1
|
Xia Y, Chen H, Qin J, Zhang W, Gao H, Long X, He H, Zhang L, Zhang C, Cao C, Yu L, Chen X, Chen Q. The phthalide compound tokinolide B from Angelica sinensis exerts anti-inflammatory effects through Nur77 binding. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155925. [PMID: 39173278 DOI: 10.1016/j.phymed.2024.155925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Nur77, an orphan member of the nuclear receptor superfamily, regulates inflammatory diseases and is a therapeutic target for treating inflammation. Phthalides in Angelica sinensis exhibit anti-inflammatory activity. PURPOSE This study aimed to screen compounds from A. sinensis phthalide extract that could exert anti-inflammatory activity by targeting Nur77. To provide new theoretical support for better elucidation of Chinese medicine targeting mitochondria to achieve multiple clinical efficacies. METHODS The anti-inflammatory capacity of phthalides was assessed in tumor necrosis factor-alpha (TNF-α)-stimulated HepG2 cells using western blotting. The interaction between phthalides and Nur77 was verified by molecular docking, surface plasmon resonance, and cellular thermal shift assay. Co-immunoprecipitation, western blotting, and immunostaining were performed to determine the molecular mechanisms. The in vivo anti-inflammatory activity of the phthalides was evaluated in a lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute hepatitis and liver injury mouse model of acute hepatitis and liver injury. Finally, the toxicity of phthalide toxicity was assessed in zebrafish experiments. RESULTS Among the 27 phthalide compounds isolated from A. sinensis, tokinolide B (TB) showed the best Nur77 binding capacity and, the best anti-inflammatory activity, which was induced without apoptosis. In vivo and in vitro experiments showed that TB promoted Nur77 translocation from the nucleus to the mitochondria and interacted with tumor necrosis factor receptor-associated factor 2 (TRAF2) and sequestosome 1 (p62) to induce mitophagy for anti-inflammatory functions. TB substantially inhibited LPS/d-GalN-induced acute hepatitis and liver injury in mice. TB also exhibited significantly lower toxicity than celastrol in zebrafish experiments. CONCLUSION These findings suggested that TB inhibits inflammation by promoting Nur77 interaction with TRAF2 and p62, thereby inducing mitophagy. These findings offer promising directions for developing novel anti-inflammatory agents, enhance the understanding of phthalide compounds, and highlight the therapeutic potential of traditional Chinese herbs.
Collapse
Affiliation(s)
- Yongzhen Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Hongli Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Jingbo Qin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China; Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, PR China
| | - Weiyun Zhang
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China
| | - Huachun Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Xu Long
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Hongying He
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Lingyi Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Chunxia Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Chaoqun Cao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Lixue Yu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China
| | - Xiaohui Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, Guangdong, PR China.
| | - Quancheng Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Fujian, Xiamen 361002, PR China.
| |
Collapse
|
2
|
Zhang Y, Kang Q, He L, Chan KI, Gu H, Xue W, Zhong Z, Tan W. Exploring the immunometabolic potential of Danggui Buxue Decoction for the treatment of IBD-related colorectal cancer. Chin Med 2024; 19:117. [PMID: 39210410 PMCID: PMC11360867 DOI: 10.1186/s13020-024-00978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Danggui Buxue (DGBX) decoction is a classical prescription composed of Astragali Radix (AR) and Angelicae Sinensis Radix (ASR), used to enrich blood, and nourish Qi in Chinese medicine, with the potential to recover energy and stimulate metabolism. Chronic inflammation is a risk factor in the development of inflammatory bowel disease (IBD)-related colorectal cancer (CRC). More importantly, AR and ASR have anti-inflammatory and anti-cancer activities, as well as prefiguring a potential effect on inflammation-cancer transformation. We, therefore, aimed to review the immunometabolism potential of DGBX decoction and its components in this malignant transformation, to provide a helpful complement to manage the risk of IBD-CRC. The present study investigates the multifaceted roles of DGBX decoction and its entire components AR and ASR, including anti-inflammation effects, anti-cancer properties, immune regulation, and metabolic regulation. This assessment is informed by a synthesis of scholarly literature, with more than two hundred articles retrieved from PubMed, Web of Science, and Scopus databases within the past two decades. The search strategy employed utilized keywords such as "Danggui Buxue", "Astragali Radix", "Angelicae Sinensis Radix", "Inflammation", and "Metabolism", alongside the related synonyms, with a particular emphasis on high-quality research and studies yielding significant findings. The potential of DGBX decoction in modulating immunometabolism holds promise for the treatment of IBD-related CRC. It is particularly relevant given the heterogeneity of CRC and the growing trend towards personalized medicine, but the precise and detailed mechanism necessitate further in vivo validation and extensive clinical studies to substantiate the immunometabolic modulation and delineate the pathways involved.
Collapse
Affiliation(s)
- Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China
| | - Hui Gu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wenjing Xue
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, SAR, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Wei X, Luo D, Li H, Li Y, Cen S, Huang M, Jiang X, Zhong G, Zeng W. The roles and potential mechanisms of plant polysaccharides in liver diseases: a review. Front Pharmacol 2024; 15:1400958. [PMID: 38966560 PMCID: PMC11222613 DOI: 10.3389/fphar.2024.1400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/30/2024] [Indexed: 07/06/2024] Open
Abstract
Plant polysaccharides (PP) demonstrate a diverse array of biological and pharmacological properties. This comprehensive review aims to compile and present the multifaceted roles and underlying mechanisms of plant polysaccharides in various liver diseases. These diseases include non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), fibrosis, drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). This study aims to elucidate the intricate mechanisms and therapeutic potential of plant polysaccharides, shedding light on their significance and potential applications in the management and potential prevention of these liver conditions. An exhaustive literature search was conducted for this study, utilizing prominent databases such as PubMed, Web of Science, and CNKI. The search criteria focused on the formula "(plant polysaccharides liver disease) NOT (review)" was employed to ensure the inclusion of original research articles up to the year 2023. Relevant literature was extracted and analyzed from these databases. Plant polysaccharides exhibit promising pharmacological properties, particularly in the regulation of glucose and lipid metabolism and their anti-inflammatory and immunomodulatory effects. The ongoing progress of studies on the molecular mechanisms associated with polysaccharides will offer novel therapeutic strategies for the treatment of chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Xianzhi Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Daimin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Haonan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yagang Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Shizhuo Cen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Guoping Zhong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, China
| | - Weiwei Zeng
- Shenzhen Longgang Second People’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Ge Y, Palanisamy S, Kwon MH, Kou F, Uthamapriya RA, Lee DJ, Jeong D, Bao H, You S. Angelica gigas polysaccharide induces CR3-mediated macrophage activation and the cytotoxicity of natural killer cells against HCT-116 cells via NF-κB and MAPK signaling pathways. Int J Biol Macromol 2024; 263:130320. [PMID: 38412933 DOI: 10.1016/j.ijbiomac.2024.130320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-ɣ), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 → 4, 1 → 6, 1 → 3, 6, 1 → 3 and 1 → 3, 4, 6 galactopyranose residues, 1 → 3 arabinofuranose residues, 1 → 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.
Collapse
Affiliation(s)
- Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Duyun Jeong
- Department of Food and Food Service Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
5
|
Li L, Xie J, Zhang Z, Xia B, Li Y, Lin Y, Li M, Wu P, Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int J Biol Macromol 2024; 258:128873. [PMID: 38141704 DOI: 10.1016/j.ijbiomac.2023.128873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Medicinal and edible homologs (MEHs) can be used in medicine and food. The National Health Commission announced that a total of 103 kinds of medicinal and edible homologous plants (MEHPs) would be available by were available in 2023. Diabetes mellitus (DM) has become the third most common chronic metabolic disease that seriously threatens human health worldwide. Polysaccharides, the main component isolated from MEHPs, have significant antidiabetic effects with few side effects. Based on a literature search, this paper summarizes the preparation methods, structural characterization, and antidiabetic functions and mechanisms of MEHPs polysaccharides (MEHPPs). Specifically, MEHPPs mainly regulate PI3K/Akt, AMPK, cAMP/PKA, Nrf2/Keap1, NF-κB, MAPK and other signaling pathways to promote insulin secretion and release, improve glycolipid metabolism, inhibit the inflammatory response, decrease oxidative stress and regulate intestinal flora. Among them, 16 kinds of MEHPPs were found to have obvious anti-diabetic effects. This article reviews the prevention and treatment of diabetes and its complications by MEHPPs and provides a basis for the development of safe and effective MEHPP-derived health products and new drugs to prevent and treat diabetes.
Collapse
Affiliation(s)
- Lan Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Jingchen Xie
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Zhimin Zhang
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Bohou Xia
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yamei Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Yan Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Minjie Li
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China
| | - Ping Wu
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| | - Limei Lin
- College of Pharmacy, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China; Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, No. 300 Xueshi Road, Yuelu District, Changsha 410208, China.
| |
Collapse
|
6
|
Ho PY, Koh YC, Lu TJ, Liao PL, Pan MH. Purple Napiergrass ( Pennisetum purpureum Schumach) Hot Water Extracts Ameliorate High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20701-20712. [PMID: 38088361 DOI: 10.1021/acs.jafc.3c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Purple Pennisetum (Pennisetum purpureum Schumach), a hybrid between Taihucao No. 2 and the local wild species of purple Pennisetum, has dark red stems and leaves due to its anthocyanin content. This study explores the potential of purple napiergrass extracts (PNE) in alleviating obesity and metabolic disorders induced by a high-fat diet in mice, where 50% of the caloric content is derived from fat. Mice were orally administered low-dose or high-dose PNE alongside a high-fat diet. Experimental findings indicate that PNE attenuated weight gain, reduced liver, and adipose tissue weight, and lowered blood cholesterol, triglyceride, low-density lipoprotein, and blood sugar levels. Stained sections showed that PNE inhibited lipid accumulation and fat hypertrophy in the liver. Immunoblotting analysis suggested that PNE improved the inflammatory response associated with obesity, dyslipidemia, and hyperglycemia induced by a high-fat diet. Furthermore, PNE potentially functions as a PPAR-γ agonist, increasing the adiponectin (ADIPOQ) concentration and suppressing inflammatory factors, while elevating the anti-inflammatory factor interleukin-10 (IL-10) in the liver. PNE-treated mice showed enhanced activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) and AMP-activated protein kinase (AMPK) pathways and increased fatty acid oxidation and liver lipolysis. In conclusion, this study elucidated the mechanisms underlying the anti-inflammatory, PI3K/Akt, and AMPK pathways in a high-fat diet-induced obesity model. These findings highlight the potential of PNE in reducing weight, inhibiting inflammation, and improving blood sugar and lipid levels, showing the potential for addressing obesity-related metabolic disorders in humans.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
| | - Po-Lin Liao
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec.2, Linong Street, Taipei 11221 Taiwan ROC
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan ROC
- Department of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan ROC
- Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
7
|
Bai FY, Bi SJ, Yue SJ, Xu DQ, Fu RJ, Sun Y, Sun XH, Tang YP. The serum lipidomics reveal the action mechanism of Danggui-Yimucao herbal pair in abortion mice. Biomed Chromatogr 2023; 37:e5717. [PMID: 37580977 DOI: 10.1002/bmc.5717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/05/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Medical abortion is a common medical procedure that women choose to terminate an unwanted pregnancy, but it often brings post-abortion complications. Danggui (Angelica sinensis Radix)-Yimucao (Leonuri Herba), as a herbal pair (DY) in clinical prescriptions of traditional Chinese medicine, is often used in the treatment of gynecological diseases and has the traditional functions of tonifying the blood, promoting blood circulation, removing blood stasis and regulating menstruation. In this study, serum lipidomics were adopted to dissect the mechanism of DY in promoting recovery after medical abortion. A total of 152 differential metabolites were screened by lipidomics. All metabolites were imported into MetaboAnalyst for analysis, and finally key metabolic pathways such as glycerophospholipid metabolism, linoleic acid metabolism and pentose and glucuronate interconversions were enriched. Our results indicated that metabolic disorders in abortion mice were alleviated by DY through glycerophospholipid metabolism, while prostaglandin and leukotriene metabolites might be the key targets of DY to promote post-abortion recovery.
Collapse
Affiliation(s)
- Feng-Yun Bai
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| | - Ying Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Xiao-Hu Sun
- Shaanxi Eastantai Pharmaceutical Co. Ltd, Xianyang, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
8
|
Tang X, Yang L, Miao Y, Ha W, Li Z, Mi D. Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: an integrated gut microbiota and metabolism analysis. BMC Microbiol 2023; 23:281. [PMID: 37784018 PMCID: PMC10546737 DOI: 10.1186/s12866-023-03029-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Angelica polysaccharides (AP) have numerous benefits in relieving type 2 diabetes (T2D). However, the underlying mechanisms have yet to be fully understood. Recent many reports have suggested that altering gut microbiota can have adverse effects on the host metabolism and contribute to the development of T2D. Here, we successfully established the T2D model using the male KKAy mice with high-fat and high-sugar feed. Meanwhile, the male C57BL/6 mice were fed with a normal feed. T2D KKAy mice were fed either with or without AP supplementation. In each group, we measured the mice's fasting blood glucose, weight, and fasting serum insulin levels. We collected the cecum content of mice, the gut microbiota was analyzed by targeted full-length 16S rRNA metagenomic sequencing and metabolites were analyzed by untargeted-metabolomics. RESULTS We found AP effectively alleviated glycemic disorders of T2D KKAy mice, with the changes in gut microbiota composition and function. Many bacteria species and metabolites were markedly changed in T2D KKAy mice and reversed by AP. Additionally, 16 altered metabolic pathways affected by AP were figured out by combining metagenomic pathway enrichment analysis and metabolic pathway enrichment analysis. The key metabolites in 16 metabolic pathways were significantly associated with the gut microbial alteration. Together, our findings showed that AP supplementation could attenuate the diabetic phenotype. Significant gut microbiota and gut metabolite changes were observed in the T2D KKAy mice and AP intervention. CONCLUSIONS Administration of AP has been shown to improve the composition of intestinal microbiota in T2D KKAy mice, thus providing further evidence for the potential therapeutic application of AP in the treatment of T2D.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong City, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zheng Li
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China.
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China.
| |
Collapse
|
9
|
Li M, Cheng D, Peng C, Huang Y, Geng J, Huang G, Wang T, Xu A. Therapeutic mechanisms of the medicine and food homology formula Xiao-Ke-Yin on glucolipid metabolic dysfunction revealed by transcriptomics, metabolomics and microbiomics in mice. Chin Med 2023; 18:57. [PMID: 37202792 DOI: 10.1186/s13020-023-00752-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND In recent decades, the prevalence of metabolic diseases, particularly diabetes, hyperlipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD), has increased dramatically, causing great public health and economic burdens worldwide. Traditional Chinese medicine (TCM) serves as an effective therapeutic choice. Xiao-Ke-Yin (XKY) is a medicine and food homology TCM formula consisting of nine "medicine and food homology" herbs and is used to ameliorate metabolic diseases, such as insulin resistance, diabetes, hyperlipidemia and NAFLD. However, despite its therapeutic potential in metabolic disorders, the underlying mechanisms of this TCM remain unclear. This study aimed to evaluate the therapeutic effectiveness of XKY on glucolipid metabolism dysfunction and explore the potential mechanisms in db/db mice. METHODS To verify the effects of XKY, db/db mice were treated with different concentrations of XKY (5.2, 2.6 and 1.3 g/kg/d) and metformin (0.2 g/kg/d, a hypoglycemic positive control) for 6 weeks, respectively. During this study, we detected the body weight (BW) and fasting blood glucose (FBG), oral glucose tolerance test (OGTT), insulin tolerance test (ITT), daily food intake and water intake. At the end of the animal experiment, blood samples, feces, liver and intestinal tissue of mice in all groups were collected. The potential mechanisms were investigated by using hepatic RNA sequencing, 16 S rRNA sequencing of the gut microbiota and metabolomics analysis. RESULTS XKY efficiently mitigated hyperglycemia, IR, hyperlipidemia, inflammation and hepatic pathological injury in a dose dependent manner. Mechanistically, hepatic transcriptomic analysis showed that XKY treatment significantly reversed the upregulated cholesterol biosynthesis which was further confirmed by RT-qPCR. Additionally, XKY administration maintained intestinal epithelial homeostasis, modulated gut microbiota dysbiosis, and regulated its metabolites. In particular, XKY decreased secondary bile acid producing bacteria (Clostridia and Lachnospircaeae) and lowered fecal secondary bile acid (lithocholic acid (LCA) and deoxycholic acid (DCA)) levels to promote hepatic bile acid synthesis by inhibiting the LCA/DCA-FXR-FGF15 signalling pathway. Furthermore, XKY regulated amino acid metabolism including arginine biosynthesis, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and tryptophan metabolism likely by increasing Bacilli, Lactobacillaceae and Lactobacillus, and decreasing Clostridia, Lachnospircaeae, Tannerellaceae and Parabacteroides abundances. CONCLUSION Taken together, our findings demonstrate that XKY is a promising "medicine food homology" formula for ameliorating glucolipid metabolism and reveal that the therapeutic effects of XKY may due to its downregulation of hepatic cholesterol biosynthesis and modulation of the dysbiosis of the gut microbiota and metabolites.
Collapse
Affiliation(s)
- Mei Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ding Cheng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chuan Peng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujiao Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Geng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
10
|
Xu X, Wang L, Zhang K, Zhang Y, Fan G. Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomed Pharmacother 2023; 161:114538. [PMID: 36931026 DOI: 10.1016/j.biopha.2023.114538] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/25/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Metabolic diseases have become a public health problem worldwide. Effective, novel and natural therapies are urgently needed to treat metabolic diseases. As natural bioactive compounds, polysaccharides have many physiological and medicinal properties. Recently, herb-derived polysaccharides have shown beneficial effects in the treatment of metabolic diseases, but the underlying mechanisms remain unclear. This review comprehensively summarizes the pharmacological progress and clinical evidence of herb-derived polysaccharides in the treatment of three metabolic diseases, namely type 2 diabetes mellitus, nonalcoholic fatty liver disease and obesity, and more importantly, discusses the molecular mechanism involved. Existing evidence has proved that herb-derived polysaccharides can maintain glucose homeostasis, promote insulin secretion, improve insulin resistance, reduce weight gain and hepatic steatosis, inhibit lipogenesis, alleviate oxidative stress and inflammation, and improve gut microbiota disorders in rodents with metabolic diseases. Notably, so far, human clinical trials of herb-derived polysaccharides for these three metabolic diseases remain rare. All in all, herb-derived polysaccharides may have good potential as drug candidates for the prevention and management of metabolic diseases. More high-quality clinical trials are needed to further validate its effectiveness and safety in human subjects.
Collapse
Affiliation(s)
- Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
11
|
Abstract
Zhao Y, Liu C, Zhang X, Yan X. Angelica polysaccharide alleviates TNF-α-induced MIN6 cell damage a through the up-regulation microRNA-143. BioFactors. 2022;49:200. https://doi.org/10.1002/biof.1588 This article, published online on 20 November 2019 in Wiley Online Library, has been retracted by agreement between the International Union of Biochemistry and Molecular Biology, the Editor in Chief (Dr. Angelo Azzi), and Wiley Periodicals LLC. The retraction has been agreed following an investigation based on allegations raised by a third party. Evidence for image manipulation was found in figures 1, 2, 4, and 5. As a result, the conclusions of this article are considered to be invalid.
Collapse
|
12
|
Effects of Rice-Husk Silica Liquid in Streptozotocin-Induced Diabetic Mice. Metabolites 2022; 12:metabo12100964. [PMID: 36295866 PMCID: PMC9611213 DOI: 10.3390/metabo12100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus is a complex multifactorial disease characterized by poor glucose tolerance and insulin resistance. Rice-husk silica liquid (RHSL) derived from rice husk has the ability to improve the dysfunction of pancreatic β-cells. This study aimed to confirm the potential protective effects of RHSL in streptozotocin (STZ)-induced diabetic mice. Diabetes was induced in male C57BL/6J mice by intraperitoneal administration of STZ (200 mg/kg BW). RHSL, food-grade silica liquid (FDSL), and rosiglitazone (RSG) were administered to diabetic mice for 12 weeks after successful induction of diabetes. During the experiment, fasting blood glucose, serum insulin, and organ weights were measured. The histopathology of liver tissue was evaluated by H&E staining. Western blotting was performed to assess protein expression levels. The results showed that RHSL significantly reversed the serum insulin levels and improved oral glucose tolerance test (OGTT) results (p < 0.05). In addition, liver sections of STZ-induced diabetic mice after RHSL treatment showed neatly arranged and intact hepatocytes. Furthermore, RHSL was more effective than FDSL in increasing the expression of SIRT1 and decreasing the expression of the PPAR-γ and p-NF-κB proteins. Taken together, this study demonstrated that RHSL ameliorated STZ-induced insulin resistance and liver tissue damage in C57BL/6J mice.
Collapse
|
13
|
Siddiqui NZ, Rehman AU, Yousuf W, khan AI, Farooqui NA, Zang S, Xin Y, Wang L. Effect of crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) on gut microbiota restoration and anti-diabetic activity in streptozotocin (STZ)-induced T1DM mice. Gut Pathog 2022; 14:39. [PMID: 36115959 PMCID: PMC9482207 DOI: 10.1186/s13099-022-00512-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Type-1 Diabetes Mellitus (T1DM) is regarded as a multifunctional, immune-related disease which causes massive destruction of islet β-cells in pancreas resulting in hyperglycemic, hypoinsulinemia and hyperlipidimic conditions. The aim of the present study, was to investigate the hypothesis that streptozotocin (STZ)-induced T1DM in Balb/c mice when treated with crude polysaccharide from seaweed, Dictyopteris divaricata (CDDP) depicts improvement in diabetes-related symptoms. Treatment with CDDP resulted in decreased body weight loss, improved food consumption and water intake disbalances. The CDDP effectively improved fasting blood glucose, oral glucose tolerance (OGTT), serum insulin, insulin secretion, rejuvenation of β-cells mass, serum lipid profile and pro-inflammatory cytokines levels. Additionally, treatment with CDDP increased the population of beneficial bacteria such as Firmicutes, Bacteroidetes and Lactobacillus at phylum, family and genus levels by 16S rRNA sequencing. Furthermore, immunohistological examination confirmed that CDDP reduces the inflammation and restored the structural morphology of colon and upraised the levels of insulin receptor substrate-1 (IRS-1), Mucin-2 (MUC-2) and tight-junction proteins (TJs) whereby maintaining the gut structures and barrier permeability. Thus, the above presented data, highlights the safe and therapeutic effects of crude polysaccharide (CDDP) from D. divaricata in the treatment and restoration of T1DM disorders and can be used as a food supplement alternative to diabetes medicine.
Collapse
|
14
|
Chi MH, Chao J, Ko CY, Huang SS. An Ethnopharmaceutical Study on the Hypolipidemic Formulae in Taiwan Issued by Traditional Chinese Medicine Pharmacies. Front Pharmacol 2022; 13:900693. [PMID: 36188612 PMCID: PMC9520573 DOI: 10.3389/fphar.2022.900693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Globally, approximately one-third of ischemic heart diseases are due to hyperlipidemia, which has been shown to cause various metabolic disorders. This study was aimed to disassemble and analyze hypolipidemic formulae sold by traditional Chinese medicine (TCM) pharmacies. Using commonly used statistical parameters in ethnopharmacology, we identified the core drug combination of the hypolipidemic formulae, thereby exploring the strategy by which the Taiwanese people select hypolipidemic drugs. Most important of all, we preserved the inherited knowledge of TCM. We visited 116 TCM pharmacies in Taiwan and collected 91 TCM formulae. The formulae were mainly disassembled by macroscopical identification, and the medicinal materials with a relative frequency of citation (RFC) >0.2 were defined as commonly used medicinal materials. Subsequently, we sorted the information of medicinal materials recorded in the Pharmacopeia, searched for modern pharmacological research on commonly used medicinal materials using PubMed database, and visualized data based on the statistical results. Finally, the core hypolipidemic medicinal materials used in folk medicine were obtained. Of the 91 TCM formulae collected in this study, 80 traditional Chinese medicinal materials were used, belonging to 43 families, predominantly Lamiaceae. Roots were the most commonly used part as a medicinal material. There were 17 commonly used medicinal materials. Based on medicinal records in Pharmacopeia, most flavors and properties were warm and pungent, the majority traditional effects were “tonifying and replenishing” and “blood-regulating.” Besides, the targeted diseases searching from modern pharmacological studies were diabetes mellitus and dyslipidemia. The core medicinal materials consisted of Astragalus mongholicus Bunge and Crataegus pinnatifida Bunge, and the core formulae were Bu-Yang-Huan-Wu-Tang and Xie-Fu-Zhu-Yu-Tang. In addition, 7 groups of folk misused medicinal materials were found. Although these TCMs have been used for a long period of time, their hypolipidemic mechanisms remain unclear, and further studies are needed to validate their safety and efficacy.
Collapse
Affiliation(s)
- Min-Han Chi
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Jung Chao
- Master Program for Food and Drug Safety, Chinese Medicine Research Center, Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Chien-Yu Ko
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Shyh-Shyun Huang,
| |
Collapse
|
15
|
Lin J, Wen J, Xiao N, Cai YT, Xiao J, Dai W, Chen JP, Zeng KW, Liu F, Du B, Li P. Anti-diabetic and gut microbiota modulation effects of sacha inchi (Plukenetia volubilis L.) leaf extract in streptozotocin-induced type 1 diabetic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4304-4312. [PMID: 35043419 DOI: 10.1002/jsfa.11782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/17/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sacha inchi (Plukenetia volubilis L.) tea has been used as an adjuvant treatment for diabetes in Pu'er, in the Yunnan province of China. The effects of sacha inchi tea on diabetes and the underlying mechanisms remain unknown. This study was conducted to investigate the influence of a water extract of sacha inchi (P. volubilis L.) leaves (PWE) on hypoglycemic activity and gut microbiota composition in mice with streptozotocin (STZ)-induced type 1 diabetes mellitus (T1DM). During the 6 weeks of the study, T1DM mice were administered PWE intragastrically at 400 mg kg-1 body weight (BW) per day. RESULTS Treatment with PWE reduced excessive loss of BW and excessive intake of food. It significantly decreased blood glucose levels and improved oral glucose tolerance. The treatment caused protective histopathological transformations in sections of the pancreas, leading to decreased insulin resistance and improved insulin sensitivity. Treatment with PWE also significantly ameliorated disorders of the gut microbiota structure and increased the richness and diversity of intestinal microbial species in T1DM mice. At the genus level, the populations of several crucial bacteria, such as Akkermansia, Parabacteroides, and Muribaculum increased in the PWE treatment group but the abundance of Ruminiclostridium and Oscillibacter decreased. CONCLUSIONS Treatment with PWE can ameliorate hyperglycemic symptoms in STZ-induced T1DM mice, and the anti-diabetic effect of PWE was related to the amelioration of gut microbial structural disorder and the enrichment of functional bacteria. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinming Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiamin Wen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu-Tong Cai
- School of Data Science, The Chinese University of Hong Kong, Shenzhen, Longgang District, Shenzhen, China
| | - Jie Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenhao Dai
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian-Ping Chen
- School of Chinese Medicine, LKS faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fengsong Liu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Advances in oral absorption of polysaccharides: Mechanism, affecting factors, and improvement strategies. Carbohydr Polym 2022; 282:119110. [DOI: 10.1016/j.carbpol.2022.119110] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
|
17
|
He Z, Guo T, Cui Z, Xu J, Wu Z, Yang X, Hu H, Mei H, Zhou J, Zhang Y, Wang K. New understanding of Angelica sinensis polysaccharide improving fatty liver: The dual inhibition of lipid synthesis and CD36-mediated lipid uptake and the regulation of alcohol metabolism. Int J Biol Macromol 2022; 207:813-825. [PMID: 35358574 DOI: 10.1016/j.ijbiomac.2022.03.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/01/2022]
Abstract
Angelica sinensis polysaccharide (ASP) has presented increasingly recognized lipid regulation and antioxidant abilities. However, there is little direct evidence to explain why ASP possesses the observed lipid-lowering and anti-oxidation effects. In vivo and in vitro models of alcoholic fatty liver disease (AFLD) were established to examine the direct effect of ASP on hepatic fat accumulation. Our results showed that the lipid-lowering effect of ASP might result from the dual inhibition of lipid synthesis and CD36-mediated lipid uptake. The antioxidation of ASP might be attributed to the reversal of alcohol metabolic pathways from CYP2E1 catalysis to ADH catalysis. Taken together, the study demonstrated the direct role of ASP in lipid metabolism for the first time and revealed the underlying mechanism of reducing ROS, providing an available strategy for ASP as a potential agent to treat AFLD.
Collapse
Affiliation(s)
- Zihao He
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Tingting Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Zhijing Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Xiawen Yang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China
| | - Huiping Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Jing Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, PR China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, PR China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, PR China.
| |
Collapse
|
18
|
Liu S, Jia QJ, Peng YQ, Feng TH, Hu ST, Dong JE, Liang ZS. Advances in Mechanism Research on Polygonatum in Prevention and Treatment of Diabetes. Front Pharmacol 2022; 13:758501. [PMID: 35211009 PMCID: PMC8861320 DOI: 10.3389/fphar.2022.758501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus is a fast-growing disease with a major influence on people’s quality of life. Oral hypoglycemic drugs and insulin are currently the main effective drugs in the treatment of diabetes, but chronic consumption of these drugs has certain side effects. Polysaccharides, saponins, flavonoids, and phenolics are the primary secondary metabolites isolated from the rhizomes of Polygonatum sibiricum Redouté [Asparagaceae], Polygonatum kingianum Collett & Hemsl [Asparagaceae], or Polygonatum cyrtonema Hua [Asparagaceae], which have attracted much more attention owing to their unique therapeutic role in the treatment and prevention of diabetes. However, the research on the mechanism of these three Polygonatum spp. in diabetes has not been reviewed. This review provides a summary of the research progress of three Polygonatum spp. on diabetes and its complications, reveals the potential antidiabetic mechanism of three Polygonatum spp., and discusses the effect of different processed products of three Polygonatum spp. in treating diabetes, for the sake of a thorough understanding of its effects on the prevention and treatment of diabetes and diabetes complications.
Collapse
Affiliation(s)
- Shuang Liu
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Qiao-Jun Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yi-Qing Peng
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Ting-Hui Feng
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Shu-Ting Hu
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Juan-E Dong
- College of Life Sciences, Northwest A & F University, Xi'an, China
| | - Zong-Suo Liang
- College of Life Sciences, Northwest A & F University, Xi'an, China.,College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Dou Z, Liu C, Feng X, Xie Y, Yue H, Dong J, Zhao Z, Chen G, Yang J. Camel whey protein (CWP) ameliorates liver injury in type 2 diabetes mellitus rats and insulin resistance (IR) in HepG2 cells via activation of the PI3K/Akt signaling pathway. Food Funct 2022; 13:255-269. [PMID: 34897341 DOI: 10.1039/d1fo01174j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This research investigated the effects of camel whey protein (CWP) treatment on type 2 diabetes mellitus (T2DM) rats and insulin resistance (IR) HepG2 cell models. Body weight and fasting blood glucose were observed in type 2 diabetes mellitus (T2DM) rats every week, and biochemical parameters in serum samples were evaluated after 6 weeks. Antioxidant activity in the liver was estimated, and histological examination of the liver tissues was conducted. After CWP treatment, the glucose uptake and lipid accumulation were examined in insulin-resistant HepG2 cells. Our results indicated that CWP mitigated the body weight loss, reversed dyslipidemia, and inhibited the inflammatory response, in T2DM rats. Meanwhile, it protected the liver from being injured by reducing the level of oxidative stress. In the CWP group, the pathological changes were significantly reduced, while the liver lobule structure, liver cell arrangement, as well as congestion, edema, and vacuolization were improved. Our results from quantitative real-time PCR and western blot analyses showed that CWP could up-regulate the expression levels of insulin receptor substrate-2 (IRS-2), phosphoinositide3-kinase (PI3K), protein kinase B (AKT), and glycogen synthase (GS). An active protein component CWP8 was isolated and identified, which was shown to be able to stimulate glycogen synthesis and ameliorate lipid accumulation in IR HepG2 cells. These data indicate that CWP and CWP8 might act as potential natural products regulating glucose and lipid metabolism in T2DM.
Collapse
Affiliation(s)
- Zhihua Dou
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Chen Liu
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Xinhuan Feng
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Yutong Xie
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Haitao Yue
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China. .,Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, Xinjiang, 830046, China
| | - Jing Dong
- Xinjiang Bactrian Camel Research Institute, Fuhai, Xinjiang, 836400, China.,Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, Xinjiang, 830046, China
| | - Zhongkai Zhao
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China.
| | - Gangliang Chen
- Xinjiang Bactrian Camel Research Institute, Fuhai, Xinjiang, 836400, China.,Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, Xinjiang, 830046, China
| | - Jie Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China. .,Xinjiang Camel Industry Engineering Technology Research Center, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
20
|
Zhang Y, Li Y, Zhao J, Wang C, Deng B, Zhang Q, Shi C. Protective Effects and Mechanisms of Polyethylene Glycol Loxenatide Against Hyperglycemia and Liver Injury in db/db diabetic Mice. Front Pharmacol 2021; 12:781856. [PMID: 34938192 PMCID: PMC8685428 DOI: 10.3389/fphar.2021.781856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/22/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a metabolic disorder with insulin resistance and impaired insulin secretion that can cause complications, including liver injury. Polyethylene glycol loxenatide (PEG-Loxe), a glucagon-like peptide-1 (GLP-1) analog, is widely used to treat T2DM. However, its specific glucose-lowering and hepatoprotective mechanisms of action have not been established yet. METHODS: Using a high glucose-induced hepatocyte injury model and a type 2 diabetic db/db mouse model, we assessed PEG-Loxe’s impact on reducing blood glucose and improving liver injury in T2DM and revealed its mechanism. RESULTS: PEG-Loxe treatment significantly reduced body weight and fasting glucose, increased glucose tolerance, improved serum and liver biochemical parameters (glycated hemoglobin, serum insulin, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, and aspartate aminotransferase), and attenuated hepatic steatosis and liver and pancreatic tissue damages in db/db mice. Additionally, PEG-Loxe considerably inhibited oxidative stress, decreased pro-inflammatory factor (TNF-α, IL-6, and MCP-1) levels, and increased anti-inflammatory factor IL-10 levels. PEG-Loxe possibly inhibits hepatic lipid synthesis, oxidative stress, and inflammatory response by upregulating Sirt1, p-AMPK, and p-ACC expressions in the Sirt1/AMPK/ACC pathway of lipid metabolism, thereby improving T2DM liver injury. PEG-Loxe most likely also promotes GLP-1R expression by inhibiting β-cell apoptosis, which in turn activates the insulin PI3K/AKT pathway to promote insulin synthesis and secretion, thereby exerting hypoglycemic effects. In vitro cellular experiments further confirmed that PEG-Loxe possibly exerts hypoglycemic effects by activating the insulin PI3K/AKT pathway. Conclusion: PEG-Loxe improved liver injury in T2DM probably by activating Sirt1/AMPK/ACC lipid metabolism pathway, and exerted hypoglycemic effects through activation of insulin PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yufeng Li
- Preclinical Development Department, Shanghai Hansoh Biomedical Co., Ltd., Shanghai, China
| | - Junjun Zhao
- Pharmaceutical Research Institute, Jiangsu Hansoh Pharmaceutical Group Co. Ltd., Lianyungang, China
| | - Cong Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Bin Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
21
|
Li E, Long X, Liao S, Pang D, Li Q, Zou Y. Effect of mulberry galacto-oligosaccharide isolated from mulberry on glucose metabolism and gut microbiota in a type 2 diabetic mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Nai J, Zhang C, Shao H, Li B, Li H, Gao L, Dai M, Zhu L, Sheng H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol 2021; 183:2337-2353. [PMID: 34090852 DOI: 10.1016/j.ijbiomac.2021.05.213] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the main active components of Angelica sinensis (AS) that is widely used in traditional Chinese medicine. ASP is water-soluble polysaccharides, and it is mainly composed of glucose (Glc), galactose (Gal), arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl) and galacturonic acid (GalUA). The extraction methods of ASP include hot water extraction and ultrasonic wave extraction, and different extraction methods can affect the yield of ASP. ASP has a variety of pharmacological activities, including hematopoietic activity, promoting immunity, antitumor, anti-inflammatory, antioxidant, anti-aging, anti-virus, liver protection, and so on. As a kind of natural polysaccharide, ASP has potential application as drug carriers. This review provides a comprehensive summary of the latest extraction and purification methods of ASP, the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization, pharmacological activities and drug carrier applications, and it can provide a basis for further study on ASP.
Collapse
Affiliation(s)
- Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Dai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
23
|
Bi SJ, Fu RJ, Li JJ, Chen YY, Tang YP. The Bioactivities and Potential Clinical Values of Angelica Sinensis Polysaccharides. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Angelica sinensis Radix (ASR), one of the most commonly used traditional Chinese medicines, contains many chemical components such as polysaccharides, volatile oil, flavonoids, amino acids, and organic acids, among which polysaccharides play an indispensable role in the therapeutic effect of ASR. A. sinensis polysaccharide (ASP) has many biological activities, for instance, hematopoietic, anti-tumor, and liver protection, which are closely related to the treatment of human diseases such as chronic anemia, leukemia, and diabetes. In addition, there are excellent application prospects for drug delivery in nanoparticles. This paper reviews the chemical compositions, extraction methods, biological activity, action mechanism, potential clinical applications, nanoparticles, and research prospect of ASP from 2010 to 2020, so as to provide references for its further development.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
24
|
Weng SW, Chang CC, Chen TL, Yeh CC, Hu CJ, Lane HL, Liao CC, Shih CC. Risk of diabetes in stroke patients who used Bu Yang Huan Wu Tang: A nationwide propensity-score matched study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153376. [PMID: 33086171 DOI: 10.1016/j.phymed.2020.153376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The utilization of traditional Chinese medicine is a common therapeutic approach for stroke patients in Chinese population, but little is known about the effect of Bu Yang Huan Wu Tang (BYHWT) on post-stroke diabetes. PURPOSE We aimed to evaluate the risk of diabetes in stroke patients who used BYHWT. STUDY DESIGN A retrospective cohort study based on a real-world database was conducted. METHODS Newly diagnosed stroke patients receiving inpatient care from 2000 to 2004 were identified using a large-scale insurance database in Taiwan. Propensity score matching was used to select eligible stroke patients who did (n = 9849) and did not (n = 9849) receive BYHWT. These two groups were followed up until the end of 2009 to track incident diabetes. Cox proportional hazard models were used to calculate the adjusted hazard rations (HRs) and 95% confidence intervals (CIs) for post-stroke diabetes associated with BYHWT during the follow-up period. RESULTS Stroke patients who used BYHWT had a reduced incidence of diabetes (14.1% vs. 19.0%, p < 0.0001) and reduced risk of diabetes (HR 0.77; 95% CI 0.72 to 0.83) compared with the control group. The association between BYHWT and reduced risk of post-stroke diabetes was significant across sexe, age group, and stroke subtype. Additionally, the use of BYHWT was associated with a reduced risk of post-stroke diabetes even after excluding the initial three months of diabetes cases in the sensitivity analysis. CONCLUSIONS Stroke patients who received BYHWT therapy had a reduced risk of diabetes, and a positive effect was observed in various subgroups. However, future clinical trials will be necessary to validate the present findings and identify the biochemical mechanism involved.
Collapse
Affiliation(s)
- Shu-Wen Weng
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chuen-Chau Chang
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan Hospital, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ta-Liang Chen
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chieh Yeh
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Surgery, University of Illinois, Chicago, IL, United States
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsin-Long Lane
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chien-Chang Liao
- Department of Anesthesiology, Taipei Medical University Hospital, Taipei, Taiwan Hospital, Taipei, Taiwan; Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Anesthesiology and Health Policy Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chun-Chuan Shih
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan; Program for the Clinical Drug Discovery from Botanical Herbs, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Qian K, Tan T, Ouyang H, Yang SL, Zhu WF, Liu RH, Wen Q, Feng YL. Structural characterization of a homopolysaccharide with hypoglycemic activity from the roots of Pueraria lobata. Food Funct 2020; 11:7104-7114. [PMID: 32744543 DOI: 10.1039/d0fo01234c] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A water-soluble neutral homopolysaccharide (PLP-1) was obtained from the roots of Pueraria lobata by DEAE cellulose and Sephadex G-200 gel chromatography purification. The average molecular weight of PLP-1 was 16.2 kDa. Monosaccharide composition analysis showed that PLP-1 was composed of glucose as a glucan. The structure of PLP-1 was characterized on the basis of extensive physical and chemical analysis, which indicated that the backbone of PLP-1 was mainly composed of →3)-α-d-Glcp(1→ and →4)-β-d-Glcp(1→ with a molar ratio of 7.0 : 1.0. Moreover, the hypoglycemic activity of PLP-1 was investigated by palmitic acid and high glucose induced insulin resistant HepG2 cells. The results elucidated that PLP-1 could decrease the glucose concentration by up-regulating the expression of PI3K and AKT, and down-regulating the expression of FoxO1, PCK2, and G6Pase in insulin resistant cells. Therefore, PLP-1 could serve as a dietary supplement to ameliorate insulin resistance for diabetic patients.
Collapse
Affiliation(s)
- Kai Qian
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bao S, Wu YL, Wang X, Han S, Cho S, Ao W, Nan JX. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-γ/Glut4 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112863. [PMID: 32302715 DOI: 10.1016/j.jep.2020.112863] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Agriophyllum squarrosum (L.) Moq. is a traditional Mongol medicine generally used to treat diabetes. OBJECTIVE To investigate the protective effects and potential mechanisms of Agriophyllum oligosaccharides (AOS) on liver injury in type 2 diabetic db/db mice. MATERIALS AND METHODS The db/db mice were divided into the model group (Model), metformin group (MET), high-dose AOS group (HAOS), and low-dose AOS group (LAOS). Nondiabetic littermate control db/m mice were used as the normal control group (Control). Mice in AOS groups were treated with AOS (380 or 750 mg/kg) daily, for 8 weeks. At 8 weeks, blood samples were collected to detect lipid and enzyme parameters concerning hepatic function, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein (TP), albumin (ALB), globulin (GLB), triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C). Random blood glucose (RBG) test, oral glucose tolerance test (OGTT), and oral maltose tolerance test (OMTT) were also conducted. Microscopy was used to observe morphological changes in the liver of AOS-treated groups. Real-time PCR was used to detect the mRNA expression, including insulin receptor substrate 2 (IRS-2), phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), peroxisome proliferator-activated receptor (PPAR)-γ, insulin receptor (INS-R), and Glut4. Furthermore, western blotting was performed to identify proteins, including phosphorylation of IRS-2 (p-IRS-2), PI3K, p-AKT, PPAR-γ, INS-R, and Glut4. Hepatic protein expression of p-IRS-2, PI3K, p-AKT, PPAR-γ, INS-R, and Glut4 was observed using immunohistochemical staining. RESULTS AOS treatment significantly decreased RBG, OGTT, and OMTT in mice, as well as serum ALT and AST activities. AOS groups demonstrated significantly higher expressions of p-IRS-2, PI3K, PPAR-γ, p-AKT, INS-R, and Glut4 protein and IRS-2, PI3K, AKT, PPAR-γ, INS-R, and Glut4 mRNA in the liver tissue of db/db mice; the degeneration and necrosis of hepatocytes and formation of collagen fibres markedly reduced, improving the structural disorder in the liver. CONCLUSION The results suggest that AOS could protect the liver in type 2 diabetes, in part by activating insulin in the INS-R/IRS2/PI3K/AKT/Glut4/PPAR-γ signal pathway, facilitating hepatocyte proliferation, and further reducing the blood glucose levels.
Collapse
Affiliation(s)
- Shuyin Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China; Medical College, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China
| | - Xiuzhi Wang
- Department of Medicines and Foods, Tongliao Vocational College, Tongliao, 028000, PR China
| | - Shuying Han
- Basic Medical College, North China University of Science and Technology, Tangshan, 063210, PR China
| | - SungBo Cho
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Wuliji Ao
- College of Traditional Mongolian Medicine, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China.
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, PR China; Clinical Research Center, Yanbian University Hospital, Yanji, Jilin Province, 133002, PR China.
| |
Collapse
|
27
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
28
|
Long XS, Liao ST, Wen P, Zou YX, Liu F, Shen WZ, Hu TG. Superior hypoglycemic activity of mulberry lacking monosaccharides is accompanied by better activation of the PI3K/Akt and AMPK signaling pathways. Food Funct 2020; 11:4249-4258. [PMID: 32356550 DOI: 10.1039/d0fo00427h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mulberry has been used as a functional food to treat type 2 diabetes mellitus (T2DM). However, it contains relatively high levels of fructose and glucose, which are not suitable for excess consumption by diabetic patients. In this study we used microbial fermentation to remove fructose and glucose from mulberry fruit, and then determined the effects on glycemia, the phosphatidylinositol 3-hydroxykinase/Akt (PI3K/Akt) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways and their downstream effectors in T2DM mice. After 5 weeks of administration, fermented mulberry (FM) significantly reduced fasting blood glucose, and also improved insulin sensitivity and glucose tolerance, more effectively than unfermented mulberry (MP). Moreover, compared with MP, FM had a more marked effect on the protein expression of intermediates in the PI3K/Akt and AMPK signaling pathways and their effectors: insulin receptor, phosphorylated Akt (Ser 308), phosphorylated glycogen synthase kinase-3β (Ser 9), glycogen synthetase, phosphorylated forkhead transcription factor 1 (Ser 256), pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1, 6-bisphosphatase, glucose-6-phosphatase, lipoprotein lipase, and phosphorylated AMPK (Thr 172), glucose transporter 4 and pyruvate kinase. These findings indicate that mulberry fruit modified to remove fructose and glucose may be more promising than whole mulberry as a treatment for diabetes.
Collapse
Affiliation(s)
- Xiao-Shan Long
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng St., Dongguanzhuang Rd, Tianhe District, Guangzhou 510610, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mu J, Xin G, Zhang B, Wang Y, Ning C, Meng X. Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats. J Food Sci 2020; 85:1307-1318. [PMID: 32249934 DOI: 10.1111/1750-3841.15109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
We aimed to investigate) the effects of Aronia melanocarpa berry extract (AMBE) on hepatic insulin resistance and its mechanism at the molecular level in high-fat diet (HFD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were supplemented with AMBE at doses of 100 and 400 mg/kg body weight (bw) daily for 8 weeks. AMBE significantly reduced blood glucose and serum insulin levels and the homeostatic model assessment for insulin resistance score; improved glucose tolerance; increased hepatic glycogen content; and regulated glucose metabolism enzyme activity, including glucokinase, pyruvate kinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in the liver. AMBE also reduced lipid accumulation and oxidative stress along with inflammation in the hepatic tissue of T2DM rats and improved hepatic function. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated by AMBE through the elevation of insulin receptor substrate-2, PI3K, Akt, and glycogen synthase kinase-3β phosphorylation and glucose transporter 2, which might contribute to the promotion of glycogen synthesis and improvement of hepatic insulin resistance. AMBE shows promise as an ingredient of functional foods for alleviating hepatic insulin resistance in T2DM. PRACTICAL APPLICATION: The extract from the berries of Aronia melanocarpa (Michx.) Elliott (AMBE), with its relatively high content of polyphenolic compounds, has been shown to exert hypoglycemic effects in animal models of diabetes. Our findings support the use of A. melanocarpa as a functional food additive for the alleviation of hepatic insulin resistance and the management of glucose homeostasis in T2DM.
Collapse
Affiliation(s)
- Jingjing Mu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Guang Xin
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Bo Zhang
- College of Chemistry and Life Science, Anshan Normal College, Anshan, Liaoning, 114007, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Chong Ning
- College of Light Industry, Liaoning University, Shenyang, Liaoning, 110136, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| |
Collapse
|
30
|
Zhu X, Qiu Z, Ouyang W, Miao J, Xiong P, Mao D, Feng K, Li M, Luo M, Xiao H, Cao Y. Hepatic transcriptome and proteome analyses provide new insights into the regulator mechanism of dietary avicularin in diabetic mice. Food Res Int 2019; 125:108570. [PMID: 31554135 DOI: 10.1016/j.foodres.2019.108570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022]
Abstract
Many dietary flavonoids existing as glycosides in fruits and vegetables are considered bioactive food components with various potential health benefits. Type 2 diabetes mellitus (T2DM) is a complex and polygenic disease with increasing global prevalence and economic burden. In this study, the hypoglycemic effect of avicularin (quercetin-3-O-α-arabinofuranoside), a flavonoid glycoside commonly found in natural plants and fruits, was determined in a high fat diet/streptozotocin induced type 2 diabetes mouse model. Our results demonstrated that dietary avicularin treatment reduced levels of fasting blood glucose, serum TG and LDL-C, liver AST and ALT, and increased hepatic glycogen in T2DM mice. Furthermore, we used RNA-Seq and iTRAQ to compare the gene and protein expression in the livers of the normal control mice (NC), diabetic control mice (DC) and avicularin treated mice (DA100). The differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were analyzed based on gene annotations and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Integrated analysis of the RNA-Seq and iTRAQ data indicated that the fifteen DEGs/DEPs showed the same trend in mRNA and protein expression levels in comparisons of both NC vs DC and DC vs DA100. KEGG analysis revealed that four DEGs/DEPs (PKM, PEPCK, PYG, and PLA2) in the glycolysis, gluconeogenesis, and arachidonic acid pathway, and six DEPs (Ndufb4, Ndufa6, Cox5a, Cox5b, Cox6c, and ATPSβ) in the oxidative phosphorylation signaling pathway, play important roles in avicularin's hypoglycemic effect. We also found six other DEGs/DEPs related to T2DM (CA1, Serpinb6a, AK, Pcolce, Cand2, and Atp2a3), and five related to cancer (Phgdh, Tes, Papss1, Psat1, and Fam49b). We did further verify by qRT-PCR and explored the possible binding modes of avicularin with targeted proteins with molecular docking simulations. Taken together, our results demonstrated the protective effects of avicularin against diabetes and provided a global view about the system-level hypoglycemic mechanisms of avicularin by the comprehensive analysis of transcriptomic and proteomic data in T2DM mice.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China; Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States
| | - Zhirou Qiu
- Zhaoqing University, Zhaoqing 526000, PR China
| | - Wen Ouyang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410007, PR China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Ping Xiong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Duobin Mao
- Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minxiong Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Minna Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, United States.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
31
|
Putra SED, Singajaya S, Thesman F, Pranoto DA, Sanjaya R, Vianney YM, Artadana IBM. Aberrant PDK4 Promoter Methylation Preceding Hyperglycemia in a Mouse Model. Appl Biochem Biotechnol 2019; 190:1023-1034. [PMID: 31655976 DOI: 10.1007/s12010-019-03143-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
Diabetic prevalence is at speedy increase globally. Previous studies stated that other than genetics, factors such as environment, lifestyle, and paternal-maternal condition play critical roles in diabetes through DNA methylation in specific areas of the genome. The purpose of this study is to investigate the methylation pattern of the PDK4 promoter in streptozotocin-induced diabetic mice until the 12th week of the observation. The methylation pattern in the blood samples was analyzed periodically, while the pattern in the muscle sample was only analyzed at the end of the experiment using the blood of the sacrificed animals. Three methylated CpG site 1, CpG site 6, and CpG site 7 were analyzed and quantified based on the band density using bisulfite treatment and methylation-specific polymerase chain reaction (PCR). The hyperglycemia period was developed at the 9th week of experiment. However, there was a significant increase of methylation, specifically on CpG site 6 started from week 6 to week 12. This peculiar methylation on CpG site 6 of PDK4 promoter in the blood sample before the hyperglycemic period might serve as a potential biomarker for early detection of diabetes in the patients. No significant difference was found between the methylation level of streptozotocin (STZ)-treated mice and of the control group in the muscle sample.
Collapse
Affiliation(s)
- Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia.
| | - Stephanie Singajaya
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ferensia Thesman
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Dicky Andhika Pranoto
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ricky Sanjaya
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Yoanes Maria Vianney
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| | - Ida Bagus Made Artadana
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Raya Kalirungkut, Surabaya, East Java, 60292, Indonesia
| |
Collapse
|
32
|
Zhang Y, Cui Z, Mei H, Xu J, Zhou T, Cheng F, Wang K. Angelica sinensis polysaccharide nanoparticles as a targeted drug delivery system for enhanced therapy of liver cancer. Carbohydr Polym 2019; 219:143-154. [DOI: 10.1016/j.carbpol.2019.04.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/24/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
|
33
|
Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang K. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
34
|
Guo Q, Chen Z, Santhanam RK, Xu L, Gao X, Ma Q, Xue Z, Chen H. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int J Biol Macromol 2019; 121:981-988. [DOI: 10.1016/j.ijbiomac.2018.10.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 12/25/2022]
|
35
|
Network pharmacology-based identification of major component of Angelica sinensis and its action mechanism for the treatment of acute myocardial infarction. Biosci Rep 2018; 38:BSR20180519. [PMID: 30232231 PMCID: PMC6239257 DOI: 10.1042/bsr20180519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background: To decipher the mechanisms of Angelica sinensis for the treatment of acute myocardial infarction (AMI) using network pharmacology analysis. Methods: Databases were searched for the information on constituents, targets, and diseases. Cytoscape software was used to construct the constituent–target–disease network and screen the major targets, which were annotated with the DAVID (Database for Annotation, Visualization and Integrated Discovery) tool. The cardioprotective effects of Angelica sinensis polysaccharide (ASP), a major component of A. sinensis, were validated both in H9c2 cells subjected to simulated ischemia by oxygen and glucose deprivation and in rats with AMI by ligation of the left anterior coronary artery. Results: We identified 228 major targets against AMI injury for A. sinensis, which regulated multiple pathways and hit multiple targets involved in several biological processes. ASP significantly decreased endoplasmic reticulum (ER) stress-induced cell death both in vitro and in vivo. In ischemia injury rats, ASP treatment reduced infarct size and preserved heart function. ASP enhanced activating transcription factor 6 (ATF6) activity, which improved ER-protein folding capacity. ASP activated the expression of p-AMP-activated protein kinase (p-AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α). Additionally, ASP attenuated levels of proinflammatory cytokines and maintained a balance in the oxidant/antioxidant levels after AMI. Conclusion:In silico analysis revealed the associations between A. sinensis and AMI through multiple targets and several key signaling pathways. Experimental data indicate that ASP protects the heart against ischemic injury by activating ATF6 to ameliorate the detrimental ER stress. ASP’s effects could be mediated via the activation of AMPK-PGC1α pathway.
Collapse
|
36
|
Hong GU, Lee JY, Kang H, Kim TY, Park JY, Hong EY, Shin YH, Jung SH, Chang HB, Kim YH, Kwon YI, Ro JY. Inhibition of Osteoarthritis-Related Molecules by Isomucronulatol 7- O-β-d-glucoside and Ecliptasaponin A in IL-1β-Stimulated Chondrosarcoma Cell Model. Molecules 2018; 23:molecules23112807. [PMID: 30380653 PMCID: PMC6278319 DOI: 10.3390/molecules23112807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/18/2018] [Accepted: 10/26/2018] [Indexed: 01/18/2023] Open
Abstract
Osteoarthritis (OA) is the common form of arthritis and is characterized by disability and cartilage degradation. Although natural product extracts have been reported to have anti-osteoarthritic effects, the potential bioactivity of Ryupunghwan (RPH), a traditional Korean medicinal botanical formula that contains Astragalus membranaceus, Turnera diffusa, Achyranthes bidentata, Angelica gigas, Eclipta prostrata, Eucommia ulmoides, and Ilex paraguariensis, is not known well. Therefore, the inhibitory effects of single compounds isolated from RPH on the OA-related molecules were investigated using IL-1β-stimulated chondrosarcoma SW1353 (SW1353) cell model. Two bioactive compounds, isomucronulatol 7-O-β-d-glucoside (IMG) and ecliptasaponin A (ES) were isolated and purified from RPH using column chromatography, and then the structures were analyzed using ESI-MS, 1H-NMR, and 13C-NMR spectrum. The expression or amount of matrix metalloproteinase 13 (MMP13), COX1/2, TNF-α, IL-1β or p65 was determined by RT-PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA). RPH pretreatment reduced the expression and amounts of MMP13, and the expression of collagen II, COX1/2, TNF-α, IL-1β or p65, which were increased in IL-1β-stimulated SW1353 cells. IMG reduced the expression of all OA-related molecules, but the observed inhibitory effect was less than that of RPH extract. The other single compound ES showed the reduced expression of all OA-related molecules, and the effect was stronger than that in IMG (approximately 100 fold). Combination pretreatment of both single components remarkably reduced the expression of MMP13, compared to each single component. These synergic effects may provide potential molecular modes of action for the anti-osteoarthritic effects of RPH observed in clinical and animal studies.
Collapse
Affiliation(s)
- Gwan Ui Hong
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
| | - Jung-Yun Lee
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Korea.
| | - Hanna Kang
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Korea.
| | - Tae Yang Kim
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Korea.
| | - Jae Yeo Park
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
| | - Eun Young Hong
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
| | - Youn Ho Shin
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
| | - Sung Hoon Jung
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
| | - Hung-Bae Chang
- Department of Bio Quality Control, Korea Bio Polytechnic, Chungnam 32943, Korea.
| | - Young Ho Kim
- Department of Pharmacy, Choongnam National University, Daejeon 34134, Korea.
| | - Young-In Kwon
- Department of Food and Nutrition, Hannam University, Daejeon 34054, Korea.
| | - Jai Youl Ro
- Life & Science Research Center, Hyunsung Vital Co. Ltd., Seoul 07255, Korea.
- Department of Pharmacy, Sungkyunkwan University, Suwon 03063, Korea.
| |
Collapse
|
37
|
Cao P, Sun J, Sullivan MA, Huang X, Wang H, Zhang Y, Wang N, Wang K. Angelica sinensis polysaccharide protects against acetaminophen-induced acute liver injury and cell death by suppressing oxidative stress and hepatic apoptosis in vivo and in vitro. Int J Biol Macromol 2018; 111:1133-1139. [DOI: 10.1016/j.ijbiomac.2018.01.139] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
|
38
|
Chen Z, Wang C, Pan Y, Gao X, Chen H. Hypoglycemic and hypolipidemic effects of anthocyanins extract from black soybean seed coat in high fat diet and streptozotocin-induced diabetic mice. Food Funct 2018; 9:426-439. [PMID: 29220052 DOI: 10.1039/c7fo00983f] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Black soybean seed coat extract (BSSCE) is a rich source of anthocyanins with multiple health effects. This study was aimed at investigating the composition and hypoglycemic and hypolipidemic effects of BSSCE in vitro and in a high-fat diet and streptozotocin (STZ)-induced diabetic mice. The anthocyanins of BSSCE were identified as cyanidin-3-O-glucoside, delphinidin-3-O-glucoside, and peonidin-3-O-glucoside by HPLC-MS. Results demonstrated that BSSCE exhibited strong inhibitory activities for α-amylase, potent inhibition activity against lipid accumulation in HepG2 cells and protection effect on H2O2-induced oxidative stress-damaged HepG2 cells. The food and water intake, body weight loss, blood glucose and insulin level of BSSCE treatment group were found to be significantly reduced when compared with those of diabetic mice group (p < 0.05). The fasting blood glucose level and insulin level of the BSSCE 400 mg kg-1 group mice significantly decreased by 47.97% and 46.49%, respectively. The oral glucose tolerance and activities of antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT) notably improved (p < 0.05). BSSCE could also ameliorate the atherogenic dyslipidaemia of diabetic mice by remarkably decreasing the content of total cholesterol (T-CHO), total triglyceride (TG), and non-esterified fatty acid (NEFA) and increasing the content of high-density lipoprotein cholesterol (HDL-c) (p < 0.05). BSSCE could protect against liver, kidney and pancreas damages in diabetic mice. This study suggested that cyanidin-3-O-glucoside contributed to BSSCE-induced hypoglycemia and hypolipidemia effects in type 2 diabetes mellitus (T2DM), and BSSCE might be a promising functional food or medicine for T2DM treatment.
Collapse
Affiliation(s)
- Zhongqin Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | |
Collapse
|
39
|
Wang K, Wang H, Liu Y, Shui W, Wang J, Cao P, Wang H, You R, Zhang Y. Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Li Y, Li C, Yu J, Gao Y, Zhao Y, Xue D, Zhang G, Chai Y, Ke Y, Zhang H. Rapid separation and characterization of comprehensive ingredients in Yangxinshi tablet and rat plasma by ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1335213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yang Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Chengjian Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Jing Yu
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yue Gao
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Yahong Zhao
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Dan Xue
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Ying Ke
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|