1
|
Sreedasyam R, Wilson BG, Ferrandez PR, Botvinick EL, Venugopalan V. An optical system for cellular mechanostimulation in 3D hydrogels. Acta Biomater 2024:S1742-7061(24)00578-6. [PMID: 39368720 DOI: 10.1016/j.actbio.2024.09.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
We introduce a method utilizing single laser-generated cavitation bubbles to stimulate cellular mechanotransduction in dermal fibroblasts embedded within 3D hydrogels. We demonstrate that fibroblasts embedded in either amorphous or fibrillar hydrogels engage in Ca2+ signaling following exposure to an impulsive mechanical stimulus provided by a single 250 µm diameter laser-generated cavitation bubble. We find that the spatial extent of the cellular signaling is larger for cells embedded within a fibrous collagen hydrogel as compared to those embedded within an amorphous polyvinyl alcohol polymer (SLO-PVA) hydrogel. Additionally, for fibroblasts embedded in collagen, we find an increased range of cellular mechanosensitivity for cells that are polarized relative to the radial axis as compared to the circumferential axis. By contrast, fibroblasts embedded within SLO-PVA did not display orientation-dependent mechanosensitivity. Fibroblasts embedded in hydrogels and cultured in calcium-free media did not show cavitation-induced mechanotransduction; implicating calcium signaling based on transmembrane Ca2+ transport. This study demonstrates the utility of single laser-generated cavitation bubbles to provide local non-invasive impulsive mechanical stimuli within 3D hydrogel tissue models with concurrent imaging using optical microscopy. STATEMENT OF SIGNIFICANCE: Currently, there are limited methods for the non-invasive real-time assessment of cellular sensitivity to mechanical stimuli within 3D tissue scaffolds. We describe an original approach that utilizes a pulsed laser microbeam within a standard laser scanning microscope system to generate single cavitation bubbles to provide impulsive mechanostimulation to cells within 3D fibrillar and amorphous hydrogels. Using this technique, we measure the cellular mechanosensitivity of primary human dermal fibroblasts embedded in amorphous and fibrillar hydrogels, thereby providing a useful method to examine cellular mechanotransduction in 3D biomaterials. Moreover, the implementation of our method within a standard optical microscope makes it suitable for broad adoption by cellular mechanotransduction researchers and opens the possibility of high-throughput evaluation of biomaterials with respect to cellular mechanosignaling.
Collapse
Affiliation(s)
- Rahul Sreedasyam
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Bryce G Wilson
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States
| | - Patricia R Ferrandez
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| | - Vasan Venugopalan
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697-2715, United States; Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697-2580, United States; Beckman Laser Institute, University of California Irvine, Irvine, CA 92697-3010, United States.
| |
Collapse
|
2
|
Bae HJ, Shin SJ, Jo SB, Li CJ, Lee DJ, Lee JH, Lee HH, Kim HW, Lee JH. Cyclic stretch induced epigenetic activation of periodontal ligament cells. Mater Today Bio 2024; 26:101050. [PMID: 38654935 PMCID: PMC11035113 DOI: 10.1016/j.mtbio.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Periodontal ligament (PDL) cells play a crucial role in maintaining periodontal integrity and function by providing cell sources for ligament regeneration. While biophysical stimulation is known to regulate cell behaviors and functions, its impact on epigenetics of PDL cells has not yet been elucidated. Here, we aimed to investigate the cytoskeletal changes, epigenetic modifications, and lineage commitment of PDL cells following the application of stretch stimuli to PDL. PDL cells were subjected to stretching (0.1 Hz, 10 %). Subsequently, changes in focal adhesion, tubulin, and histone modification were observed. The survival ability in inflammatory conditions was also evaluated. Furthermore, using a rat hypo-occlusion model, we verified whether these phenomena are observed in vivo. Stretched PDL cells showed maximal histone 3 acetylation (H3Ace) at 2 h, aligning perpendicularly to the stretch direction. RNA sequencing revealed stretching altered gene sets related to mechanotransduction, histone modification, reactive oxygen species (ROS) metabolism, and differentiation. We further found that anchorage, cell elongation, and actin/microtubule acetylation were highly upregulated with mechanosensitive chromatin remodelers such as H3Ace and histone H3 trimethyl lysine 9 (H3K9me3) adopting euchromatin status. Inhibitor studies showed mechanotransduction-mediated chromatin modification alters PDL cells behaviors. Stretched PDL cells displayed enhanced survival against bacterial toxin (C12-HSL) or ROS (H2O2) attack. Furthermore, cyclic stretch priming enhanced the osteoclast and osteoblast differentiation potential of PDL cells, as evidenced by upregulation of lineage-specific genes. In vivo, PDL cells from normally loaded teeth displayed an elongated morphology and higher levels of H3Ace compared to PDL cells with hypo-occlusion, where mechanical stimulus is removed. Overall, these data strongly link external physical forces to subsequent mechanotransduction and epigenetic changes, impacting gene expression and multiple cellular behaviors, providing important implications in cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Han-Jin Bae
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seung Bin Jo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
| | - Cheng Ji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong-Joon Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Oral Histology, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jun-Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
3
|
Wubshet NH, Cai G, Chen SJ, Sullivan M, Reeves M, Mays D, Harrison M, Varnado P, Yang B, Arreguin-Martinez E, Qu Y, Lin SS, Duran P, Aguilar C, Giza S, Clements T, Liu AP. Cellular mechanotransduction of human osteoblasts in microgravity. NPJ Microgravity 2024; 10:35. [PMID: 38514677 PMCID: PMC10957960 DOI: 10.1038/s41526-024-00386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Astronauts experience significant and rapid bone loss as a result of an extended stay in space, making the International Space Station (ISS) the perfect laboratory for studying osteoporosis due to the accelerated nature of bone loss on the ISS. This prompts the question, how does the lack of load due to zero-gravity propagate to bone-forming cells, human fetal osteoblasts (hFOBs), altering their maturation to mineralization? Here, we aim to study the mechanotransduction mechanisms by which bone loss occurs in microgravity. Two automated experiments, microfluidic chips capable of measuring single-cell mechanics via aspiration and cell spheroids incubated in pressure-controlled chambers, were each integrated into a CubeLab deployed to the ISS National Laboratory. For the first experiment, we report protrusion measurements of aspirated cells after exposure to microgravity at the ISS and compare these results to ground control conducted inside the CubeLab. We found slightly elongated protrusions for space samples compared to ground samples indicating softening of hFOB cells in microgravity. In the second experiment, we encapsulated osteoblast spheroids in collagen gel and incubated the samples in pressure-controlled chambers. We found that microgravity significantly reduced filamentous actin levels in the hFOB spheroids. When subjected to pressure, the spheroids exhibited increased pSMAD1/5/9 expression, regardless of the microgravity condition. Moreover, microgravity reduced YAP expression, while pressure increased YAP levels, thus restoring YAP expression for spheroids in microgravity. Our study provides insights into the influence of microgravity on the mechanical properties of bone cells and the impact of compressive pressure on cell signaling in space.
Collapse
Affiliation(s)
- Nadab H Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | | | | - Benjamin Yang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Yunjia Qu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shan-Shan Lin
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pamela Duran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlos Aguilar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Applied Physics Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Hwang SW, Lim CM, Huynh CT, Moghimianavval H, Kotov NA, Alsberg E, Liu AP. Hybrid Vesicles Enable Mechano-Responsive Hydrogel Degradation. Angew Chem Int Ed Engl 2023; 62:e202308509. [PMID: 37607024 PMCID: PMC10600738 DOI: 10.1002/anie.202308509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/22/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Stimuli-responsive hydrogels are intriguing biomimetic materials. Previous efforts to develop mechano-responsive hydrogels have mostly relied on chemical modifications of the hydrogel structures. Here, we present a simple, generalizable strategy that confers mechano-responsive behavior on hydrogels. Our approach involves embedding hybrid vesicles, composed of phospholipids and amphiphilic block copolymers, within the hydrogel matrix to act as signal transducers. Under mechanical stress, these vesicles undergo deformation and rupture, releasing encapsulated compounds that can control the hydrogel network. To demonstrate this concept, we embedded vesicles containing ethylene glycol tetraacetic acid (EGTA), a calcium chelator, into a calcium-crosslinked alginate hydrogel. When compressed, the released EGTA sequesters calcium ions and degrades the hydrogel. This study provides a novel method for engineering mechano-responsive hydrogels that may be useful in various biomedical applications.
Collapse
Affiliation(s)
- Sung-Won Hwang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Man Lim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cong Truc Huynh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Biomedical Engineering, Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
- Departments of Orthopedic Surgery, Pharmacology and Regenerative Medicine, and Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Departments of Biomedical Engineering, Biophysics, Cellular and Molecular Biology Program, Applied Physics Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Nizamoglu M, Joglekar MM, Almeida CR, Larsson Callerfelt AK, Dupin I, Guenat OT, Henrot P, van Os L, Otero J, Elowsson L, Farre R, Burgess JK. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev 2023; 32:230042. [PMID: 37495250 PMCID: PMC10369168 DOI: 10.1183/16000617.0042-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 07/28/2023] Open
Abstract
Chronic lung diseases result from alteration and/or destruction of lung tissue, inevitably causing decreased breathing capacity and quality of life for patients. While animal models have paved the way for our understanding of pathobiology and the development of therapeutic strategies for disease management, their translational capacity is limited. There is, therefore, a well-recognised need for innovative in vitro models to reflect chronic lung diseases, which will facilitate mechanism investigation and the advancement of new treatment strategies. In the last decades, lungs have been modelled in healthy and diseased conditions using precision-cut lung slices, organoids, extracellular matrix-derived hydrogels and lung-on-chip systems. These three-dimensional models together provide a wide spectrum of applicability and mimicry of the lung microenvironment. While each system has its own limitations, their advantages over traditional two-dimensional culture systems, or even over animal models, increases the value of in vitro models. Generating new and advanced models with increased translational capacity will not only benefit our understanding of the pathobiology of lung diseases but should also shorten the timelines required for discovery and generation of new therapeutics. This article summarises and provides an outline of the European Respiratory Society research seminar "Innovative 3D models for understanding mechanisms underlying lung diseases: powerful tools for translational research", held in Lisbon, Portugal, in April 2022. Current in vitro models developed for recapitulating healthy and diseased lungs are outlined and discussed with respect to the challenges associated with them, efforts to develop best practices for model generation, characterisation and utilisation of models and state-of-the-art translational potential.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Mugdha M Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- Both authors contributed equally
| | - Catarina R Almeida
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | | | - Isabelle Dupin
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
| | - Olivier T Guenat
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Pauline Henrot
- Centre de Recherche Cardio-thoracique de Bordeaux, Université de Bordeaux, Pessac, France
- INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, Pessac, France
- Service d'exploration fonctionnelle respiratoire, CHU de Bordeaux, Pessac, France
| | - Lisette van Os
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jorge Otero
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ramon Farre
- Unit of Biophysics and Bioengineering, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- Institut Investigacions Biomediques August Pi Sunyer, Barcelona, Spain
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, The Netherlands
| |
Collapse
|
6
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
7
|
Abstract
Plasma membrane tension functions as a global physical organizer of cellular activities. Technical limitations of current membrane tension measurement techniques have hampered in-depth investigation of cellular membrane biophysics and the role of plasma membrane tension in regulating cellular processes. Here, we develop an optical membrane tension reporter by repurposing an E. coli mechanosensitive channel via insertion of circularly permuted GFP (cpGFP), which undergoes a large conformational rearrangement associated with channel activation and thus fluorescence intensity changes under increased membrane tension.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Agnes M Resto Irizarry
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zhang X, Ding S, Magoline J, Ivankin A, Mirkin CA. Photopolymerized Features via Beam Pen Lithography as a Novel Tool for the Generation of Large Area Protein Micropatterns. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105998. [PMID: 35119205 DOI: 10.1002/smll.202105998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/10/2022] [Indexed: 06/14/2023]
Abstract
A cantilever-free scanning probe lithography (CF-SPL)-based method for the rapid polymerization of nanoscale features on a surface via crosslinking and thiol-acrylate photoreactions is described, wherein the nanoscale position, height, and diameter of each feature can be finely and independently tuned. With precise spatiotemporal control over the illumination pattern, beam pen lithography (BPL) allows for the photo-crosslinking of polymers into ultrahigh resolution features over centimeter-scale areas using massively parallel >160 000 pen arrays of individually addressable pens that guide and focus light onto the surface with sub-diffraction resolution. The photoinduced crosslinking reaction of the ink material, which is composed of photoinitiator, diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide, poly(ethylene glycol) diacrylate, and thiol-modified functional binding molecules (i.e., thiol-PEG-biotin or 16-mercaptohexanoic acid), proceeds to ≈80% conversion with UV exposure (72 mW cm-2 ) for short time periods (0.5 s). Such polymer patterns are further reacted with proteins (streptavidin and fibronectin) to yield protein arrays with feature arrangements at high resolution and densities controlled by local UV exposure. This platform, which combines polymer photochemistry and massive arrays of scanning probes, constitutes a new approach to making biomolecular microarrays in a high-throughput and high-yielding manner, opening new routes for biochip synthesis, bioscreening, and cell biology research.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Shaowei Ding
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- TERA-print, LLC, 8140 McCormick Blvd, Suite 132, Skokie, IL, 60076, USA
| | - Jared Magoline
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- TERA-print, LLC, 8140 McCormick Blvd, Suite 132, Skokie, IL, 60076, USA
| | - Andrey Ivankin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- TERA-print, LLC, 8140 McCormick Blvd, Suite 132, Skokie, IL, 60076, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- TERA-print, LLC, 8140 McCormick Blvd, Suite 132, Skokie, IL, 60076, USA
| |
Collapse
|
9
|
Luo M, Cai G, Ho KKY, Wen K, Tong Z, Deng L, Liu AP. Compression enhances invasive phenotype and matrix degradation of breast Cancer cells via Piezo1 activation. BMC Mol Cell Biol 2022; 23:1. [PMID: 34979904 PMCID: PMC8722159 DOI: 10.1186/s12860-021-00401-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Uncontrolled growth in solid breast cancer generates mechanical compression that may drive the cancer cells into a more invasive phenotype, but little is known about how such compression affects the key events and corresponding regulatory mechanisms associated with invasion of breast cancer cells including cellular behaviors and matrix degradation. Results Here we show that compression enhanced invasion and matrix degradation of breast cancer cells. We also identified Piezo1 as the putative mechanosensitive cellular component that transmitted compression to not only enhance the invasive phenotype, but also induce calcium influx and downstream Src signaling. Furthermore, we demonstrated that Piezo1 was mainly localized in caveolae, and both Piezo1 expression and compression-enhanced invasive phenotype of the breast cancer cells were reduced when caveolar integrity was compromised by either knocking down caveolin1 expression or depleting cholesterol content. Conclusions Taken together, our data indicate that mechanical compression activates Piezo1 channels to mediate enhanced breast cancer cell invasion, which involves both cellular events and matrix degradation. This may be a critical mechanotransduction pathway during breast cancer metastasis, and thus potentially a novel therapeutic target for the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00401-6.
Collapse
Affiliation(s)
- Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth K Y Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Present address: Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kang Wen
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China
| | - Zhaowen Tong
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, People's Republic of China.
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Applied Physics Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Biophysics, University of Michigan, Ann Arbor, MI, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA. .,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Wubshet NH, Arreguin-Martinez E, Nail M, Annamalai H, Koerner R, Rousseva M, Tom T, Gillespie RB, Liu AP. Simulating microgravity using a random positioning machine for inducing cellular responses to mechanotransduction in human osteoblasts. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:114101. [PMID: 34852501 PMCID: PMC9643046 DOI: 10.1063/5.0056366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The mechanotransduction pathways that mediate cellular responses to contact forces are better understood than those that mediate response to distance forces, especially the force of gravity. Removing or reducing gravity for significant periods of time involves either sending samples to space, inducing diamagnetic levitation with high magnetic fields, or continually reorienting samples for a period, all in a manner that supports cell culturing. Undesired secondary effects due to high magnetic fields or shear forces associated with fluid flow while reorienting must be considered in the design of ground-based devices. We have developed a lab-friendly and compact random positioning machine (RPM) that fits in a standard tissue culture incubator. Using a two-axis gimbal, it continually reorients samples in a manner that produces an equal likelihood that all possible orientations are visited. We contribute a new control algorithm by which the distribution of probabilities over all possible orientations is completely uniform. Rather than randomly varying gimbal axis speed and/or direction as in previous algorithms (which produces non-uniform probability distributions of orientation), we use inverse kinematics to follow a trajectory with a probability distribution of orientations that is uniform by construction. Over a time period of 6 h of operation using our RPM, the average gravity is within 0.001 23% of the gravity of Earth. Shear forces are minimized by limiting the angular speed of both gimbal motors to under 42 °/s. We demonstrate the utility of our RPM by investigating the effects of simulated microgravity on adherent human osteoblasts immediately after retrieving samples from our RPM. Cytoskeletal disruption and cell shape changes were observed relative to samples cultured in a 1 g environment. We also found that subjecting human osteoblasts in suspension to simulated microgravity resulted in less filamentous actin and lower cell stiffness.
Collapse
Affiliation(s)
- Nadab H. Wubshet
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | - Hariprasad Annamalai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert Koerner
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Maria Rousseva
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Tristan Tom
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Allen P. Liu
- Author to whom correspondence should be addressed: . Current address: University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109, USA. Tel.: +1 734-764-7719
| |
Collapse
|
11
|
Carvalho MS, Alves L, Bogalho I, Cabral JMS, da Silva CL. Impact of Donor Age on the Osteogenic Supportive Capacity of Mesenchymal Stromal Cell-Derived Extracellular Matrix. Front Cell Dev Biol 2021; 9:747521. [PMID: 34676216 PMCID: PMC8523799 DOI: 10.3389/fcell.2021.747521] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/10/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been proposed as an emerging cell-based therapeutic option for regenerative medicine applications as these cells can promote tissue and organ repair. In particular, MSC have been applied for the treatment of bone fractures. However, the healing capacity of these fractures is often compromised by patient's age. Therefore, considering the use of autologous MSC, we evaluated the impact of donor age on the osteogenic potential of bone marrow (BM)-derived MSC. MSC from older patients (60 and 80 years old) demonstrated impaired proliferative and osteogenic capacities compared to MSC isolated from younger patients (30 and 45 years old), suggesting that aging potentially changes the quantity and quality of MSC. Moreover, in this study, we investigated the capacity of the microenvironment [i.e., extracellular matrix (ECM)] to rescue the impaired proliferative and osteogenic potential of aged MSC. In this context, we aimed to understand if BM MSC features could be modulated by exposure to an ECM derived from cells obtained from young or old donors. When aged MSC were cultured on decellularized ECM derived from young MSC, their in vitro proliferative and osteogenic capacities were enhanced, which did not happen when cultured on old ECM. Our results suggest that the microenvironment, specifically the ECM, plays a crucial role in the quality (assessed in terms of osteogenic differentiation capacity) and quantity of MSC. Specifically, the aging of ECM is determinant of osteogenic differentiation of MSC. In fact, old MSC maintained on a young ECM produced higher amounts of extracellularly deposited calcium (9.10 ± 0.22 vs. 4.69 ± 1.41 μg.μl-1.10-7 cells for young ECM and old ECM, respectively) and up-regulated the expression of osteogenic gene markers such as Runx2 and OPN. Cell rejuvenation by exposure to a functional ECM might be a valuable clinical strategy to overcome the age-related decline in the osteogenic potential of MSC by recapitulating a younger microenvironment, attenuating the effects of aging on the stem cell niche. Overall, this study provides new insights on the osteogenic potential of MSC during aging and opens new possibilities for developing clinical strategies for elderly patients with limited bone formation capacity who currently lack effective treatments.
Collapse
Affiliation(s)
- Marta S. Carvalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Laura Alves
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Bogalho
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Giannopoulos A, Svensson RB, Yeung CYC, Kjaer M, Magnusson SP. Effects of genipin crosslinking on mechanical cell-matrix interaction in 3D engineered tendon constructs. J Mech Behav Biomed Mater 2021; 119:104508. [PMID: 33857874 DOI: 10.1016/j.jmbbm.2021.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
It is well known that cells can generate endogenous forces onto the extracellular matrix, but to what extent the mechanical properties of the matrix influences these endogenous cellular forces remains unclear. We therefore sought to quantify the influence of matrix rigidity on cell-matrix interactions by inducing cross-links using increasing concentrations of genipin (0.01-1 mM) or by blocking cross-link formation using beta-aminopropionitrile (BAPN) in engineered human tendon tissue constructs. The cell-matrix mechanics of the tendon constructs were evaluated as cell-generated tissue re-tensioning and stress-relaxation responses using a novel custom-made force monitor, which can apply and detect tensional forces in real-time in addition to mechanical failure testing. Genipin treatment had no influence on the biochemical profile (hydroxyproline, glycosaminoglycan and DNA content) of the constructs and cell viability was comparable between genipin-treated and control constructs, except at the highest genipin concentration. Endogenous re-tension after unloading was significantly decreased with increasing genipin concentrations compared to controls. Mechanical failure testing of tendon constructs showed increased (56%) peak stress at the highest genipin concentration but decreased (72%) with BAPN treatment when compared to controls. Tendon construct stiffness increased with high genipin concentrations (0.1 and 1 mM) and decreased by 70% in BAPN-treated constructs, relative to the controls. These data demonstrate that human tendon fibroblasts regulate their force exertion inversely proportional to increased cross-link capacity but did so independently of matrix stiffness. Overall, these findings support the notion of an interaction between cell force generation and cross-linking, and thus a role for this interplay in mechanical homeostasis of the tissue.
Collapse
Affiliation(s)
- A Giannopoulos
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - R B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - C Y C Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - M Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - S P Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
13
|
Student S, Milewska M, Ostrowski Z, Gut K, Wandzik I. Microchamber microfluidics combined with thermogellable glycomicrogels – Platform for single cells study in an artificial cellular microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111647. [DOI: 10.1016/j.msec.2020.111647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
14
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Zhang Q. The Research Advance of Cell Bridges in vitro. Front Bioeng Biotechnol 2020; 8:609317. [PMID: 33330439 PMCID: PMC7732536 DOI: 10.3389/fbioe.2020.609317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022] Open
Abstract
The microenvironment in which cells reside in vivo dictates their biological and mechanical functioning is associated with morphogenetic and regenerative processes and may find implications in regenerative medicine and tissue engineering. The development of nano- and micro-fabricated technologies, three-dimensional (3D) printing technique, and biomimetic medical materials have enabled researchers to prepare novel advanced substrates mimicking the in vivo microenvironment. Most of the novel morphologies and behaviors of cells, including contact guidance and cell bridges which are observed in vivo but are not perceived in the traditional two-dimensional (2D) culture system, emerged on those novel substrates. Using cell bridges, cell can span over the surface of substrates to maintain mechanical stability and integrity of tissue, as observed in physiological processes, such as wound healing, regeneration and development. Compared to contact guidance, which has received increased attention and is investigated extensively, studies on cell bridges remain scarce. Therefore, in this mini-review, we have comprehensively summarized and classified different kinds of cell bridges formed on various substrates and highlighted possible biophysical mechanisms underlying cell bridge formation for their possible implication in the fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
16
|
Tran VD, Kumar S. Transduction of cell and matrix geometric cues by the actin cytoskeleton. Curr Opin Cell Biol 2020; 68:64-71. [PMID: 33075689 DOI: 10.1016/j.ceb.2020.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Engineered culture substrates have proven invaluable for investigating the role of cell and extracellular matrix geometry in governing cell behavior. While the mechanisms relating geometry to phenotype are complex, it is clear that the actin cytoskeleton plays a key role in integrating geometric inputs and transducing these cues into intracellular signals that drive downstream biology. Here, we review recent progress in elucidating the role of the cell and matrix geometry in regulating actin cytoskeletal architecture and mechanics. We address new developments in traditional two-dimensional culture paradigms and discuss efforts to extend these advances to three-dimensional systems, ranging from nanotextured surfaces to microtopographical systems (e.g. channels) to fully three-dimensional matrices.
Collapse
Affiliation(s)
- Vivien D Tran
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, USA
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, USA.
| |
Collapse
|
17
|
Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020; 584:535-546. [PMID: 32848221 DOI: 10.1038/s41586-020-2612-2] [Citation(s) in RCA: 952] [Impact Index Per Article: 238.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/17/2020] [Indexed: 11/08/2022]
Abstract
Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.
Collapse
|
18
|
Smart diagnostics devices through artificial intelligence and mechanobiological approaches. 3 Biotech 2020; 10:351. [PMID: 32728518 DOI: 10.1007/s13205-020-02342-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/15/2020] [Indexed: 10/23/2022] Open
Abstract
The present work illustrates the promising intervention of smart diagnostics devices through artificial intelligence (AI) and mechanobiological approaches in health care practices. The artificial intelligence and mechanobiological approaches in diagnostics widen the scope for point of care techniques for the timely revealing of diseases by understanding the biomechanical properties of the tissue of interest. Smart diagnostic device senses the physical parameters due to change in mechanical, biological, and luidic properties of the cells and to control these changes, supply the necessary drugs immediately using AI techniques. The latest techniques like sweat diagnostics to measure the overall health, Photoplethysmography (PPG) for real-time monitoring of pulse waveform by capturing the reflected signal due to blood pulsation), Micro-electromechanical systems (MEMS) and Nano-electromechanical systems (NEMS) smart devices to detect disease at its early stage, lab-on-chip and organ-on-chip technologies, Ambulatory Circadian Monitoring device (ACM), a wrist-worn device for Parkinson's disease have been discussed. The recent and futuristic smart diagnostics tool/techniques like emotion recognition by applying machine learning algorithms, atomic force microscopy that measures the fibrinogen and erythrocytes binding force, smartphone-based retinal image analyser system, image-based computational modeling for various neurological disorders, cardiovascular diseases, tuberculosis, predicting and preventing of Zika virus, optimal drugs and doses for HIV using AI, etc. have been reviewed. The objective of this review is to examine smart diagnostics devices based on artificial intelligence and mechanobiological approaches, with their medical applications in healthcare. This review determines that smart diagnostics devices have potential applications in healthcare, but more research work will be essential for prospective accomplishments of this technology.
Collapse
|
19
|
Albano CS, Moreira Gomes A, da Silva Feltran G, da Costa Fernandes CJ, Trino LD, Zambuzzi WF, Lisboa-Filho PN. Biofunctionalization of titanium surfaces with alendronate and albumin modulates osteoblast performance. Heliyon 2020; 6:e04455. [PMID: 32715131 PMCID: PMC7378701 DOI: 10.1016/j.heliyon.2020.e04455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/08/2020] [Accepted: 07/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biofunctionalization of titanium surfaces can improve host responses, especially considering the time for osteointegration and patient recovery. This prompted us to modify titanium surfaces with alendronate and albumin and to investigate the behavior of osteoblasts on these surfaces. METHODS The biofunctionalization of titanium surfaces was characterized using classical physicochemical approaches and later used to challenge pre-osteoblast cells up to 24 h. Then their viability and molecular behavior were investigated using mitochondrial dehydrogenase activity and RTq-PCR technologies, respectively. Potential stimulus of extracellular remodeling was also investigated by zymography. RESULTS Our data indicates a differential behavior of cells responding to the surfaces, considering the activity of mitochondrial dehydrogenases. Molecularly, the differential expression of genes related with cell adhesion highlighted the importance of Integrin-β1, Fak, and Src. These 3 genes were significantly decreased in response to titanium surfaces modified with alendronate, but this behavior was reverted when alendronate was associated with albumin. Alendronate-modified surfaces promoted a significant increase on ECM remodeling, as well as culminating with greater gene activity related to the osteogenic phenotype (Runx2, Alp, Bsp). CONCLUSION Altogether, our study found interesting osteogenic behavior of cells in response to alendronate and albumin surfaces, which indicates the need for in vivo analyses to better consider these surfaces before clinical trials within the biomedical field.
Collapse
Affiliation(s)
- Carolina Simão Albano
- Bioassays and Cell Dynamics Laboratory – UNESP – São Paulo State University, Biosciences Institute, Department of Chemistry and Biochemistry, Botucatu, Brazil
- Advanced Materials and Nanotechnology Laboratory – UNESP – São Paulo State University School of Sciences, Department of Physics, Bauru, Brazil
| | - Anderson Moreira Gomes
- Bioassays and Cell Dynamics Laboratory – UNESP – São Paulo State University, Biosciences Institute, Department of Chemistry and Biochemistry, Botucatu, Brazil
| | - Geórgia da Silva Feltran
- Bioassays and Cell Dynamics Laboratory – UNESP – São Paulo State University, Biosciences Institute, Department of Chemistry and Biochemistry, Botucatu, Brazil
| | - Célio Junior da Costa Fernandes
- Bioassays and Cell Dynamics Laboratory – UNESP – São Paulo State University, Biosciences Institute, Department of Chemistry and Biochemistry, Botucatu, Brazil
| | - Luciana Daniele Trino
- Advanced Materials and Nanotechnology Laboratory – UNESP – São Paulo State University School of Sciences, Department of Physics, Bauru, Brazil
| | - Willian Fernando Zambuzzi
- Bioassays and Cell Dynamics Laboratory – UNESP – São Paulo State University, Biosciences Institute, Department of Chemistry and Biochemistry, Botucatu, Brazil
| | - Paulo Noronha Lisboa-Filho
- Advanced Materials and Nanotechnology Laboratory – UNESP – São Paulo State University School of Sciences, Department of Physics, Bauru, Brazil
| |
Collapse
|
20
|
Castillo EA, Lane KV, Pruitt BL. Micromechanobiology: Focusing on the Cardiac Cell-Substrate Interface. Annu Rev Biomed Eng 2020; 22:257-284. [PMID: 32501769 DOI: 10.1146/annurev-bioeng-092019-034950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered, in vitro cardiac cell and tissue systems provide test beds for the study of cardiac development, cellular disease processes, and drug responses in a dish. Much effort has focused on improving the structure and function of engineered cardiomyocytes and heart tissues. However, these parameters depend critically on signaling through the cellular microenvironment in terms of ligand composition, matrix stiffness, and substrate mechanical properties-that is, matrix micromechanobiology. To facilitate improvements to in vitro microenvironment design, we review how cardiomyocytes and their microenvironment change during development and disease in terms of integrin expression and extracellular matrix (ECM) composition. We also discuss strategies used to bind proteins to common mechanobiology platforms and describe important differences in binding strength to the substrate. Finally, we review example biomaterial approaches designed to support and probe cell-ECM interactions of cardiomyocytes in vitro, as well as open questions and challenges.
Collapse
Affiliation(s)
- Erica A Castillo
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA; .,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Kerry V Lane
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA;
| | - Beth L Pruitt
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93117, USA;
| |
Collapse
|
21
|
Atluri K, Chinnathambi S, Mendenhall A, Martin JA, Sander EA, Salem AK. Targeting Cell Contractile Forces: A Novel Minimally Invasive Treatment Strategy for Fibrosis. Ann Biomed Eng 2020; 48:1850-1862. [PMID: 32236751 PMCID: PMC7286797 DOI: 10.1007/s10439-020-02497-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Fibrosis is a complication of tendon injury where excessive scar tissue accumulates in and around the injured tissue, leading to painful and restricted joint motion. Unfortunately, fibrosis tends to recur after surgery, creating a need for alternative approaches to disrupt scar tissue. We posited a strategy founded on mechanobiological principles that collagen under tension generated by fibroblasts is resistant to degradation by collagenases. In this study, we tested the hypothesis that blebbistatin, a drug that inhibits cellular contractile forces, would increase the susceptibility of scar tissue to collagenase degradation. Decellularized tendon scaffolds (DTS) were treated with bacterial collagenase with or without external or cell-mediated internal tension. External tension producing strains of 2-4% significantly reduced collagen degradation compared with non-tensioned controls. Internal tension exerted by human fibroblasts seeded on DTS significantly reduced the area of the scaffolds compared to acellular controls and inhibited collagen degradation compared to free-floating DTS. Treatment of cell-seeded DTS with 50 mM blebbistatin restored susceptibility to collagenase degradation, which was significantly greater than in untreated controls (p < 0.01). These findings suggest that therapies combining collagenases with drugs that reduce cell force generation should be considered in cases of tendon fibrosis that do not respond to physiotherapy.
Collapse
|
22
|
Yoon SB, Lee G, Park SB, Cho H, Lee JO, Koh B. Properties of differentiated SH-SY5Y grown on carbon-based materials. RSC Adv 2020; 10:19382-19389. [PMID: 35515479 PMCID: PMC9054104 DOI: 10.1039/d0ra03383a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022] Open
Abstract
Neural cell differentiation has been extensively studied in two-dimensional (2D) cell culture plates. However, the cellular microenvironment and extracellular matrix (ECM) are much more complex and flat 2D surfaces are hard to mimic in ECM. Carbon nanotubes (CNTs) and graphenes are multidimensional carbon-based nanomaterials and may be able to provide extra dimensions on cell growth and differentiation. To determine the effect of CNTs and graphene surfaces on the growth, gene expression, differentiation and functionality of neuroblastoma to a neural cell, SH-SY5Y cells were grown on a 2D (control) surface, a CNT network and a graphene film. The data suggest that SH-SY5Y cells grown on CNT surfaces show an average 20.2% increase in cell viability; 5.7% decrease in the ratio of cells undergoing apoptosis; 78.3, 43.4 and 38.1% increases in SOX2, GFAP and NeuN expression, respectively; and a 29.7% increase in mean firing rate on a multi-electrode array. SH-SY5Y cells grown on graphene film show little or no changes in cell properties compared to cells grown in 2D. The data indicate that the three-dimensional (3D) surface of CNTs provides a favorable environment for SH-SY5Y cells to proliferate and differentiate to neurons.
Collapse
Affiliation(s)
- Sae-Bom Yoon
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Sung Bum Park
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Heeyeong Cho
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Byumseok Koh
- Biotechnology and Therapeutics Division, Korea Research Institute of Chemical Technology 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| |
Collapse
|
23
|
Joseph JG, Liu AP. Mechanical Regulation of Endocytosis: New Insights and Recent Advances. ACTA ACUST UNITED AC 2020; 4:e1900278. [PMID: 32402120 DOI: 10.1002/adbi.201900278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/23/2022]
Abstract
Endocytosis is a mechanosensitive process. It involves remodeling of the plasma membrane from a flat shape to a budded morphology, often at the sub-micrometer scale. This remodeling process is energy-intensive and is influenced by mechanical factors such as membrane tension, membrane rigidity, and physical properties of cargo and extracellular surroundings. The cellular responses to a variety of mechanical factors by distinct endocytic pathways are important for cells to counteract rapid and extreme disruptions in the mechanohomeostasis of cells. Recent advances in microscopy and mechanical manipulation at the cellular scale have led to new discoveries of mechanoregulation of endocytosis by the aforementioned factors. While factors such as membrane tension and membrane rigidity are generally shown to inhibit endocytosis, other mechanical stimuli have complex relationships with endocytic pathways. At this juncture, it is now possible to utilize experimental techniques to interrogate theoretical predictions on mechanoregulation of endocytosis in cells and even living organisms.
Collapse
Affiliation(s)
- Jophin G Joseph
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
24
|
Jallerat Q, Feinberg AW. Extracellular Matrix Structure and Composition in the Early Four-Chambered Embryonic Heart. Cells 2020; 9:cells9020285. [PMID: 31991580 PMCID: PMC7072588 DOI: 10.3390/cells9020285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 01/30/2023] Open
Abstract
During embryonic development, the heart undergoes complex morphogenesis from a liner tube into the four chambers consisting of ventricles, atria and valves. At the same time, the cardiomyocytes compact into a dense, aligned, and highly vascularized myocardium. The extracellular matrix (ECM) is known to play an important role in this process but understanding of the expression and organization remains incomplete. Here, we performed 3D confocal imaging of ECM in the left ventricle and whole heart of embryonic chick from stages Hamburger-Hamilton 28-35 (days 5-9) as an accessible model of heart formation. First, we observed the formation of a fibronectin-rich, capillary-like networks in the myocardium between day 5 and day 9 of development. Then, we focused on day 5 prior to vascularization to determine the relative expression of fibronectin, laminin, and collagen type IV. Cardiomyocytes were found to uniaxially align prior to vascularization and, while the epicardium contained all ECM components, laminin was reduced, and collagen type IV was largely absent. Quantification of fibronectin revealed highly aligned fibers with a mean diameter of ~500 nm and interfiber spacing of ~3 µm. These structural parameters (volume, spacing, fiber diameter, length, and orientation) provide a quantitative framework to describe the organization of the embryonic ECM.
Collapse
Affiliation(s)
- Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Adam W. Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-268-4897
| |
Collapse
|
25
|
Re-engineered cell-derived extracellular matrix as a new approach to clarify the role of native ECM. Methods Cell Biol 2020; 156:205-231. [PMID: 32222220 DOI: 10.1016/bs.mcb.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An extracellular matrix (ECM) has both biochemical and mechanophysical characteristics obtained from multiple components, which provides cells a dynamic microenvironment. During reciprocal interactions with ECM, the cells actively remodel the matrix, including synthesis, degradation, and chemical modification, which play a pivotal role in various biological events such as disease progression or tissue developmental processes. Since a cell-derived decellularized ECM (cdECM) holds in vivo-like compositional heterogeneity and interconnected fibrillary architecture, it has received much attention as a promising tool for developing more physiological in vitro model systems. Despite these advantages, the cdECM has obvious limitations to mimic versatile ECMs precisely, suggesting the need for improved in vitro modeling to clarify the functions of native ECM. Recent studies propose to tailor the cdECM via biochemically, biomechanically, or incorporation with other systems as a new approach to address the limitations. In this chapter, we summarize the studies that re-engineered the cdECM to examine the features of native ECM in-depth and to increase physiological relevancy.
Collapse
|
26
|
Hansel CS, Holme MN, Gopal S, Stevens MM. Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials 2020; 226:119406. [DOI: 10.1016/j.biomaterials.2019.119406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
27
|
Kim W, Jang CH, Kim GH. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration. NANO LETTERS 2019; 19:8612-8620. [PMID: 31661283 DOI: 10.1021/acs.nanolett.9b03182] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contact guidance can promote cell alignment and is thus widely employed in tissue regeneration. In particular, skeletal muscle consists of long fibrous bundles of multinucleated myotubes formed by the fusion and differentiation of the satellite cells of myoblasts. Herein, a functional bioink and cell-printing process supplemented with an electric field are proposed for obtaining highly aligned myoblasts in a collagen-based bioink. To achieve the goal, we mixed Au nanowires (GNWs) with the collagen-based bioink to provide aligned topographical cues to the laden cells. Because the aligned GNWs could clearly provide topographical cues to the cells, we adjusted various processing parameters (flow rate, nozzle speed, and processing temperature) and applied an external electric field to optimally align the GNWs. By selecting an appropriate condition, the GNWs in the printed C2C12-laden structure were well aligned in the printing direction, and they eventually induced a high degree of myoblast alignment and efficient myotube formation. Through the several in vitro cellular activities and in vivo works revealing the myogenesis of the cell-laden structure, we conclude that the collagen/GNW-based cell-laden structure fabricated using the proposed method is a new prospective platform for the effective formation of muscle tissues.
Collapse
Affiliation(s)
- WonJin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi-Do 16419 , South Korea
| | - Chul Ho Jang
- Department of Otolaryngology , Chonnam National University Medical School , Gwangju 61469 , South Korea
| | - Geun Hyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University (SKKU) , Suwon , Gyeonggi-Do 16419 , South Korea
| |
Collapse
|
28
|
Xiong S, Gao H, Qin L, Jia YG, Ren L. Engineering topography: Effects on corneal cell behavior and integration into corneal tissue engineering. Bioact Mater 2019; 4:293-302. [PMID: 31709312 PMCID: PMC6829100 DOI: 10.1016/j.bioactmat.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
Cell-material interactions are important to tissue engineering. Inspired by the natural topographic structures on the extracellular matrix, a growing number of studies have integrated engineering topography into investigations of cell behavior on biomaterials. Engineering topography has a significant influence on cell behaviors. These cell-topography interactions play an important role in regenerative medicine and tissue engineering. Similarly, cell-topography interactions are important to corneal reconstruction and regeneration. In this review, we primarily summarized the effects of topographic cues on the behaviors of corneal cells, including cell morphology, adhesion, migration, and proliferation. Furthermore, the integration of engineering surface topography into corneal tissue engineering was also discussed.
Collapse
Affiliation(s)
- Sijia Xiong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - HuiChang Gao
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lanfeng Qin
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, Guangzhou, 510006, China
- Sino-Singapore International Joint Research Institute, Guangzhou, 510555, China
| |
Collapse
|
29
|
Huebsch N. Translational mechanobiology: Designing synthetic hydrogel matrices for improved in vitro models and cell-based therapies. Acta Biomater 2019; 94:97-111. [PMID: 31129361 DOI: 10.1016/j.actbio.2019.05.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Synthetic hydrogels have ideal physiochemical properties to serve as reductionist mimics of the extracellular matrix (ECM) for studies on cellular mechanosensing. These studies range from basic observation of correlations between ECM mechanics and cell fate changes to molecular dissection of the underlying mechanisms. Despite intensive work on hydrogels to study mechanobiology, many fundamental questions regarding mechanosensing remain unanswered. In this review, I first discuss historical motivation for studying cellular mechanobiology, and challenges impeding this effort. I next overview recent efforts to engineer hydrogel properties to study cellular mechanosensing. Finally, I focus on in vitro modeling and cell-based therapies as applications of hydrogels that will exploit our ability to create micro-environments with physiologically relevant elasticity and viscoelasticity to control cell biology. These translational applications will not only use our current understanding of mechanobiology but will also bring new tools to study the fundamental problem of how cells sense their mechanical environment. STATEMENT OF SIGNIFICANCE: Hydrogels are an important tool for understanding how our cells can sense their mechanical environment, and to exploit that understanding in regenerative medicine. In the current review, I discuss historical work linking mechanics to cell behavior in vitro, and highlight the role hydrogels played in allowing us to understand how cells monitor mechanical cues. I then highlight potential translational applications of hydrogels with mechanical properties similar to those of the tissues where cells normally reside in our bodies, and discuss how these types of studies can provide clues to help us enhance our understanding of mechanosensing.
Collapse
Affiliation(s)
- Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in Saint Louis, United States.
| |
Collapse
|
30
|
Nam S, Gupta VK, Lee HP, Lee JY, Wisdom KM, Varma S, Flaum EM, Davis C, West RB, Chaudhuri O. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27 Kip1 signaling axis. SCIENCE ADVANCES 2019; 5:eaaw6171. [PMID: 31457089 PMCID: PMC6685709 DOI: 10.1126/sciadv.aaw6171] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/28/2019] [Indexed: 05/04/2023]
Abstract
In tissues, cells reside in confining microenvironments, which may mechanically restrict the ability of a cell to double in size as it prepares to divide. How confinement affects cell cycle progression remains unclear. We show that cells progressed through the cell cycle and proliferated when cultured in hydrogels exhibiting fast stress relaxation but were mostly arrested in the G0/G1 phase of the cell cycle when cultured in hydrogels that exhibit slow stress relaxation. In fast-relaxing gels, activity of stretch-activated channels (SACs), including TRPV4, promotes activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which in turn drives cytoplasmic localization of the cell cycle inhibitor p27Kip1, thereby allowing S phase entry and proliferation. Cell growth during G1 activated the TRPV4-PI3K/Akt-p27Kip1 signaling axis, but growth is inhibited in the confining slow-relaxing hydrogels. Thus, in confining microenvironments, cells sense when growth is sufficient for division to proceed through a growth-responsive signaling axis mediated by SACs.
Collapse
Affiliation(s)
- Sungmin Nam
- Department of Mechanical Engineering, Stanford University, CA, USA
| | | | - Hong-pyo Lee
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Joanna Y. Lee
- Department of Mechanical Engineering, Stanford University, CA, USA
| | | | - Sushama Varma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ciara Davis
- Department of Biomedical Engineering, University of Michigan, MI, USA
| | - Robert B. West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA
| |
Collapse
|
31
|
Wisdom KM, Indana D, Chou PE, Desai R, Kim T, Chaudhuri O. Covalent cross-linking of basement membrane-like matrices physically restricts invasive protrusions in breast cancer cells. Matrix Biol 2019; 85-86:94-111. [PMID: 31163245 DOI: 10.1016/j.matbio.2019.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/01/2019] [Accepted: 05/25/2019] [Indexed: 01/02/2023]
Abstract
The basement membrane (BM) provides a physical barrier to invasion in epithelial tumors, and alterations in the molecular makeup and structural integrity of the BM have been implicated in cancer progression. Invadopodia are the invasive protrusions that enable cancer cells to breach the nanoporous basement membrane, through matrix degradation and generation of force. However, the impact of covalent cross-linking on invadopodia extension into the BM remains unclear. Here, we examine the impact of covalent cross-linking of extracellular matrix on invasive protrusions using biomaterials that present ligands relevant to the basement membrane and provide a nanoporous, confining microenvironment. We find that increased covalent cross-linking of reconstituted basement membrane (rBM) matrix diminishes matrix mechanical plasticity, or the ability of the matrix to permanently retain deformation due to force. Covalently cross-linked rBM matrices, and rBM-alginate interpenetrating networks (IPNs) with covalent cross-links and low plasticity, restrict cell spreading and protrusivity. The reduced spreading and reduced protrusivity in response to low mechanical plasticity occurred independent of proteases. Mechanistically, our computational model reveals that the reduction in mechanical plasticity due to covalent cross-linking is sufficient to mechanically prevent cell protrusions from extending, independent of the impact of covalent cross-linking or matrix mechanical plasticity on cell signaling pathways. These findings highlight the biophysical role of covalent cross-linking in regulating basement membrane plasticity, as well as cancer cell invasion of this confining tissue layer.
Collapse
Affiliation(s)
- Katrina M Wisdom
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Pei-En Chou
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Rajiv Desai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
Nam S, Stowers R, Lou J, Xia Y, Chaudhuri O. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials 2019; 200:15-24. [PMID: 30743050 PMCID: PMC6463514 DOI: 10.1016/j.biomaterials.2019.02.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 12/31/2022]
Abstract
Hydrogels are commonly used as artificial extracellular matrices for 3D cell culture and for tissue engineering. Viscoelastic hydrogels with tunable stress relaxation have recently been developed, and stress relaxation in the hydrogels has been found to play a key role in regulating cell behaviors such as differentiation, spreading, and proliferation. Here we report a simple but precise materials approach to tuning stress relaxation of alginate hydrogels with polyethylene glycol (PEG) covalently grafted onto the alginate. Hydrogel relaxation was modulated independent of the initial elastic modulus by varying molecular weight and concentration of PEG along with calcium crosslinking of the alginate. Increased concentration and molecular weight of the PEG resulted in faster stress relaxation, a higher loss modulus, and increased creep. Interestingly, we found that stress relaxation of the hydrogels is determined by the total mass amount of PEG in the hydrogel, and not the molecular weight or concentration of PEG chains alone. We then evaluated the utility of these hydrogels for 3D cell culture. Faster relaxation in RGD-coupled alginate-PEG hydrogels led to increased spreading and proliferation of fibroblasts, and enhanced osteogenic differentiation of mesenchymal stem cells (MSCs). Thus, this work establishes a new materials approach to tuning stress relaxation in alginate hydrogels for 3D cell culture.
Collapse
Affiliation(s)
- Sungmin Nam
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Ryan Stowers
- Department of Mechanical Engineering, Stanford University, CA, USA
| | - Junzhe Lou
- Department of Chemistry, Stanford University, CA, USA; Department of Materials Science and Engineering, Stanford University, CA, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, CA, USA.
| |
Collapse
|
33
|
Diao W, Tong X, Yang C, Zhang F, Bao C, Chen H, Liu L, Li M, Ye F, Fan Q, Wang J, Ou-Yang ZC. Behaviors of Glioblastoma Cells in in Vitro Microenvironments. Sci Rep 2019; 9:85. [PMID: 30643153 PMCID: PMC6331579 DOI: 10.1038/s41598-018-36347-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/06/2018] [Indexed: 01/17/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and highly aggressive brain tumor. In this study, four types of typical GBM cell lines (LN229, SNB19, U87, U251) were cultured in a microfabricated 3-D model to study their in vitro behaviors. The 3-D in vitro model provides hollow micro-chamber arrays containing a natural collagen interface and thus allows the GBM cells to grow in the 3-D chambers. The GBM cells in this model showed specific properties on the aspects of cell morphology, proliferation, migration, and invasion, some of which were rarely observed before. Furthermore, how the cells invaded into the surrounding ECM and the corresponding specific invasion patterns were observed in details, implying that the four types of cells have different features during their development in cancer. This complex in vitro model, if applied to patient derived cells, possesses the potential of becoming a clinically relevant predictive model.
Collapse
Affiliation(s)
- Wenwen Diao
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xuezhi Tong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Cheng Yang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fengrong Zhang
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chun Bao
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 325001, China.,School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing, 401331, China
| | - Ming Li
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangfu Ye
- School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.,Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Zhong-Can Ou-Yang
- Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 55 East Zhongguancun Road, Beijing, 100190, China. .,School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
34
|
Microfluidic dielectrophoretic cell manipulation towards stable cell contact assemblies. Biomed Microdevices 2018; 20:95. [DOI: 10.1007/s10544-018-0341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Ho KKY, Wang YL, Wu J, Liu AP. Advanced Microfluidic Device Designed for Cyclic Compression of Single Adherent Cells. Front Bioeng Biotechnol 2018; 6:148. [PMID: 30386779 PMCID: PMC6198036 DOI: 10.3389/fbioe.2018.00148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cells in our body experience different types of stress including compression, tension, and shear. It has been shown that some cells experience permanent plastic deformation after a mechanical tensile load was removed. However, it was unclear whether cells are plastically deformed after repetitive compressive loading and unloading. There have been few tools available to exert cyclic compression at the single cell level. To address technical challenges found in a previous microfluidic compression device, we developed a new single-cell microfluidic compression device that combines an elastomeric membrane block geometry to ensure a flat contact surface and microcontact printing to confine cell spreading within cell trapping chambers. The design of the block geometry inside the compression chamber was optimized by using computational simulations. Additionally, we have implemented step-wise pneumatically controlled cell trapping to allow more compression chambers to be incorporated while minimizing mechanical perturbation on trapped cells. Using breast epithelial MCF10A cells stably expressing a fluorescent actin marker, we successfully demonstrated the new device design by separately trapping single cells in different chambers, confining cell spreading on microcontact printed islands, and applying cyclic planar compression onto single cells. We found that there is no permanent deformation after a 0.5 Hz cyclic compressive load for 6 min was removed. Overall, the development of the single-cell compression microfluidic device opens up new opportunities in mechanobiology and cell mechanics studies.
Collapse
Affiliation(s)
- Kenneth K. Y. Ho
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Ying Lin Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Jing Wu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- Biophysics Program, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
36
|
Piccirillo G, Ditaranto MV, Feuerer NFS, Carvajal Berrio DA, Brauchle EM, Pepe A, Bochicchio B, Schenke-Layland K, Hinderer S. Non-invasive characterization of hybrid gelatin:poly-l-lactide electrospun scaffolds using second harmonic generation and multiphoton imaging. J Mater Chem B 2018; 6:6399-6412. [PMID: 32254648 DOI: 10.1039/c8tb02026d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid scaffolds composed of synthetic polymers and naturally occurring components have become more relevant in the field of tissue engineering and regenerative medicine. Synthetic polymers are responsible for scaffold durability, strength and structural integrity; however, often do not provide biological signals. Introducing a biological component leads to more advanced and biocompatible scaffolds. In order to use these scaffolds as implants, a deeper knowledge of material characteristics and the impact of the biological component on the scaffold mechanical properties are required. Furthermore, it is necessary to implement fast, easy and non-invasive methods to determine material characteristics. In this work, we aimed to generate gelatin-poly-l-lactide (PLA) hybrids via electrospinning with defined, controllable and tunable scaffold characteristics. Using Raman microspectroscopy, we demonstrated the effectiveness of the cross-linking reaction and evaluated the increasing PLA content in the hybrid scaffolds with a non-invasive approach. Using multiphoton microscopy, we showed that gelatin fibers electrospun from a fluorinated solvent exhibit a second harmonic generation (SHG) signal typical for collagen-like structures. Compared to pure gelatin, where the SHG signal vanishes after cross-linking, the signal could be preserved in the hybrid scaffolds even after cross-linking. Furthermore, we non-invasively imaged cellular growth of human dermal fibroblasts on the hybrid electrospun scaffolds and performed fluorescence lifetime imaging microscopy on the cell-seeded hybrids, where we were able to discriminate between cells and scaffolds. Here, we successfully employed non-invasive methods to evaluate scaffold characteristics and investigate cell-material interactions.
Collapse
|
37
|
Heureaux-Torres J, Luker KE, Haley H, Pirone M, Lee LM, Herrera Y, Luker GD, Liu AP. The effect of mechanosensitive channel MscL expression in cancer cells on 3D confined migration. APL Bioeng 2018; 2:032001. [PMID: 31069318 PMCID: PMC6324216 DOI: 10.1063/1.5019770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/22/2018] [Indexed: 11/15/2022] Open
Abstract
Metastatic cancer cells migrate through constricted spaces and experience significant compressive stress, but mechanisms enabling migration in confined geometries remain unclear. Cancer cell migration within confined 3-dimensional (3D) microfluidic channels has been shown to be distinct from 2D cell migration. However, whether 3D confined migration can be manipulated by mechanosensory components has not been examined in detail. In this work, we exogenously introduced a mechanosensitive channel of large conductance (MscL) into metastatic breast cancer cells MDA-MB-231. We discovered that inducing expression of a gain-of-function G22S mutant of MscL in MDA-MB-231 cells significantly reduced spontaneous lung metastasis without affecting the growth of orthotopic tumor implants. To further investigate the effects of G22S MscL on cell migration, we designed a microfluidic device with channels of various cross-sections ranging from a 2D planar environment to narrow 3D constrictions. Both MscL G22S and control breast cancer cells migrated progressively slower in more constricted environments. Migration of cells expressing MscL G22S did not differ from control cells, even though MscL was activated in cells in constricted channels of 3 μm width. Interestingly, we found MscL expressing cells to be more frequently “stuck” at the entrance of the 3 μm channels and failed to migrate into the microchannel. Our work demonstrates the possibility of engineering mechanotransduction for controlling confined cell migration.
Collapse
Affiliation(s)
- Johanna Heureaux-Torres
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kathryn E Luker
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Henry Haley
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew Pirone
- Department of Radiology, Center for Molecular Imaging, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yoani Herrera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
38
|
Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73:71-81. [DOI: 10.1016/j.semcdb.2017.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
|
39
|
Abstract
This mini-review discusses newly developed approaches to tuning hydrogel viscoelasticity and recent studies demonstrating an impact of viscoelasticity on cells.
Collapse
Affiliation(s)
- Ovijit Chaudhuri
- Department of Mechanical Engineering
- Stanford University
- Stanford
- USA
| |
Collapse
|