentials. Under the optimal operating conditions, the copper electrocatalyst with SO3-MOF-808 coating can achieve a Faradaic efficiency of 87.5% for ammonia production, a nitrate-to-ammonia selectivity of 95.6%, and an ammonia production rate of 97 μmol/cm2 h, outperforming all of those achieved by both the pristine copper (75.0%; 93.9%; 87 μmol/cm2 h) and copper with optimized Nafion coating (83.3%; 86.9%; 64 μmol/cm2 h). Findings here suggest the function of MOF as an advanced alternative to the commercially available Nafion to enrich protons near the surface of electrocatalyst for NO3RR, and shed light on the potential of utilizing such electrochemically inactive MOF coatings in a range of proton-coupled electrocatalytic reactions.
Collapse
Affiliation(s)
- Yun-Shan Tsai
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Shang-Cheng Yang
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Hsien Yang
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program
on Key Materials, Academy of Innovative Semiconductor and Sustainable
Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Huan Wu
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Tzu-Chi Lin
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department
of Chemical Engineering, National Cheng
Kung University, 1 University Road, Tainan City 70101, Taiwan
- Program
on Key Materials, Academy of Innovative Semiconductor and Sustainable
Manufacturing, National Cheng Kung University, 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
2
|
Gschwind W, Nagy G, Primetzhofer D, Ott S. Optimizing post-synthetic metal incorporation in mixed-linker MOFs: insights from metalation studies on bipyridine-containing UiO-67 single crystals. Dalton Trans 2024; 53:14779-14785. [PMID: 39162398 DOI: 10.1039/d4dt01782j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The postsynthetic metalation (PSM) of metal-organic frameworks (MOFs) with intrinsic metal binding sites is an intriguing strategy to introduce catalytic function into MOFs. The spatial distribution of the catalytic sites within the MOF crystal will affect the efficiency of the material, but the factors that govern depth distribution of the introduced metal sites are often not well understood. Herein, we employ Rutherford backscattering spectrometry (RBS) to investigate the metal distribution in a series of post-synthetically metalated mixed linker bpdc/BPY UiO-67 (UiO = Universitet i Oslo, bpdc = biphenyl-dicarboxylate, BPY = 2,2'-bipyridine-5,5'-dicarboxylate) single crystals as a function of linker ratio and metalation time. The RBS spectra reveal large differences in the depth distribution of inserted Ni2+ ions, and core/shell architectures are observed in high BPY materials at shorter incubation times. The incubation times to achieve uniform metal incorporation increases with increasing BPY ratios in the materials, suggesting that the presence of the BPY linkers slow down metal uptake. We propose a combination of ionic interactions and pore clogging, where coordinated ions reduce the available pore space for further ions to diffuse deeper into the framework as reasons for the observed trends. The observations are likely relevant for other mixed-linker MOF systems, and understanding the effect that linker ratios have on PSM and cation distribution will aid in future optimizations of catalytic MOFs.
Collapse
Affiliation(s)
- Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| | - Gyula Nagy
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| | - Daniel Primetzhofer
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
- Tandem Laboratory, Uppsala University, Box 529, 751 20 Uppsala, Sweden.
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Patel J, Bury G, Pushkar Y. Rational Design of Improved Ru Containing Fe-Based Metal-Organic Framework (MOF) Photoanode for Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310106. [PMID: 38746966 DOI: 10.1002/smll.202310106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/11/2024] [Indexed: 10/01/2024]
Abstract
Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.
Collapse
Affiliation(s)
- Jully Patel
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
4
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
5
|
Dileep NP, Patel J, Pushkar Y. Evaluation of Ce-MOFs as Photoanode Materials for the Water Oxidation Reaction: The Effect of Doping with [Ru(bpy)(dcbpy)(H 2O) 2] 2+ Catalyst. Inorg Chem 2024; 63:8050-8058. [PMID: 38662572 DOI: 10.1021/acs.inorgchem.3c04632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Artificial photosynthesis stands out as a highly effective method for harnessing sunlight to produce clean and renewable energy. The light-absorbing properties, chemical stability, and high redox activity of Ce-based metal-organic frameworks (MOFs) make them attractive materials for visible-light-driven water splitting. Currently, Ce-based MOFs remain a relatively underexplored system for photocatalytic water oxidation in acidic media. In this study, we synthesized a Ce-MOF with different linkers (1,4-benzenedicarboxylic acid, tetrafluoroterephthalic acid, 2-nitroterephthalic acid, 2,2'-bipyridine-5,5'-dicarboxylic acid, and 4,4'-biphenyldicarboxylic acid), which exhibit light-absorbing capability. Ce-based MOFs doped with [Ru(bpy)(dcbpy)(H2O)2]2+ (MOF-1 and MOF-2) water oxidation catalyst showed an enhanced photoelectrocatalytic current of ∼10-4 A·cm-2 at pH = 1, which is comparable with the [Ru(bpy)(dcbpy)(H2O)2]2+-doped MIL-126 Fe-based MOF. We also demonstrated the long-term durability of Ru-doped Ce-MOFs for photoelectrocatalytic water oxidation under acidic conditions. The as-synthesized MOFs were analyzed with powder X-ray diffraction (PXRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), and electric conductivity measurements. This study contributes to the development of cost-effective materials for sustainable photocatalytic water splitting processes.
Collapse
Affiliation(s)
- Naduvile Purayil Dileep
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jully Patel
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Hoefnagel ME, Rademaker D, Hetterscheid DGH. Directing the Selectivity of Oxygen Reduction to Water by Confining a Cu Catalyst in a Metal Organic Framework. CHEMSUSCHEM 2023; 16:e202300392. [PMID: 37326580 DOI: 10.1002/cssc.202300392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
Electrocatalysis is to play a key role in the transition towards a sustainable chemical and energy industry and active, stable and selective redox catalysts are much needed. Porous structures such as metal organic frameworks (MOFs) are interesting materials as these may influence selectivity of chemical reactions through confinement effects. In this work, the oxygen reduction catalyst Cu-tmpa was incorporated into the NU1000 MOF. Confinement of the catalyst within NU1000 steers the selectivity of the oxygen reduction reaction (ORR) towards water rather than peroxide. This is attributed to retention of the obligatory H2 O2 intermediate in close proximity to the catalytic center. Moreover, the resulting NU1000|Cu-tmpa MOF shows an excellent activity and stability in prolonged electrochemical studies, illustrating the potential of this approach.
Collapse
Affiliation(s)
- Marlene E Hoefnagel
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Dana Rademaker
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| | - Dennis G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, P.O Box 9502, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
7
|
Hu Y, Liu J, Lee C, Li M, Han B, Wu T, Pan H, Geng D, Yan Q. Integration of Metal-Organic Frameworks and Metals: Synergy for Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300916. [PMID: 37066724 DOI: 10.1002/smll.202300916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Electrocatalysis is a highly promising technology widely used in clean energy conversion. There is a continuing need to develop advanced electrocatalysts to catalyze the critical electrochemical reactions. Integrating metal active species, including various metal nanostructures (NSs) and atomically dispersed metal sites (ADMSs), into metal-organic frameworks (MOFs) leads to the formation of promising heterogeneous electrocatalysts that take advantage of both components. Among them, MOFs can provide support and protection for the active sites on guest metals, and the resulting host-guest interactions can synergistically enhance the electrocatalytic performance. In this review, three key concerns on MOF-metal heterogeneous electrocatalysts regarding the catalytic sites, conductivity, and catalytic stability are first presented. Then, rational integration strategies of MOFs and metals, including the integration of metal NSs via surface anchoring, space confining, and MOF coating, as well as the integration of ADMSs either with the metal nodes/linkers or within the pores of MOFs, along with their recent progress on synergistic cooperation for specific electrochemical reactions are summarized. Finally, current challenges and possible solutions in applying these increasingly concerned electrocatalysts are also provided.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Carmen Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Meng Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianci Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Dongsheng Geng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| |
Collapse
|
8
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
9
|
Ezhov R, Ravari AK, Palenik M, Loomis A, Meira DM, Savikhin S, Pushkar Y. Photoexcitation of Fe 3 O Nodes in MOF Drives Water Oxidation at pH=1 When Ru Catalyst Is Present. CHEMSUSCHEM 2023; 16:e202202124. [PMID: 36479638 DOI: 10.1002/cssc.202202124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Artificial photosynthesis strives to convert the energy of sunlight into sustainable, eco-friendly solar fuels. However, systems with light-driven water oxidation reaction (WOR) at pH=1 are rare. Broadly used [Ru(bpy)3 ]2+ (bpy=2,2'-bipyridine) photosensitizer has a fixed +1.23 V potential which is insufficient to drive most water oxidation catalysts (WOCs) in acid, while Fe2 O3 , featuring the highly oxidizing holes, is not stable at low pH. Here, the key examples of Fe-based metal-organic framework (MOF) water oxidation photoelectrocatalysts active at pH=1 are presented. Fe-MIL-126 and Fe MOF-dcbpy structures were formed with 4,4'-biphenyl dicarboxylate (bpdc), 2,2'-bipyridine-5,5'-dicarboxylate (dcbpy) linkers and their mixtures. Presence of dcbpy linkers allows integration of metal-based catalysts via coordination to 2,2'-bipyridine fragments. Fe-based MOFs were doped with Ru-based precursors to achieve highly active MOFs bearing [Ru(bpy)(dcbpy)(H2 O)2 ]2+ WOC. Materials were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR) spectroscopy, resonance Raman, X-ray absorption spectroscopy, fs optical pump-probe, electron paramagnetic resonance (EPR), diffuse reflectance and electric conductivity measurements and were modeled by band structure calculations. It is shown that under reaction conditions, FeIII and RuIII oxidation states are present, indicating rate-limiting electron transfer in MOF. Fe3 O nodes emerge as photosensitizers able to drive prolonged O2 evolution in acid. Further developments are possible via MOF's linker modification for enhanced light absorption, electrical conductivity, reduced MOF solubility in acid, Ru-WOC modification for faster WOC catalysis, or Ru-WOC substitution to 3d metal-based systems. The findings give further insight for development of light-driven water splitting systems based on Earth-abundant metals.
Collapse
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Alireza K Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Mark Palenik
- US Naval Research Laboratory, Washington, 20375, USA
| | - Alexander Loomis
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | | | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, 47907, USA
| |
Collapse
|
10
|
Gibbons B, Cairnie DR, Thomas B, Yang X, Ilic S, Morris AJ. Photoelectrochemical water oxidation by a MOF/semiconductor composite. Chem Sci 2023; 14:4672-4680. [PMID: 37181771 PMCID: PMC10171202 DOI: 10.1039/d2sc06361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Herein, we report the development of a MOF-semiconductor composite film active for water oxidation at a thermodynamic underpotential.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| | - Daniel R. Cairnie
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| | - Benjamin Thomas
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| | - Stefan Ilic
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| | - Amanda J. Morris
- Department of Chemistry, Virginia Polytechnic Institute and State University, Virginia 24060, USA
| |
Collapse
|
11
|
Gibbons B, Cai M, Morris AJ. A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. J Am Chem Soc 2022; 144:17723-17736. [PMID: 36126182 PMCID: PMC9545145 DOI: 10.1021/jacs.2c04144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Metal organic frameworks (MOFs), a class of coordination polymers, gained popularity in the late 1990s with the efforts of Omar Yaghi, Richard Robson, Susumu Kitagawa, and others. The intrinsic porosity of MOFs made them a clear platform for gas storage and separation. Indeed, these applications have dominated the vast literature in MOF synthesis, characterization, and applications. However, even in those early years, there were hints to more advanced applications in light-MOF interactions and catalysis. This perspective focuses on the combination of both light-MOF interactions and catalysis: MOF artificial photosynthetic assemblies. Light absorption, charge transport, H2O oxidation, and CO2 reduction have all been previously observed in MOFs; however, work toward a fully MOF-based approach to artificial photosynthesis remains out of reach. Discussed here are the current limitations with MOF-based approaches: diffusion through the framework, selectivity toward high value products, lack of integrated studies, and stability. These topics provide a roadmap for the future development of fully integrated MOF-based assemblies for artificial photosynthesis.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
12
|
Howe A, Liseev T, Gil-Sepulcre M, Gimbert-Suriñach C, Benet-Buchholz J, Llobet A, Ott S. Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. MATERIALS ADVANCES 2022; 3:4227-4234. [PMID: 35693428 PMCID: PMC9125567 DOI: 10.1039/d2ma00128d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/04/2022] [Indexed: 05/28/2023]
Abstract
A novel tetratopic metallo-linker, [Ru(tda)(py(PhCOOH)2)2], 1, (tda = 2,2':6',2''-terpyridine-6,6''-dicarboxylate; py(PhCOOH)2 = (4,4'-(pyridine-3,5-diyl)dibenzoic acid), that is structurally based on one of the most active molecular water oxidation catalysts has been prepared and fully characterized, including single crystal X-ray diffraction. 1 bears geometric similarities to H4TBAPy (H4TBAPy = 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetrabenzoic acid), i.e. the native linker in NU-1000, which offers the possibility to synthesize NU-1000-Ru mixed linker MOFs solvothermally. Mixed linker MOF formation was demonstrated by powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM), and Ru linker incorporation confirmed by FT-IR, energy-dispersive X-ray (EDX) spectroscopy and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was found that the Ru contents in the final mixed linker MOFs correlate with the amount of Ru linker present during solvothermal synthesis, albeit not in a linear fashion. The cyclic voltammograms (CV) of the mixed linker MOFs are largely dominated by TBAPy-based oxidations with features attributed to 1. Interestingly, Ru linkers near the crystal surface are oxidized directly by interfacial hole transfer form the electrode, while those in the crystal interior can be oxidized indirectly from oxidized TBAPy linkers at more anodic potential. Upon repeated scanning, the CVs show the appearance of new waves that arise from irreversible TBAPy oxidation, as well as from the activation of the Ru-based water oxidation catalyst. Of the materials prepared, the one with the highest Ru content, NU-1000-Ruhigh, was shown to catalyze the electrochemical oxidation of water to dioxygen. The Faradaic efficiency (FE) of the construct is 37%, due to water oxidation being accompanied by oxidative transformations of the TBAPy linkers. Despite the low FE, NU-1000-Ruhigh is still among the best MOF-based water oxidation catalysts, operating by a unique co-linker mediated hole-transport mechanism to supply oxidizing equivalents also to catalysts in the crystal interior.
Collapse
Affiliation(s)
- Andrew Howe
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523 75120 Uppsala Sweden
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007, Tarragona Spain
| | - Timofey Liseev
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523 75120 Uppsala Sweden
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007, Tarragona Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007, Tarragona Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007, Tarragona Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007, Tarragona Spain
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523 75120 Uppsala Sweden
| |
Collapse
|
13
|
Shen CH, Chen YH, Wang YC, Chang TE, Chen YL, Kung CW. Probing the electronic and ionic transport in topologically distinct redox-active metal-organic frameworks in aqueous electrolytes. Phys Chem Chem Phys 2022; 24:9855-9865. [PMID: 35348567 DOI: 10.1039/d2cp00117a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three topologically distinct zirconium-based metal-organic frameworks (Zr-MOFs) constructed from redox-innocent linkers, MOF-808, defective UiO-66, and CAU-24, are synthesized, and the spatially dispersed redox-active manganese sites are post-synthetically immobilized on the hexa-zirconium nodes of these Zr-MOFs. The crystallinity, morphology, porosity, manganese loading, and bulk electrical conductivity of each material are studied. The redox-hopping-based electrochemical reaction between the installed Mn(III) and Mn(IV) occurring within the thin films of these MOFs in aqueous electrolytes is investigated, in the presence of various concentrations of Na2SO4 in the electrolytes. Cyclic voltammetry is used to qualitatively study the redox-hopping process, and chronoamperometry is used to quantify the electrochemically active fractions of manganese sites within the MOF thin film as well as the values of apparent diffusivity for the redox-hopping process. By adjusting the concentration of Na2SO4 in the electrolyte, the rate-determining step for the redox-hopping process can be tuned from ionic transport to electronic transport, and the Mn-decorated MOF-808, which possesses the largest pore size, can achieve the highest value of apparent diffusivity. Findings here shed light on the selection of Zr-MOF as well as the choice of electrolyte concentration for the applications of MOFs in supercapacitors and electrocatalysis relying on such redox-hopping processes in aqueous electrolytes.
Collapse
Affiliation(s)
- Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Yu-Hsiu Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Tzu-En Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - You-Liang Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
14
|
Chang TE, Chuang CH, Chen YH, Wang YC, Gu YJ, Kung CW. Iridium‐functionalized metal–organic framework nanocrystals interconnected by carbon nanotubes competent for electrocatalytic water oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tzu-En Chang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Cheng-Hsun Chuang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Hsiu Chen
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yi-Ching Wang
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Yu-Juan Gu
- National Cheng Kung University Department of Chemical Engineering 1 University Road Tainan City TAIWAN
| | - Chung-Wei Kung
- National Cheng Kung University Department of Chemical Engineering 1 University Road 70101 Tainan TAIWAN
| |
Collapse
|
15
|
Castner AT, Su H, Svensson Grape E, Inge AK, Johnson BA, Ahlquist MSG, Ott S. Microscopic Insights into Cation-Coupled Electron Hopping Transport in a Metal-Organic Framework. J Am Chem Soc 2022; 144:5910-5920. [PMID: 35325542 PMCID: PMC8990995 DOI: 10.1021/jacs.1c13377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, Deapp, that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the Deapp for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.
Collapse
Affiliation(s)
- Ashleigh T Castner
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Hao Su
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Ben A Johnson
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Mårten S G Ahlquist
- Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
16
|
Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. WATER 2022. [DOI: 10.3390/w14030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water oxidation is still one of the most important challenges to develop efficient artificial photosynthetic devices. In recent decades, the development and study of molecular complexes for water oxidation have allowed insight into the principles governing catalytic activity and the mechanism as well as establish ligand design guidelines to improve performance. However, their durability and long-term stability compromise the performance of molecular-based artificial photosynthetic devices. In this context, heterogenization of molecular water oxidation catalysts on electrode surfaces has emerged as a promising approach for efficient long-lasting water oxidation for artificial photosynthetic devices. This review covers the state of the art of strategies for the heterogenization of molecular water oxidation catalysts onto electrodes for (photo)electrochemical water oxidation. An overview and description of the main binding strategies are provided explaining the advantages of each strategy and their scope. Moreover, selected examples are discussed together with the the differences in activity and stability between the homogeneous and the heterogenized system when reported. Finally, the common design principles for efficient (photo)electrocatalytic performance summarized.
Collapse
|
17
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
18
|
Dashtian K, Shahbazi S, Tayebi M, Masoumi Z. A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214097] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Chen K, Downes CA, Goodpaster JD, Marinescu SC. Hydrogen Evolving Activity of Dithiolene-Based Metal-Organic Frameworks with Mixed Cobalt and Iron Centers. Inorg Chem 2021; 60:11923-11931. [PMID: 34352176 DOI: 10.1021/acs.inorgchem.1c00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic systems based on metal-organic frameworks (MOFs) have attracted great attention due to their potential application in commercially viable renewable energy-converting devices. We have recently shown that the cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) framework can catalyze the hydrogen evolution reaction (HER) in fully aqueous media with Tafel slopes as low as 71 mV/dec and near-unity Faradaic efficiency (FE). Taking advantage of the high synthetic tunability of MOFs, here, we synthesize a series of iron and mixed iron/cobalt THT-based MOFs. The incorporation of the iron and cobalt dithiolene moieties is verified by various spectroscopic techniques, and the integrity of the crystalline structure is maintained regardless of the stoichiometries of the two metals. The hydrogen evolving activity of the materials was explored in pH 1.3 aqueous electrolyte solutions. Unlike CoTHT, the FeTHT framework exhibits minimal activity due to a late catalytic onset [-0.440 V versus reversible hydrogen electrode (RHE)] and a large Tafel slope (210 mV/dec). The performance of the mixed-metal MOFs is adversely affected by the incorporation of Fe, where increasing Fe content results in MOFs with lower HER activity and diminished long-term stability and FE for H2 production. It is proposed that the FeTHT domains undergo alternative Faradaic processes under catalytic conditions, which alter its local structure and electrochemical behavior, eventually resulting in a material with diminished HER performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Courtney A Downes
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Fabrizio K, Lazarou KA, Payne LI, Twight LP, Golledge S, Hendon CH, Brozek CK. Tunable Band Gaps in MUV-10(M): A Family of Photoredox-Active MOFs with Earth-Abundant Open Metal Sites. J Am Chem Soc 2021; 143:12609-12621. [PMID: 34370478 DOI: 10.1021/jacs.1c04808] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Titanium-based metal-organic frameworks (Ti-MOFs) have attracted intense research attention because they can store charges in the form of Ti3+ and they serve as photosensitizers to cocatalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both the charge storage and charge transfer depend on the redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on cocatalysts rather than the intrinsic Ti reactivity, in part because Ti-MOFs with open metal sites are rare. Here, we report that the class of Ti-MOFs known as MUV-10 can be synthetically modified to include a range of redox-inactive ions with flexible coordination environments that control the energies of the photoactive orbitals. Lewis acidic cations installed in the MOF cluster (Cd2+, Sr2+, and Ba2+) or introduced to the pores (H+, Li+, Na+, K+) tune the electronic structure and band gaps of the MOFs. Through the use of optical redox indicators, we report the first direct measurement of the Fermi levels (redox potentials) of photoexcited MOFs in situ. Taken together, these results explain the ability of Ti-MOFs to store charges and provide design principles for achieving heterogeneous photoredox chemistry with electrostatic control.
Collapse
|
21
|
Chen K, Ray D, Ziebel ME, Gaggioli CA, Gagliardi L, Marinescu SC. Cu[Ni(2,3-pyrazinedithiolate) 2] Metal-Organic Framework for Electrocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34419-34427. [PMID: 34275268 DOI: 10.1021/acsami.1c08998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The application of metal-organic frameworks (MOFs) as electrocatalysts for small molecule activation has been an emerging topic of research. Previous studies have suggested that two-dimensional (2D) dithiolene-based MOFs are among the most active for the hydrogen evolution reaction (HER). Here, a three-dimensional (3D) dithiolene-based MOF, Cu[Ni(2,3-pyrazinedithiolate)2] (1), is evaluated as an electrocatalyst for the HER. In pH 1.3 aqueous electrolyte solution, 1 exhibits a catalytic onset at -0.43 V vs the reversible hydrogen electrode (RHE), an overpotential (η10 mA/cm2) of 0.53 V to reach a current density of 10 mA/cm2, and a Tafel slope of 69.0 mV/dec. Interestingly, under controlled potential electrolysis, 1 undergoes an activation process that results in a more active catalyst with a 200 mV reduction in the catalytic onset and η10 mA/cm2. It is proposed that the activation process is a result of the cleavage of Cu-N bonds in the presence of protons and electrons. This hypothesis is supported by various experimental studies and density functional theory calculations.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Debmalya Ray
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Michael E Ziebel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Carlo A Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
22
|
Castner AT, Johnson BA, Cohen SM, Ott S. Mimicking the Electron Transport Chain and Active Site of [FeFe] Hydrogenases in One Metal-Organic Framework: Factors That Influence Charge Transport. J Am Chem Soc 2021; 143:7991-7999. [PMID: 34029060 PMCID: PMC8176456 DOI: 10.1021/jacs.1c01361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
[FeFe] hydrogenase
(H2ase) enzymes are effective proton
reduction catalysts capable of forming molecular dihydrogen with a
high turnover frequency at low overpotential. The active sites of
these enzymes are buried within the protein structures, and substrates
required for hydrogen evolution (both protons and electrons) are shuttled
to the active sites through channels from the protein surface. Metal–organic
frameworks (MOFs) provide a unique platform for mimicking such enzymes
due to their inherent porosity which permits substrate diffusion and
their structural tunability which allows for the incorporation of
multiple functional linkers. Herein, we describe the preparation and
characterization of a redox-active PCN-700-based MOF (PCN = porous
coordination network) that features both a biomimetic model of the
[FeFe] H2ase active site as well as a redox-active linker
that acts as an electron mediator, thereby mimicking the function
of [4Fe4S] clusters in the enzyme. Rigorous studies on the dual-functionalized
MOF by cyclic voltammetry (CV) reveal similarities to the natural
system but also important limitations in the MOF-enzyme analogy. Most
importantly, and in contrast to the enzyme, restrictions apply to
the total concentration of reduced linkers and charge-balancing counter
cations that can be accommodated within the MOF. Successive charging
of the MOF results in nonideal interactions between linkers and restricted
mobility of charge-compensating redox-inactive counterions. Consequently,
apparent diffusion coefficients are no longer constant, and expected
redox features in the CVs of the materials are absent. Such nonlinear
effects may play an important role in MOFs for (electro)catalytic
applications.
Collapse
Affiliation(s)
- Ashleigh T Castner
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92023-0358, United States
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
23
|
Shen CH, Chuang CH, Gu YJ, Ho WH, Song YD, Chen YC, Wang YC, Kung CW. Cerium-Based Metal-Organic Framework Nanocrystals Interconnected by Carbon Nanotubes for Boosting Electrochemical Capacitor Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16418-16426. [PMID: 33818075 DOI: 10.1021/acsami.1c02038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, nanocrystals of a cerium-based metal-organic framework (Ce-MOF), Ce-MOF-808, are directly grown on the surface of carboxylic acid-functionalized carbon nanotubes (CNTs) by a facile one-step solvothermal synthesis method. Ce-MOF-CNT nanocomposites with various Ce-MOF-to-CNT ratios are synthesized, and their crystallinity, morphology, porosity, and electrical conductivity are examined. The redox-hopping and electrochemical behaviors of the pristine Ce-MOF in aqueous electrolytes are investigated, suggesting that the pristine Ce-MOF is electrochemically active but possesses a limited charge-transport behavior. As a demonstration, all the Ce-MOF, CNT, and nanocomposites are used as active materials for application in aqueous-based supercapacitors. The capacitive performance of the CNT can be significantly boosted with the help of redox-active Ce-MOF-808 nanocrystals.
Collapse
Affiliation(s)
- Cheng-Hui Shen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yu-Juan Gu
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Wei Huan Ho
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Da Song
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Yi-Ching Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
24
|
Yu D, Jiang ZQ, Lu J, Li YF, Fan WJ, Yang HY, Wen T. Well-Aligned Ni-Heteroatom (N, S) MOF Arrays Enhanced Electrocatalytic Oxygen Evolution Reaction. Inorg Chem 2021; 60:1305-1309. [DOI: 10.1021/acs.inorgchem.0c03348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Du Yu
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Zhi-Qiang Jiang
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Jin Lu
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Yu-Feng Li
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Wen-Juan Fan
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Hai-Yan Yang
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Tian Wen
- Deep-processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| |
Collapse
|
25
|
Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, Balaghi SE, Heidari S, Patzke GR. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chem Soc Rev 2021; 50:2444-2485. [DOI: 10.1039/d0cs00978d] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The recent synthetic and mechanistic progress in molecular and heterogeneous water oxidation catalysts highlights the new, overarching strategies for knowledge transfer and unifying design concepts.
Collapse
Affiliation(s)
- J. Li
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - C. A. Triana
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - W. Wan
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | | | - Y. Zhao
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. E. Balaghi
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - S. Heidari
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| | - G. R. Patzke
- Department of Chemistry
- University of Zurich
- CH-8057 Zurich
- Switzerland
| |
Collapse
|
26
|
Beiler AM, McCarthy BD, Johnson BA, Ott S. Enhancing photovoltages at p-type semiconductors through a redox-active metal-organic framework surface coating. Nat Commun 2020; 11:5819. [PMID: 33199706 PMCID: PMC7669860 DOI: 10.1038/s41467-020-19483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/16/2020] [Indexed: 01/16/2023] Open
Abstract
Surface modification of semiconductors can improve photoelectrochemical performance by promoting efficient interfacial charge transfer. We show that metal-organic frameworks (MOFs) are viable surface coatings for enhancing cathodic photovoltages. Under 1-sun illumination, no photovoltage is observed for p-type Si(111) functionalized with a naphthalene diimide derivative until the monolayer is expanded in three dimensions in a MOF. The surface-grown MOF thin film at Si promotes reduction of the molecular linkers at formal potentials >300 mV positive of their thermodynamic potentials. The photocurrent is governed by charge diffusion through the film, and the MOF film is sufficiently conductive to power reductive transformations. When grown on GaP(100), the reductions of the MOF linkers are shifted anodically by >700 mV compared to those of the same MOF on conductive substrates. This photovoltage, among the highest reported for GaP in photoelectrochemical applications, illustrates the power of MOF films to enhance photocathodic operation. Photoelectrochemical performance is often hindered by sluggish charge transfer at the semiconductor interface. Here, the authors illustrate that a thin film coating made of a conductive metal-organic framework can improve the photovoltage of the underpinning semiconductors.
Collapse
Affiliation(s)
- Anna M Beiler
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120, Uppsala, Sweden.
| |
Collapse
|
27
|
Liseev T, Howe A, Hoque MA, Gimbert-Suriñach C, Llobet A, Ott S. Synthetic strategies to incorporate Ru-terpyridyl water oxidation catalysts into MOFs: direct synthesis vs. post-synthetic approach. Dalton Trans 2020; 49:13753-13759. [PMID: 32996947 PMCID: PMC7116355 DOI: 10.1039/d0dt01890b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Incorporating molecular catalysts into metal-organic frameworks (MOFs) is a promising strategy for improving their catalytic longevity and recyclability. In this article, we investigate and compare synthetic routes for the incorporation of the potent water oxidation catalyst Ru(tda)(pyCO2H)2 (tda = 2,2':6',2''-terpyridine-6,6''-dicarboxylic acid, pyCO2H = iso-nicotinic acid) as a structural linker into a Zr-based UiO-type MOF. The task is challenging with this particular metallo-linker because of the equatorial dangling carboxylates that can potentially compete for Zr-coordination, as well as free rotation of the pyCO2H groups around the HO2CpyRupyCO2H axis. As a consequence, all attempts to synthesize a MOF with the metallo-linker directly under solvothermal conditions led to amorphous materials with the Ru(tda)(pyCO2H)2 linker coordinating to the Zr nodes in ill-defined ways, resulting in multiple waves in the cyclic voltammograms of the solvothermally obtained materials. On the other hand, an indirect post-synthetic approach in which the Ru(tda)(pyCO2H)2 linker is introduced into a preformed edba-MOF (edba = ethyne dibenzoic acid) of UiO topology results in the formation of the desired material. Interestingly, two distinctly different morphologies of the parent edba-MOF have been discovered, and the impact that the morphological difference has on linker incorporation is investigated.
Collapse
Affiliation(s)
- Timofey Liseev
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| | - Andrew Howe
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden. and Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Md Asmaul Hoque
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden.
| |
Collapse
|
28
|
Johnson BA, Ott S. Diagnosing surface versus bulk reactivity for molecular catalysis within metal-organic frameworks using a quantitative kinetic model. Chem Sci 2020; 11:7468-7478. [PMID: 33209240 PMCID: PMC7116375 DOI: 10.1039/d0sc02601h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022] Open
Abstract
Metal-organic frameworks (MOFs) are becoming increasingly popular as heterogenous support matrices for molecular catalysts. Given that reactants, or potentially holes/electrons, need to diffuse into the porous framework as the reaction proceeds, the reaction can possibly take place within the bulk of the particle or be confined to a thin layer at the surface due to transport limitations. Herein, a simple steady-state reaction-diffusion kinetic model is developed to diagnose these two mutually exclusive behaviors in MOF-based systems. The oxygen evolution reaction (OER) driven by a chemical oxidant is presented as an example mechanism. Quantitative metrics for assigning either bulk or surface reactivity are delineated over a wide variety of conditions, and numerical simulations are employed to verify these results. For each case, expressions for the turnover frequency (TOF) are outlined, and it is shown that surface reactivity can influence measured TOFs. Importantly, this report shows how to transition from surface to bulk reactivity and thus identifies which experimental parameters to target for optimizing the efficiency of MOF-based molecular catalyst systems.
Collapse
Affiliation(s)
- Ben A. Johnson
- Department of Chemistry
, Ångström Laboratory
, Uppsala University
,
Box 523
, 751 20 Uppsala
, Sweden
.
;
| | - Sascha Ott
- Department of Chemistry
, Ångström Laboratory
, Uppsala University
,
Box 523
, 751 20 Uppsala
, Sweden
.
;
| |
Collapse
|
29
|
Johnson BA, Beiler AM, McCarthy BD, Ott S. Transport Phenomena: Challenges and Opportunities for Molecular Catalysis in Metal-Organic Frameworks. J Am Chem Soc 2020; 142:11941-11956. [PMID: 32516534 PMCID: PMC7366383 DOI: 10.1021/jacs.0c02899] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Metal-organic frameworks (MOFs) are appealing heterogeneous support matrices that can stabilize molecular catalysts for the electrochemical conversion of small molecules. However, moving from a homogeneous environment to a porous film necessitates the transport of both charge and substrate to the catalytic sites in an efficient manner. This presents a significant challenge in the application of such materials at scale, since these two transport phenomena (charge and mass transport) would need to operate faster than the intrinsic catalytic rate in order for the system to function efficiently. Thus, understanding the fundamental kinetics of MOF-based molecular catalysis of electrochemical reactions is of crucial importance. In this Perspective, we quantitatively dissect the interplay between the two transport phenomena and the catalytic reaction rate by applying models from closely related fields to MOF-based catalysis. The identification of the limiting process provides opportunities for optimization that are uniquely suited to MOFs due to their tunable molecular structure. This will help guide the rational design of efficient and high-performing catalytic MOF films with incorporated molecular catalyst for electrochemical energy conversion.
Collapse
Affiliation(s)
- Ben A. Johnson
- Department of Chemistry −
Ångström Laboratory, Uppsala
University, Box 523, 751 20 Uppsala, Sweden
| | - Anna M. Beiler
- Department of Chemistry −
Ångström Laboratory, Uppsala
University, Box 523, 751 20 Uppsala, Sweden
| | - Brian D. McCarthy
- Department of Chemistry −
Ångström Laboratory, Uppsala
University, Box 523, 751 20 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry −
Ångström Laboratory, Uppsala
University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
30
|
Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
31
|
Chuang C, Kung C. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. ELECTROANAL 2020. [DOI: 10.1002/elan.202060111] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng‐Hsun Chuang
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| |
Collapse
|
32
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 453] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
33
|
Ezhov R, Karbakhsh Ravari A, Page A, Pushkar Y. Water Oxidation Catalyst cis-[Ru(bpy)(5,5′-dcbpy)(H2O)2]2+ and Its Stabilization in Metal–Organic Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roman Ezhov
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Allison Page
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Rasheed T, Rizwan K, Bilal M, Iqbal HMN. Metal-Organic Framework-Based Engineered Materials-Fundamentals and Applications. Molecules 2020; 25:E1598. [PMID: 32244456 PMCID: PMC7180910 DOI: 10.3390/molecules25071598] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 02/05/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a fascinating class of porous crystalline materials constructed by organic ligands and inorganic connectors. Owing to their noteworthy catalytic chemistry, and matching or compatible coordination with numerous materials, MOFs offer potential applications in diverse fields such as catalysis, proton conduction, gas storage, drug delivery, sensing, separation and other related biotechnological and biomedical applications. Moreover, their designable structural topologies, high surface area, ultrahigh porosity, and tunable functionalities all make them excellent materials of interests for nanoscale applications. Herein, an effort has been to summarize the current advancement of MOF-based materials (i.e., pristine MOFs, MOF derivatives, or MOF composites) for electrocatalysis, photocatalysis, and biocatalysis. In the first part, we discussed the electrocatalytic behavior of various MOFs, such as oxidation and reduction candidates for different types of chemical reactions. The second section emphasizes on the photocatalytic performance of various MOFs as potential candidates for light-driven reactions, including photocatalytic degradation of various contaminants, CO2 reduction, and water splitting. Applications of MOFs-based porous materials in the biomedical sector, such as drug delivery, sensing and biosensing, antibacterial agents, and biomimetic systems for various biological species is discussed in the third part. Finally, the concluding points, challenges, and future prospects regarding MOFs or MOF-based materials for catalytic applications are also highlighted.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, NL CP 64849, Mexico
| |
Collapse
|
35
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
36
|
Mukhopadhyay S, Basu O, Nasani R, Das SK. Evolution of metal organic frameworks as electrocatalysts for water oxidation. Chem Commun (Camb) 2020; 56:11735-11748. [DOI: 10.1039/d0cc03659e] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of metal organic framework based water oxidation catalysts is discussed here in connection with various design strategies.
Collapse
Affiliation(s)
| | - Olivia Basu
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Rajendar Nasani
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Samar K. Das
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| |
Collapse
|
37
|
McCarthy BD, Beiler AM, Johnson BA, Liseev T, Castner AT, Ott S. Analysis of Electrocatalytic Metal-Organic Frameworks. Coord Chem Rev 2019; 406. [PMID: 32499663 DOI: 10.1016/j.ccr.2019.213137] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.
Collapse
Affiliation(s)
- Brian D McCarthy
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Anna M Beiler
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Timofey Liseev
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ashleigh T Castner
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
38
|
Mukhopadhyay S, Basu O, Kar A, Das SK. Efficient Electrocatalytic Water Oxidation by Fe(salen)–MOF Composite: Effect of Modified Microenvironment. Inorg Chem 2019; 59:472-483. [DOI: 10.1021/acs.inorgchem.9b02745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Olivia Basu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Aranya Kar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Samar K. Das
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
39
|
McCarthy BD, Liseev T, Beiler AM, Materna KL, Ott S. Facile Orientational Control of M 2L 2P SURMOFs on ⟨100⟩ Silicon Substrates and Growth Mechanism Insights for Defective MOFs. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38294-38302. [PMID: 31549498 PMCID: PMC6907888 DOI: 10.1021/acsami.9b12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Layer-by-layer growth of Cu2(bdc)2(dabco) surface-mounted metal-organic frameworks (SURMOFs) was investigated on silicon wafers treated with different surface anchoring molecules. Well-oriented growth along the [100] and [001] directions could be achieved with simple protocols: growth along the [100] direction was achieved by substrate pretreatment with 80 °C piranha, while growth along the [001] direction was enabled by only rinsing silicon with absolute ethanol. Growth along the [001] direction produced more homogeneous SURMOF films. Optimization to enhance [001]-preferred orientation growth revealed that small changes in the SURMOF growth sequence (the number of rinse steps and linker concentrations) have a noticeable impact on the final film quality and the number of misaligned crystals. This new straightforward protocol was used to successfully grow other layer pillar-type SURMOFs, including the growth of Cu2(bdc)2(bipy) with simultaneous suppression of framework interpenetration.
Collapse
|
40
|
Roy S, Huang Z, Bhunia A, Castner A, Gupta AK, Zou X, Ott S. Electrocatalytic Hydrogen Evolution from a Cobaloxime-Based Metal-Organic Framework Thin Film. J Am Chem Soc 2019; 141:15942-15950. [PMID: 31508946 PMCID: PMC6803166 DOI: 10.1021/jacs.9b07084] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Molecular
hydrogen evolution catalysts (HECs) are synthetically
tunable and often exhibit high activity, but they are also hampered
by stability concerns and practical limitations associated with their
use in the homogeneous phase. Their incorporation as integral linker
units in metal–organic frameworks (MOFs) can remedy these shortcomings.
Moreover, the extended three-dimensional structure of MOFs gives rise
to high catalyst loadings per geometric surface area. Herein, we report
a new MOF that exclusively consists of cobaloximes, a widely studied
HEC, that act as metallo-linkers between hexanuclear zirconium clusters.
When grown on conducting substrates and under applied reductive potential,
the cobaloxime linkers promote electron transport through the film
as well as function as molecular HECs. The obtained turnover numbers
are orders of magnitude higher than those of any other comparable
cobaloxime system, and the molecular integrity of the cobaloxime catalysts
is maintained for at least 18 h of electrocatalysis. Being one of
the very few hydrogen evolving electrocatalytic MOFs based on a redox-active
metallo-linker, this work explores uncharted terrain for greater catalyst
diversity and charge transport pathways.
Collapse
Affiliation(s)
- Souvik Roy
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden
| | - Zhehao Huang
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry , Stockholm University , 106 91 Stockholm , Sweden
| | - Asamanjoy Bhunia
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden
| | - Ashleigh Castner
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden
| | - Arvind K Gupta
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden
| | - Xiaodong Zou
- Berzelii Centre EXSELENT on Porous Materials, Department of Materials and Environmental Chemistry , Stockholm University , 106 91 Stockholm , Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory , Uppsala University , Box 523, 751 20 Uppsala , Sweden
| |
Collapse
|
41
|
Abstract
Metal–organic frameworks (MOFs) are a class of porous materials constructed from metal-rich inorganic nodes and organic linkers. Because of their regular porosity in microporous or mesoporous scale and periodic intra-framework functionality, three-dimensional array of high-density and well-separated active sites can be built in various MOFs; such characteristics render MOFs attractive porous supports for a range of catalytic applications. Furthermore, the electrochemically addressable thin films of such MOF materials are reasonably considered as attractive candidates for electrocatalysis and relevant applications. Although it still constitutes an emerging subfield, the use of MOFs and relevant materials for electrocatalytic applications has attracted much attention in recent years. In this review, we aim to focus on the limitations and commonly seen issues for utilizing MOFs in electrocatalysis and the strategies to overcome these challenges. The research efforts on utilizing MOFs in a range of electrocatalytic applications are also highlighted.
Collapse
|
42
|
Wang YS, Chen YC, Li JH, Kung CW. Toward Metal-Organic-Framework-Based Supercapacitors: Room-Temperature Synthesis of Electrically Conducting MOF-Based Nanocomposites Decorated with Redox-Active Manganese. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900584] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi-Sen Wang
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Yu-Chuan Chen
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Jun-Hong Li
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering; National Cheng Kung University; 1 University Road Tainan City 70101 Taiwan
| |
Collapse
|
43
|
Wen T, Zheng Y, Zhang J, Davey K, Qiao S. Co (II) Boron Imidazolate Framework with Rigid Auxiliary Linkers for Stable Electrocatalytic Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801920. [PMID: 31065521 PMCID: PMC6498129 DOI: 10.1002/advs.201801920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/02/2018] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs) have significant potential for practical application in catalysis. However, many MOFs are shown to be sensitive to aqueous solution. This severely limits application of MOFs in electrocatalytic operations for energy production and storage. Here, a Co (II) boron imidazolate framework CoB(im)4(ndc)0.5 (BIF-91, im = imidazolate, ndc = 2,6-naphthalenedicarboxylate) that is rationally designed and successfully tested for electrocatalytic application in strong alkaline (pH ≈ 14) solution is reported. In such a BIF system, the inherent carboxylate species segment large channel spaces into multiple domains in which each single channel is filled with ndc ligands through the effect of zeolite channel confinement. These ligands, with strong C-H···π interaction, act as a rigid auxiliary linker to significantly enhance the structural stability of the BIF-91 framework. Additionally, the π-conjugated effect in BIF-91 stabilizes dopant Fe (III) at the atomic scale to construct Fe-immobilized BIF-91 (Fe@BIF-91). Due to the synergistic effect between Fe (III) guest and Co (II) in the framework, the Fe@BIF-91 acts as an active and stable electrocatalyst for the oxygen evolution reaction in alkaline solution.
Collapse
Affiliation(s)
- Tian Wen
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Yao Zheng
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Jian Zhang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Kenneth Davey
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Shi‐Zhang Qiao
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| |
Collapse
|
44
|
Matias TA, Rein FN, Rocha RC, Formiga ALB, Toma HE, Araki K. Effects of a strong π-accepting ancillary ligand on the water oxidation activity of weakly coupled binuclear ruthenium catalysts. Dalton Trans 2019; 48:3009-3017. [PMID: 30747931 DOI: 10.1039/c8dt04963g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.14 V for the potential of the [RuIV/V[double bond, length as m-dash]O] process. Moreover, DFT calculations indicated a significant decrease of about 15% on the spin density and oxyl character of the [RuV[double bond, length as m-dash]O]3+ fragment. The significantly lower kcat(O2) for the bpz system was attributed to these combined electronic effects.
Collapse
Affiliation(s)
- Tiago A Matias
- Department of Chemistry, Institute of Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| | | | | | | | | | | |
Collapse
|
45
|
Bae S, Jang JE, Lee HW, Ryu J. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Sanghyun Bae
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ji-Eun Jang
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hyun-Wook Lee
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Jungki Ryu
- Department of Energy Engineering; School of Energy and Chemical Engineering; Ulsan National Institute of Science and Technology (UNIST); 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
46
|
Sun F, Li Q, Xue H, Pang H. Pristine Transition‐Metal‐Based Metal‐Organic Frameworks for Electrocatalysis. ChemElectroChem 2019. [DOI: 10.1002/celc.201801520] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fancheng Sun
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
47
|
Yang T, Yin H, Gao LH, Wang KZ, Yan D. Recent advances in electrodes modified with ruthenium complexes for electrochemical and photoelectrochemical water oxidation. ADVANCES IN INORGANIC CHEMISTRY 2019. [DOI: 10.1016/bs.adioch.2019.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Popov DA, Luna JM, Orchanian NM, Haiges R, Downes CA, Marinescu SC. A 2,2'-bipyridine-containing covalent organic framework bearing rhenium(i) tricarbonyl moieties for CO 2 reduction. Dalton Trans 2018; 47:17450-17460. [PMID: 30499569 DOI: 10.1039/c8dt00125a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of CO2 into higher energy products such as carbon-based fuels and feedstocks is an attractive strategy for mitigating the continuous rise in CO2 emissions associated with the growing global energy demand. Rhenium tricarbonyl complexes bearing 2,2'-bipyridine (2,2'-bpy) ligands are well-established molecular electrocatalysts for the selective reduction of CO2 to CO. Construction of efficient devices for this electrochemical process requires the immobilization of electrocatalysts to electrode surfaces. To integrate Re(2,2'-bpy)(CO)3 fragments into a covalent organic framework (COF), Re(5,5'-diamine-2,2'-bpy)(CO)3Cl (1) was synthesized and electrochemically investigated. Complex 1 is an active and selective electrocatalyst for the reduction of CO2 to CO with excellent faradaic efficiency (99%). The presence of the amine substituents leads to a destabilization of the π* orbital of the 5,5'-diamine-2,2'-bpy ligand with respect to the metal center. Therefore, 1 requires more negative potentials (-2.47 V vs. Fc+/0) to reach the doubly reduced catalytically active species. DFT studies were conducted to understand the electronic structure of 1, and support the destabilizing effect of the amine substituents. The Re-2,2'-bpy fragments were successfully integrated into a COF containing 2,2'-bpy moieties (COF-2,2'-bpy) via a post-metallation synthetic route to generate COF-2,2'-bpy-Re. A composite of COF-2,2'-bpy-Re, carbon black, and polyvinylidene fluoride (PVDF) was readily immobilized onto glassy carbon electrodes and electrocatalytic CO2 reduction to CO was observed at -2.8 V vs. Fc0/+, with a faradaic efficiency of 81% for CO production.
Collapse
Affiliation(s)
- Damir A Popov
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Johnson EM, Haiges R, Marinescu SC. Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37919-37927. [PMID: 30360094 DOI: 10.1021/acsami.8b07795] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The incorporation of homogeneous catalysts for CO2 reduction into extended frameworks has been a successful strategy for increasing catalyst lifetime and activity, but the effects of the linkers on catalysis are underexplored. In this work, a novel rhenium bipyridine complex was synthesized for the purpose of designing a covalent-organic framework (COF) with both metalloporphyrin and metal bipyridine moieties. Investigation of the rhenium complex as a homogeneous catalyst shows a faradaic efficiency of 81(8)% for the electrocatalytic conversion of CO2 to CO upon the addition of methanol as the proton source. Treatment of the rhenium complex with tetra(4-aminophenyl)porphyrin under Schiff base conditions produces the desired COF, as indicated by powder X-ray diffraction (PXRD) studies. Metalation of the porphyrins was accomplished through postsynthetic modification with CoCl2 and FeCl3 metal precursors. The retention of the PXRD peaks and appearance of new Co and Fe peaks in the corresponding X-ray photoelectron spectroscopy spectra suggest the successful incorporation of a secondary metal site into the framework. Cyclic voltammetry measurements display increases in current densities when the atmosphere is changed from N2 to CO2. Controlled potential electrolyses show that the cobalt-postmetalated COF has the highest activity toward CO2 reduction, reaching a faradaic efficiency of 18(2)%.
Collapse
Affiliation(s)
- Eric M Johnson
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Ralf Haiges
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Smaranda C Marinescu
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
50
|
|