1
|
González-Garibay AS, Sandoval G, Torres-González OR, Bastidas-Ramírez BE, Sánchez-Hernández IM, Padilla-Camberos E. Agave-Laurate-Bioconjugated Fructans Decrease Hyperinsulinemia and Insulin Resistance, Whilst Increasing IL-10 in Rats with Metabolic Syndrome Induced by a High-Fat Diet. Pharmaceuticals (Basel) 2024; 17:1036. [PMID: 39204141 PMCID: PMC11357657 DOI: 10.3390/ph17081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic syndrome (MetS) comprises a cluster of metabolic risk factors, which include obesity, hypertriglyceridemia, high blood pressure, and insulin resistance. The purpose of this study was to evaluate the effects of laurate-bioconjugated fructans on pro- and anti-inflammatory cytokines in Wistar rats with MetS induced by a high-fat diet. Laurate-bioconjugated fructans were synthesized with agave fructans, immobilized lipase B, and vinyl laureate as the acylant. Groups were fed a standard diet (NORMAL), a high-fat diet (HFD), or a high-fat diet plus laurate-bioconjugated fructans (FL PREV) for 9 weeks. A fourth group received a high-fat diet for 6 weeks, followed by simultaneous exposure to a high-fat diet and laurate-bioconjugated fructans for 3 additional weeks (FL REV). The dose of laurate-bioconjugated fructans was 130 mg/kg. Laurate-bioconjugated fructans reduced food and energy intake, body weight, body mass index, abdominal circumference, adipose tissue, adipocyte area, serum triglycerides, insulin, insulin resistance, and C-reactive protein but they increased IL-10 protein serum levels and mRNA expression. The impact of laurate-bioconjugated fructans on zoometric and metabolic parameters supports their potential as therapeutic agents to improve obesity, obesity comorbidities, insulin resistance, type 2 diabetes mellitus, and MetS.
Collapse
Affiliation(s)
- Angélica Sofía González-Garibay
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Georgina Sandoval
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Omar Ricardo Torres-González
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Blanca Estela Bastidas-Ramírez
- Department of Molecular Biology and Genomics, Institute of Research on Chronic Degenerative Diseases, University Center of Health Sciences, Universidad de Guadalajara, Sierra Mojada No. 950 Col. Independencia, Guadalajara C.P. 44340, Jalisco, Mexico
| | - Iván Moisés Sánchez-Hernández
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| | - Eduardo Padilla-Camberos
- Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara C.P. 44270, Jalisco, Mexico
| |
Collapse
|
2
|
Quintal Martínez JP, Segura Campos MR. Bioactive compounds and functional foods as coadjuvant therapy for thrombosis. Food Funct 2023; 14:653-674. [PMID: 36601778 DOI: 10.1039/d2fo03171j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death. The most common cardiovascular pathologies are thromboembolic diseases. Antithrombotic therapy prevents thrombus formation or dissolves that previously constituted. However, it presents a high rate of accidents such as gastric bleeding and cerebrovascular embolism. Plant foods and their secondary metabolites have been reported to regulate blood hemostasis. This review article aims to propose plant foods and their metabolites as adjuvant therapy for the management of thromboembolic diseases. Various databases were consulted, using antiplatelet, anticoagulant, and fibrinolytic as key terms. In total, 35 foods and 24 secondary metabolites, via in vitro, in vivo, and clinical studies, have been reported to regulate platelet aggregation, blood coagulation, and fibrinolysis. According to the studies presented in this review, plant foods with effects at concentrations less than 50 μg mL-1 and secondary metabolites with IC50 less than 100 μM can be considered agents with high antithrombotic potential. This review suggests that plant foods and their secondary metabolites should be used to develop foods, ingredients and nutraceuticals with functional properties. The evidence presented in this review shows that plant foods and their bioactive compounds could be used as adjuvants for the treatment and prevention of thrombotic complications. However, further in vivo and clinical trials are required to establish effective and safe doses.
Collapse
|
3
|
Frías-Zepeda ME, Rosales-Castro M, Escalona-Cardoso GN, Paniagua-Castro N. Ethanolic extract of Lippia graveolens stem reduce biochemical markers in a murine model with metabolic syndrome. Saudi J Biol Sci 2022; 29:103422. [PMID: 36117783 PMCID: PMC9474558 DOI: 10.1016/j.sjbs.2022.103422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Metabolic Syndrome (MetS) is a risk to develop metabolic-chronic degenerative disease, it is important to find natural alternatives to help decrease the risk. Mexican oregano has a traditional use in Mexican food, moreover, has pharmacologic effects that can help to reduce risk the metabolic syndrome. The aim of this work was to determine the effect of Mexican oregano ethanolic extract in metabolic syndrome in murine model. Ethanolic extract of Mexican oregano (Lippia graveolens) stem (Ext) had a favorable effect on biochemical markers in a murine model of MetS, induced by injection of monosodium glutamate (MSG). From newborn female mice, two groups were formed: control and the MSG groups, which received a dosage of 2 mg/kg of MSG via subcutaneous injection at the second and fourth postnatal day (PD 2,4), and 4 mg/kg at the PD 6, 8, 10 to induce obesity. On week 13, a part of the MSG group received Ext (group MSG + Ext) at 300 mg/kg, administered orally daily from week 13 to week 18. The results indicated that ethanolic extract of Lippia graveolens stem decreases the percentage of body fat, waist circumference, and body weight gain as well as cholesterol, serum triglyceride concentrations and systolic and diastolic pressure. Insulin and leptin hormone values showed a significant effect with the Ext administration. However, hepatic lipoperoxidation levels of MSG and MSG + Ext groups did not show any statistically significant differences between them, both being higher than the control group. Taking in consideration the results obtained in this study, it is concluded that the administration of Ext had a beneficial effect in the murine model with MetS. This is the first study demonstrating the potential of the polar fraction Lippia graveolens stem in MetS.
Collapse
Affiliation(s)
| | | | | | - Norma Paniagua-Castro
- Instituto Politécnico Nacional-ENCB- Ciudad de México, Physiology Department, Mexico
| |
Collapse
|
4
|
Cocoa ( Theobroma cacao L.) Seed-Derived Peptides Reduce Blood Pressure by Interacting with the Catalytic Site of the Angiotensin-Converting Enzyme. Foods 2021; 10:foods10102340. [PMID: 34681387 PMCID: PMC8534856 DOI: 10.3390/foods10102340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed at determining the effect of cocoa proteins (CP) on the blood pressure, using in silico, in vitro and in vivo approaches. The in silico assay showed 26 Criollo cocoa peptides with alignment in the Blast® analysis. Peptide sequences ranged from 6 to 16 amino acids, with molecular weight ranging from 560.31 to 1548.76 Da. The peptide sequences LSPGGAAV, TSVSGAGGPGAGR, and TLGNPAAAGPF showed the highest theoretical affinity with −8.6, −5.0, and −10.2 kcal/mol, for the angiotensin-converting enzyme (ACE), renin, and angiotensin II type 1 receptor (AT1-R), respectively. The Criollo CP hydrolysates (CPH) presented in vitro ACE inhibitory activity with an IC50 value of 0.49 mg/mL. Furthermore, the orogastric administration of 150 mg CP/kg/day in rats fed a high-fat (HF) diet (HF + CP group) showed a significant decrease in systolic blood pressure (SBP) by 5% (p < 0.001) and diastolic blood pressure (DBP) by 7% (p < 0.001) compared with the HF group. The human equivalent dose (HED) of CP for an adult (60 kg) is 1.45 g per day. These results suggest that the consumption of CP could reduce blood pressure by blocking ACE, and could be used as an ingredient in the elaboration of antihypertensive functional foods.
Collapse
|
5
|
Cocoa-rich chocolate and body composition in postmenopausal women: a randomised clinical trial. Br J Nutr 2021; 125:548-556. [PMID: 32746952 DOI: 10.1017/s0007114520003086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During menopause, women undergo a series of physiological changes that include a redistribution of fat tissue. This study was designed to investigate the effect of adding 10 g of cocoa-rich chocolate to the habitual diet of postmenopausal women daily on body composition. We conducted a 6-month, two-arm randomised, controlled trial. Postmenopausal women (57·2 (sd 3·6) years, n 132) were recruited in primary care clinics. Participants in the control group (CG) did not receive any intervention. Those of the intervention group (IG) received 10 g daily of 99 % cocoa chocolate in addition to their habitual diet for 6 months. This quantity comprises 247 kJ (59 kcal) and 65·4 mg of polyphenols. The primary outcomes were the between-group differences in body composition variables, measured by impendancemetry at the end of the study. The main effect of the intervention showed a favourable reduction in the IG with respect to the CG in body fat mass (-0·63 kg (95 % CI -1·15, -0·11), P = 0·019; Cohen's d = -0·450) and body fat percentage (-0·79 % (95 % CI -1·31, -0·26), P = 0·004; Cohen's d = -0·539). A non-significant decrease was also observed in BMI (-0·20 kg/m2 (95 % CI -0·44, 0·03), P = 0·092; Cohen's d = -0·345). Both the body fat mass and the body fat percentage showed a decrease in the IG for the three body segments analysed (trunk, arms and legs). Daily addition of 10 g of cocoa-rich chocolate to the habitual diet of postmenopausal women reduces their body fat mass and body fat percentage without modifying their weight.
Collapse
|
6
|
Carrizzo A, Izzo C, Forte M, Sommella E, Di Pietro P, Venturini E, Ciccarelli M, Galasso G, Rubattu S, Campiglia P, Sciarretta S, Frati G, Vecchione C. A Novel Promising Frontier for Human Health: The Beneficial Effects of Nutraceuticals in Cardiovascular Diseases. Int J Mol Sci 2020; 21:E8706. [PMID: 33218062 PMCID: PMC7698807 DOI: 10.3390/ijms21228706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) such as hypertension, atherosclerosis, myocardial infarction, and diabetes are a significant public health problem worldwide. Although several novel pharmacological treatments to reduce the progression of CVDs have been discovered during the last 20 years, the better way to contain the onset of CVDs remains prevention. In this regard, nutraceuticals seem to own a great potential in maintaining human health, exerting important protective cardiovascular effects. In the last years, there has been increased focus on identifying natural compounds with cardiovascular health-promoting effects and also to characterize the molecular mechanisms involved. Although many review articles have focused on the individual natural compound impact on cardiovascular diseases, the aim of this manuscript was to examine the role of the most studied nutraceuticals, such as resveratrol, cocoa, quercetin, curcumin, brassica, berberine and Spirulina platensis, on different CVDs.
Collapse
Affiliation(s)
- Albino Carrizzo
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Carmine Izzo
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Maurizio Forte
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Paola Di Pietro
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Eleonora Venturini
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
| | - Michele Ciccarelli
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Gennaro Galasso
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Speranza Rubattu
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S.Andrea, Via di Grottarossa 1035, 00189 Rome, Italy
| | - Petro Campiglia
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| | - Sebastiano Sciarretta
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Giacomo Frati
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 74, 04100 Latina, Italy
| | - Carmine Vecchione
- Department of Angio-Cardio-Neurology, IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (M.F.); (E.V.); (S.R.); (S.S.); (G.F.)
- Department of Medicine and Surgery, University of Salerno, 84081 Baronissi, Italy; (C.I.); (P.D.P.); (M.C.); (G.G.); (P.C.)
| |
Collapse
|
7
|
Coronado-Cáceres LJ, Rabadán-Chávez G, Mojica L, Hernández-Ledesma B, Quevedo-Corona L, Lugo Cervantes E. Cocoa ( Theobroma cacao L.) Seed Proteins' Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Foods 2020; 9:E1359. [PMID: 32992701 PMCID: PMC7599879 DOI: 10.3390/foods9101359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to determine the pancreatic lipase (PL) inhibitory effect of cocoa protein (CP) hydrolysates (CPH) using in silico and in vitro approaches, and an in vivo high-fat diet (HF) obese rat model. The results showed better theoretical affinity on PL for cocoa peptides EEQR, GGER, QTGVQ, and VSTDVNIE released from vicilin and albumins (-6.5, -6.3, -6.2, and -6.1 kcal/mol, respectively). Absorption, distribution, metabolism, and excretion (ADMET) prediction showed the human intestinal absorption (HIA) capacity of orlistat and eight cocoa peptides, demonstrating that they presented a low probability of toxicity with values lower than 0.6, while the orlistat has a high probability of hepatotoxicity with a mean value of 0.9. CPH (degree of hydrolysis of 55%) inhibited PL with an IC50 (concentration needed to inhibit 50% of enzyme activity) value of 1.38 mg/mL. The intragastric administration of 150 mg CP/kg/day to rats increased total lipids and triglycerides excretion in feces, ranging from 11% to 15% compared to the HF-diet. The HF + CP-diet also significantly decreased (p < 0.05) the apparent rate of fat absorption compared with the HF group. These results suggest that CP has anti-obesity potential by inhibiting PL, thus helping to prevent the development of non-communicable diseases.
Collapse
Affiliation(s)
- Luis Jorge Coronado-Cáceres
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Griselda Rabadán-Chávez
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Luis Mojica
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 28049 Madrid, Spain
| | - Lucía Quevedo-Corona
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Wilfrido Massieu s/n esq. Manuel I. Stampa. Col. Unidad Profesional Adolfo López Mateos CP, 07738 Ciudad de México, Mexico;
| | - Eugenia Lugo Cervantes
- Unidad de Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara CP 44270, Mexico; (L.J.C.-C.); (G.R.-C.); (L.M.)
| |
Collapse
|
8
|
Castro MC, Villagarcía H, Nazar A, Arbeláez LG, Massa ML, Del Zotto H, Ríos JL, Schinella GR, Francini F. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. JOURNAL OF ETHNOPHARMACOLOGY 2020; 247:112263. [PMID: 31580944 DOI: 10.1016/j.jep.2019.112263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cocoa extracts rich in polyphenols are used as potential agent for treating diabetes. Cocoa polyphenols have been proved to ameliorate important hallmarks of type-2 diabetes (T2D). They can regulate glucose levels by increasing insulin secretion, promoting β-cell proliferation and a reduction of insulin resistance. In addition, epidemiological evidence indicates that consumption of flavonoid decreases the incidence of T2D. AIM OF THE STUDY T2D is preceded by a prediabetic state in which the endocrine-metabolic changes described in T2D are already present. Since epidemiological evidence indicates that consumption of flavonoid decreases its incidence, we evaluated possible preventive effects of polyphenol-enriched cocoa extract on a model of prediabetes induced by sucrose. MATERIALS AND METHODS We determined circulating parameters and insulin sensitivity indexes, liver protein carbonyl groups and reduced glutathione, liver mRNA expression levels of lipogenic enzymes, expression of different pro-inflammatory mediators, fructokinase activity and liver glycogen content. For that, radioimmunoassay, real-time polymerase chain reaction, Western blot, spectrophotometry, and immunohistochemistry were used. RESULTS We demonstrated that sucrose administration triggered hypertriglyceridemia, insulin-resistance, and liver increased oxidative stress and inflammation markers compared to control rats. Additionally, we found an increase in glycogen deposit, fructokinase activity, and lipogenic genes expression (SREBP-1c, FAS and GPAT) together with a decrease in P-Akt and P-eNOS protein content (P < 0.05). Sucrose-induced insulin resistance, hepatic carbohydrate and lipid dysmetabolism, oxidative stress, and inflammation were effectively disrupted by polyphenol-enriched cocoa extract (PECE) co-administration (P < 0.05). CONCLUSION Dietary administration of cocoa flavanols may be an effective and complementary tool for preventing or reverting T2D at an early stage of its development (prediabetes).
Collapse
Affiliation(s)
- María Cecilia Castro
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Hernán Villagarcía
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Ada Nazar
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Luisa González Arbeláez
- CIC (Centro de Investigaciones Cardiovasculares) (UNLP-CONICET La Plata-FCM), La Plata, Argentina
| | - María Laura Massa
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - Héctor Del Zotto
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Guillermo R Schinella
- Cátedra Farmacología Básica, Facultad de Ciencias Médicas UNLP and CICPBA, La Plata, Argentina
| | - Flavio Francini
- CENEXA (Centro de Endocrinología Experimental y Aplicada) (UNLP-CONICET La Plata-FCM, CEAS-CICPBA), La Plata, Argentina.
| |
Collapse
|
9
|
Anti-obesity effect of cocoa proteins (Theobroma cacao L.) variety “Criollo” and the expression of genes related to the dysfunction of white adipose tissue in high-fat diet-induced obese rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
10
|
Bello M, Méndez-Luna D, Sarmiento V, Correa Basurto J, Najera N, Villarreal F, Ceballos G. Structural and energetic basis for novel epicatechin derivatives acting as GPER agonists through the MMGBSA method. J Steroid Biochem Mol Biol 2019; 189:176-186. [PMID: 30851383 DOI: 10.1016/j.jsbmb.2019.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 12/27/2022]
Abstract
(-)-Epicatechin (Epi) has been demonstrated to activate pathways involved in GPER-stimulated nitric oxide (NO) production via endothelial NO synthase, known as the eNOS/NO pathway. Previous studies combining synthesis of four Epi derivatives demonstrated that Epi and Epi-prop, Epi-4-prop and Epi-5-prop were able to bind GPER by acting as GPER agonists, whereas docking studies allowed observation of structural details of the binding of these derivatives at the GPER binding site. However, due to the nature of past studies, the theoretical methods employed did not allow observation of structural and energetic details linked to ligand binding at the GPER binding site. In this contribution, we explore the structural and energetic changes coupling the binding of Epi and its four derivatives to GPER. To this end, MD simulations on the microsecond scale (1 μs) with an MMGBSA approach were used for each GPER-ligand complex. Energetic analysis demonstrated that incorporation of several aliphatic chains to Epi contributed to increasing the affinity towards the GPER binding site, thus helping to explain the experimental evidence. Structural analysis demonstrated that Epi, Epi-4-prop and Epi-5-prop share more similar interactions at GPER binding sites with similar conformational behavior than with Epi-prop and Epi-Ms. However, Epi-prop had additional residues that could explain its different but related biological effects.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico.
| | - David Méndez-Luna
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | | | - José Correa Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | - Nayelli Najera
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| | | | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico
| |
Collapse
|
11
|
Mariano LNB, Boeing T, da Silva RDCMVDAF, Cechinel-Filho V, Niero R, da Silva LM, de Souza P, Andrade SFD. Preclinical evaluation of the diuretic and saluretic effects of (-)-epicatechin and the result of its combination with standard diuretics. Biomed Pharmacother 2018; 107:520-525. [DOI: 10.1016/j.biopha.2018.08.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
|
12
|
Achacha ( Garcinia humilis) Rind Improves Cardiovascular Function in Rats with Diet-Induced Metabolic Syndrome. Nutrients 2018; 10:nu10101425. [PMID: 30287733 PMCID: PMC6213199 DOI: 10.3390/nu10101425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/27/2022] Open
Abstract
Garcinia humilis is a fruit known as achachairú. It is native to South American countries such as Bolivia, Peru, and Brazil, but it is also cultivated as achacha in northern Australia. The aim of this study was to determine the phytochemicals in achacha rind and pulp and to investigate these components as potential treatments for the symptoms of metabolic syndrome. Both rind and pulp contain procyanidins and citric acid rather than hydroxycitric acid. Male Wistar rats (8⁻9 weeks old) were fed with either high-carbohydrate, high-fat, or corn starch diets for 16 weeks. Intervention groups were fed with either diet supplemented with 1.5% G. humilis rind powder or 2.0% G. humilis pulp for the last 8 weeks of the protocol. Rats fed a high-carbohydrate, high-fat diet exhibited hypertension, dyslipidemia, central obesity, impaired glucose tolerance, and non-alcoholic fatty liver disease. G. humilis rind decreased systolic blood pressure, diastolic stiffness, left ventricular inflammatory cell infiltration, and collagen deposition in high-carbohydrate, high-fat diet-fed rats. However, there was no change in glucose tolerance, body weight, or body composition. Therefore, G. humilis rind, usually a food by-product, but not the edible pulp, showed potential cardioprotection with minimal metabolic changes in a rat model of diet-induced metabolic syndrome.
Collapse
|
13
|
Role of NADPH oxidase pathway in renal protection induced by procyanidin B2: In L-NAME induced rat hypertension model. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
14
|
Rodríguez-Pérez C, Segura-Carretero A, Del Mar Contreras M. Phenolic compounds as natural and multifunctional anti-obesity agents: A review. Crit Rev Food Sci Nutr 2017; 59:1212-1229. [PMID: 29156939 DOI: 10.1080/10408398.2017.1399859] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevalence of obesity worldwide has reached pandemic proportions. Despite the increasing evidence in the implication of phenolic compounds in obesity management, the real effect is not completely understood. The available in vitro and in vivo studies have demonstrated the implication of phenolic compounds in: lowering food intake, decreasing lipogenesis, increasing lipolysis, stimulating fatty acids β-oxidation, inhibiting adipocyte differentiation and growth, attenuating inflammatory responses and suppress oxidative stress. This review encompasses the most recent evidence in the anti-obesity effect of phenolic compounds from plants to different nutraceuticals and functional foods based on the in vitro, in vivo and clinical studies. For that, this review has been focused on popular plant-based products highly consumed today such as cocoa, cinnamon, and olive oil, beverages such as red wine, tea (green, white and black tea) and Hibiscus sabdariffa L. tea, among others.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - Antonio Segura-Carretero
- a Department of Analytical Chemistry , Faculty of Sciences, University of Granada , Avenida Fuentenueva s/n, Granada , Spain
| | - María Del Mar Contreras
- b Department of Analytical Chemistry , Annex C-3 Building, Campus of Rabanales, University of Córdoba , Córdoba , Spain
| |
Collapse
|
15
|
Ludovici V, Barthelmes J, Nägele MP, Enseleit F, Ferri C, Flammer AJ, Ruschitzka F, Sudano I. Cocoa, Blood Pressure, and Vascular Function. Front Nutr 2017; 4:36. [PMID: 28824916 PMCID: PMC5539137 DOI: 10.3389/fnut.2017.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/10/2017] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease (CVD) represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP), improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking) or established CVD (coronary heart disease or heart failure). Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO) synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function.
Collapse
Affiliation(s)
- Valeria Ludovici
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jens Barthelmes
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias P Nägele
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Frank Enseleit
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andreas J Flammer
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Isabella Sudano
- Cardiology, University Heart Center, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|