1
|
Ma Y, Zhao Y, Ma Y. Kernel Bayesian nonlinear matrix factorization based on variational inference for human-virus protein-protein interaction prediction. Sci Rep 2024; 14:5693. [PMID: 38454139 PMCID: PMC10920681 DOI: 10.1038/s41598-024-56208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Identification of potential human-virus protein-protein interactions (PPIs) contributes to the understanding of the mechanisms of viral infection and to the development of antiviral drugs. Existing computational models often have more hyperparameters that need to be adjusted manually, which limits their computational efficiency and generalization ability. Based on this, this study proposes a kernel Bayesian logistic matrix decomposition model with automatic rank determination, VKBNMF, for the prediction of human-virus PPIs. VKBNMF introduces auxiliary information into the logistic matrix decomposition and sets the prior probabilities of the latent variables to build a Bayesian framework for automatic parameter search. In addition, we construct the variational inference framework of VKBNMF to ensure the solution efficiency. The experimental results show that for the scenarios of paired PPIs, VKBNMF achieves an average AUPR of 0.9101, 0.9316, 0.8727, and 0.9517 on the four benchmark datasets, respectively, and for the scenarios of new human (viral) proteins, VKBNMF still achieves a higher hit rate. The case study also further demonstrated that VKBNMF can be used as an effective tool for the prediction of human-virus PPIs.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics and Statistics, Xiamen University of Technology, Xiamen, China
| | - Yongbiao Zhao
- School of Computer, Central China Normal University, Wuhan, China
| | - Yuanyuan Ma
- School of Computer Engineering, Hubei University of Arts and Science, Xiangyang, China.
- Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang, China.
| |
Collapse
|
2
|
Iuchi H, Kawasaki J, Kubo K, Fukunaga T, Hokao K, Yokoyama G, Ichinose A, Suga K, Hamada M. Bioinformatics approaches for unveiling virus-host interactions. Comput Struct Biotechnol J 2023; 21:1774-1784. [PMID: 36874163 PMCID: PMC9969756 DOI: 10.1016/j.csbj.2023.02.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic has elucidated major limitations in the capacity of medical and research institutions to appropriately manage emerging infectious diseases. We can improve our understanding of infectious diseases by unveiling virus-host interactions through host range prediction and protein-protein interaction prediction. Although many algorithms have been developed to predict virus-host interactions, numerous issues remain to be solved, and the entire network remains veiled. In this review, we comprehensively surveyed algorithms used to predict virus-host interactions. We also discuss the current challenges, such as dataset biases toward highly pathogenic viruses, and the potential solutions. The complete prediction of virus-host interactions remains difficult; however, bioinformatics can contribute to progress in research on infectious diseases and human health.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Koki Hokao
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Gentaro Yokoyama
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Akiko Ichinose
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Kanta Suga
- School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 169-8555, Japan.,School of Advanced Science and Engineering, Waseda University, Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan
| |
Collapse
|
3
|
Jain A, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Comput Struct Biotechnol J 2022; 20:4415-4436. [PMID: 36051878 PMCID: PMC9420432 DOI: 10.1016/j.csbj.2022.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect pathogenic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is a growing interest in mapping the interactions between pathogen-derived nucleic acids and host proteins. Insight into the principles of the structural and immunological mechanisms underlying such interactions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors, including their drug design, molecular structure and specific patterns. We observed that two groups of nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immunological, and other biological aspects of these representative groups of molecules, especially in terms of their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid interactions (HP-PNI) in drug discovery.
Collapse
Affiliation(s)
- Anuja Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Lokesh P. Tripathi
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
- Riken Center for Integrative Medical Sciences, Tsurumi, Yokohama, Kanagawa, Japan
| | - Ruth Nussinov
- Computational Structural Biology Section, Basic Science Program, Frederick National, Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
4
|
Ma Y, He T, Tan Y, Jiang X. Seq-BEL: Sequence-Based Ensemble Learning for Predicting Virus-Human Protein-Protein Interaction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1322-1333. [PMID: 32750886 DOI: 10.1109/tcbb.2020.3008157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Infectious diseases are currently the most important and widespread health problem, and identifying viral infection mechanisms is critical for controlling diseases caused by highly infectious viruses. Because of the lack of non-interactive protein pairs and serious imbalance between positive and negative sample ratios, the supervised learning algorithm is not suitable for prediction. At the same time, due to the lack of information on viral proteins and significant dissimilarity in sequence, some ensemble learning models have poor generalization ability. In this paper, we propose a Sequence-Based Ensemble Learning (Seq-BEL) method to predict the potential virus-human PPIs. Specifically, based on the amino acid sequence of proteins and the currently known virus-human PPI network, Seq-BEL calculates various features and similarities of human proteins and viral proteins, and then combines these similarities and features to score the potential of virus-human PPIs. The computational results show that Seq-BEL achieves success in predicting potential virus-human PPIs and outperforms other state-of-the-art methods. More importantly, Seq-BEL also has good predictive performance for new human proteins and new viral proteins. In addition, the model has the advantages of strong robustness and good generalization ability, and can be used as an effective tool for virus-human PPI prediction.
Collapse
|
5
|
Dong TN, Brogden G, Gerold G, Khosla M. A multitask transfer learning framework for the prediction of virus-human protein-protein interactions. BMC Bioinformatics 2021; 22:572. [PMID: 34837942 PMCID: PMC8626732 DOI: 10.1186/s12859-021-04484-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein-protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses. RESULTS We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein-protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein-protein interaction prediction model. CONCLUSIONS Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-COV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein-protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer .
Collapse
Affiliation(s)
- Thi Ngan Dong
- L3S Research Center, Leibniz University Hannover, Hannover, Germany.
| | - Graham Brogden
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany
| | - Gisa Gerold
- Institute for Biochemistry, University of Veterinary Medicine, Hannover, Germany.,Institute of Experimental Virology, TWINCORE, Center for Experimental and Clinical Infection Research Hannover, Hannover, Germany.,Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Megha Khosla
- L3S Research Center, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
6
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Lian X, Yang X, Yang S, Zhang Z. Current status and future perspectives of computational studies on human-virus protein-protein interactions. Brief Bioinform 2021; 22:6161422. [PMID: 33693490 DOI: 10.1093/bib/bbab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
The protein-protein interactions (PPIs) between human and viruses mediate viral infection and host immunity processes. Therefore, the study of human-virus PPIs can help us understand the principles of human-virus relationships and can thus guide the development of highly effective drugs to break the transmission of viral infectious diseases. Recent years have witnessed the rapid accumulation of experimentally identified human-virus PPI data, which provides an unprecedented opportunity for bioinformatics studies revolving around human-virus PPIs. In this article, we provide a comprehensive overview of computational studies on human-virus PPIs, especially focusing on the method development for human-virus PPI predictions. We briefly introduce the experimental detection methods and existing database resources of human-virus PPIs, and then discuss the research progress in the development of computational prediction methods. In particular, we elaborate the machine learning-based prediction methods and highlight the need to embrace state-of-the-art deep-learning algorithms and new feature engineering techniques (e.g. the protein embedding technique derived from natural language processing). To further advance the understanding in this research topic, we also outline the practical applications of the human-virus interactome in fundamental biological discovery and new antiviral therapy development.
Collapse
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaodi Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Lian X, Yang X, Shao J, Hou F, Yang S, Pan D, Zhang Z. Prediction and analysis of human-herpes simplex virus type 1 protein-protein interactions by integrating multiple methods. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0222-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Ma Y, He T, Jiang X. Projection-Based Neighborhood Non-Negative Matrix Factorization for lncRNA-Protein Interaction Prediction. Front Genet 2019; 10:1148. [PMID: 31824563 PMCID: PMC6880730 DOI: 10.3389/fgene.2019.01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Many long ncRNAs (lncRNA) make their effort by interacting with the corresponding RNA-binding proteins, and identifying the interactions between lncRNAs and proteins is important to understand the functions of lncRNA. Compared with the time-consuming and laborious experimental methods, more and more computational models are proposed to predict lncRNA-protein interactions. However, few models can effectively utilize the biological network topology of lncRNA (protein) and combine its sequence structure features, and most models cannot effectively predict new proteins (lncRNA) that do not interact with any lncRNA (proteins). In this study, we proposed a projection-based neighborhood non-negative matrix decomposition model (PMKDN) to predict potential lncRNA-protein interactions by integrating multiple biological features of lncRNAs (proteins). First, according to lncRNA (protein) sequences and lncRNA expression profile data, we extracted multiple features of lncRNA (protein). Second, based on protein GO ontology annotation, lncRNA sequences, lncRNA(protein) feature information, and modified lncRNA-protein interaction network, we calculated multiple similarities of lncRNA (protein), and fused them to obtain a more accurate lncRNA(protein) similarity network. Finally, combining the similarity and various feature information of lncRNA (protein), as well as the modified interaction network, we proposed a projection-based neighborhood non-negative matrix decomposition algorithm to predict the potential lncRNA-protein interactions. On two benchmark datasets, PMKDN showed better performance than other state-of-the-art methods for the prediction of new lncRNA-protein interactions, new lncRNAs, and new proteins. Case study further indicates that PMKDN can be used as an effective tool for lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics & Statistics, Central China Normal University, Wuhan, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| |
Collapse
|
10
|
Lian X, Yang S, Li H, Fu C, Zhang Z. Machine-Learning-Based Predictor of Human–Bacteria Protein–Protein Interactions by Incorporating Comprehensive Host-Network Properties. J Proteome Res 2019; 18:2195-2205. [DOI: 10.1021/acs.jproteome.9b00074] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xianyi Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shiping Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, China
| | - Chen Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Halder AK, Dutta P, Kundu M, Basu S, Nasipuri M. Review of computational methods for virus-host protein interaction prediction: a case study on novel Ebola-human interactions. Brief Funct Genomics 2018; 17:381-391. [PMID: 29028879 PMCID: PMC7109800 DOI: 10.1093/bfgp/elx026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of potential virus-host interactions is useful and vital to control the highly infectious virus-caused diseases. This may contribute toward development of new drugs to treat the viral infections. Recently, database records of clinically and experimentally validated interactions between a small set of human proteins and Ebola virus (EBOV) have been published. Using the information of the known human interaction partners of EBOV, our main objective is to identify a set of proteins that may interact with EBOV proteins. Here, we first review the state-of-the-art, computational methods used for prediction of novel virus-host interactions for infectious diseases followed by a case study on EBOV-human interactions. The assessment result shows that the predicted human host proteins are highly similar with known human interaction partners of EBOV in the context of structure and semantics and are responsible for similar biochemical activities, pathways and host-pathogen relationships.
Collapse
Affiliation(s)
- Anup Kumar Halder
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Pritha Dutta
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mahantapas Kundu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Subhadip Basu
- Department of Computer Science and Engineering, Jadavpur University, India
| | - Mita Nasipuri
- Department of Computer Science and Engineering, Jadavpur University, India
| |
Collapse
|
12
|
Nourani E, Khunjush F, Sevilgen FE. Virus–human protein–protein interaction prediction using Bayesian matrix factorization and projection techniques. Biocybern Biomed Eng 2018. [DOI: 10.1016/j.bbe.2018.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Rudashevskaya EL, Sickmann A, Markoutsa S. Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Rev Proteomics 2016; 13:951-964. [PMID: 27602509 DOI: 10.1080/14789450.2016.1233064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite the rapid evolution of proteomic methods, protein interactions and their participation in protein complexes - an important aspect of their function - has rarely been investigated on the proteome-wide level. Disease states, such as muscular dystrophy or viral infection, are induced by interference in protein-protein interactions within complexes. The purpose of this review is to describe the current methods for global complexome analysis and to critically discuss the challenges and opportunities for the application of these methods in biomedical research. Areas covered: We discuss advancements in experimental techniques and computational tools that facilitate profiling of the complexome. The main focus is on the separation of native protein complexes via size exclusion chromatography and gel electrophoresis, which has recently been combined with quantitative mass spectrometry, for a global protein-complex profiling. The development of this approach has been supported by advanced bioinformatics strategies and fast and sensitive mass spectrometers that have allowed the analysis of whole cell lysates. The application of this technique to biomedical research is assessed, and future directions are anticipated. Expert commentary: The methodology is quite new, and has already shown great potential when combined with complementary methods for detection of protein complexes.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| | - Albert Sickmann
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany.,b Medizinisches Proteom-Center , Ruhr-Universität Bochum , Bochum , Germany.,c School of Natural & Computing Sciences, Department of Chemistry , University of Aberdeen , Aberdeen , UK
| | - Stavroula Markoutsa
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| |
Collapse
|