1
|
Souiade L, Rodriguez-Garcia MR, Serrano-Olmedo JJ, Ramos-Gómez M. Pulsed Alternating Fields Magnetic Hyperthermia in Combination with Chemotherapy (5-Fluorouracil) as a Cancer Treatment for Glioblastoma Multiform: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:556. [PMID: 40214600 PMCID: PMC11990194 DOI: 10.3390/nano15070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Inducing magnetic hyperthermia (MHT) involves locally raising the temperature to 39-45 °C, which increases the susceptibility of tumor cells to therapeutic agents without damaging healthy tissues. Recent studies on trapezoidal pulsed alternating magnetic fields (TP-AMFs) have proven their considerable efficacy in increasing the temperature of magnetic nanoparticles (MNPs) compared to sinusoidal fields. Thermal therapies have been known to incorporate multiple combinations of therapeutic approaches to optimize the medical procedure for healing cancer patients such as chemotherapy and radiotherapy. The combination of MHT with chemotherapy aims to enhance the therapeutic effects against cancer due to the synergistic interaction in tumor cells. In this study, we aim to exploit the synergistic effects of combining MHT produced by TP-AMFs with a low concentration of 5-Fluorouracil (5-FU) to optimize the therapeutic outcomes in comparison to TP-AMFs MHT alone. Hence, we exposed a glioblastoma cell line (CT2A) incubated with iron oxide nanoparticles at 1 mg/mL to two cycles of MHT employing a trapezoidal-square waveform at 200 kHz and 2 mT for 30 min for each cycle, separated by a 45 min break, both as a single treatment and in combination with 0.1 μg/mL of 5-FU. Our findings demonstrated the efficacy of the synergistic effect between MHT treatment via TP-AMFs and the 5-FU, increasing the cell death to 58.9 ± 2%, compared to 31.4 ± 3% with MHT treatment alone. Cell death was primarily driven by the necrosis pathway (47.3 ± 2%) compared to apoptosis (11.6 ± 2). The addition of 5-FU enhanced the cytotoxic effect of MHT on CT2A cells, increasing the calreticulin (CRT) positive cells to 17 ± 1% compared to 10 ± 1% as produced by MHT treatment alone. Furthermore, this combination suggests that the employed treatment approach can promote immune system activation due to the exposure of CRT in the treated cells.
Collapse
Affiliation(s)
- Lilia Souiade
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.S.); (M.-R.R.-G.); (J.-J.S.-O.)
| | - Miguel-Ramon Rodriguez-Garcia
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.S.); (M.-R.R.-G.); (J.-J.S.-O.)
| | - José-Javier Serrano-Olmedo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.S.); (M.-R.R.-G.); (J.-J.S.-O.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Milagros Ramos-Gómez
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain; (L.S.); (M.-R.R.-G.); (J.-J.S.-O.)
- Centro de Investigación Biomédica en Red para Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Graham W, Torbett-Dougherty M, Islam A, Soleimani S, Bruce-Tagoe TA, Johnson JA. Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:285. [PMID: 39997849 PMCID: PMC11858650 DOI: 10.3390/nano15040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Cancer continues to be a prominent fatal health issue worldwide, driving the urgent need for more effective treatment strategies. The pressing demand has sparked significant interest in the development of advanced drug delivery systems for chemotherapeutics. The advent of nanotechnology offers a groundbreaking approach, presenting a promising pathway to revolutionize cancer treatment and improve patient outcomes. Nanomedicine-based drug delivery systems have demonstrated the capability of improving the pharmacokinetic properties and accumulation of chemotherapeutic agents in cancer sites while minimizing the adverse side effects. Despite these advantages, most NDDSs exhibit only limited improvement in cancer treatment during clinical trials. The recent development of magnetic nanoparticles (MNPs) for biomedical applications has revealed a potential opportunity to further enhance the performance of NDDSs. The magnetic properties of MNPs can be utilized to increase the targeting capabilities of NDDSs, improve the controlled release of chemotherapeutic agents, and weaken the chemoresistance of tumors with magnetic hyperthermia. In this review, we will explore recent advancements in research for NDDSs for oncology applications, how MNPs and their properties can augment the capabilities of NDDSs when complexed with them and emphasize the challenges and safety concerns of incorporating these systems into cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Jacqueline Ann Johnson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN 37996, USA; (W.G.); (M.T.-D.); (A.I.); (S.S.); (T.A.B.-T.)
| |
Collapse
|
3
|
Wu Y, Liu Y, Wu H, Tong M, Du L, Ren S, Che Y. Advances in Ultrasound-Targeted Microbubble Destruction (UTMD) for Breast Cancer Therapy. Int J Nanomedicine 2025; 20:1425-1442. [PMID: 39925678 PMCID: PMC11804227 DOI: 10.2147/ijn.s504363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Breast cancer is one of the most common types of cancer in women worldwide and is a leading cause of cancer deaths among women. As a result, various treatments have been developed to combat this disease. Breast cancer treatment varies based on its stage and type of pathology. Among the therapeutic options, ultrasound has been employed to assist in the treatment of breast cancer, including radiation therapy, chemotherapy, targeted immunotherapy, hormonal therapy, and, more recently, radiofrequency ablation for early-stage and inoperable patients. One notable advancement is ultrasound-targeted microbubble destruction (UTMD), which is gradually becoming a highly effective and non-invasive anti-tumor modality. This technique can enhance chemical, genetic, immune, and anti-vascular therapies through its physical and biological effects. Specifically, UTMD improves drug transfer efficiency and destroys tumor neovascularization while reducing toxic side effects on the body during tumor treatment. Given these developments, the application of ultrasound-assisted therapy to breast cancer has gained significant attention from research scholars. In this review, we will discuss the development of various therapeutic modalities for breast cancer and, importantly, highlight the application of ultrasound microbubble-targeted disruption techniques in breast cancer treatment.
Collapse
Affiliation(s)
- Yunfeng Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Yuxi Liu
- Department of Ultrasound, Shandong Second Medical University Affiliated Hospital, Shan Dong, Weifang, People’s Republic of China
| | - Han Wu
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Mengying Tong
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Linyao Du
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, Liaoning, Dalian, People’s Republic of China
| |
Collapse
|
4
|
Zhang YF, Lu M. Advances in magnetic induction hyperthermia. Front Bioeng Biotechnol 2024; 12:1432189. [PMID: 39161353 PMCID: PMC11331313 DOI: 10.3389/fbioe.2024.1432189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Magnetic induction hyperthermia (MIH), is a technique that has developed rapidly in recent years in the field of tumor thermotherapy. It implants a magnetic heating medium (millimeter-sized heat seeds, micron-sized magnetic particles and nanometer-sized magnetic fluids, etc.) inside the tumor. The material heats up under the induction of an external alternating magnetic field (100-500 kHz), which causes a high temperature zone to rapidly form in the local biological tissues and induces apoptosis in tumor cells. Magnetic induction hyperthermia has the advantages of high safety, strong targeting, repeatable treatment, and the size of the incision during treatment is negligible compared to surgical resection, and is currently used in clinical treatment. However, the millimeter-scale heat seed heating that is typically used in treatments can result in uneven temperatures within the tissue. Common MIH heating devices are bulky and complex in design, and are not easy for medical staff to get their hands on, which are issues that limit the diffusion of MIH. In this view, this paper will discuss the basic theoretical research on MIH and the progress of MIH-related technologies, with a focus on the latest research and development results and research hotspots of nanoscale ferromagnetic media and magnetic heat therapy devices, as well as the validation results and therapeutic efficacy of the new MIH technology on animal experiments and clinical trials. In this paper, it is found that induction heating using magnetic nanoparticles improves the uniformity of the temperature field, and the magneto-thermal properties of nanoscale ferromagnetic materials are significantly improved. The heating device was miniaturized to simplify the operation steps, while the focusing of the magnetic field was locally enhanced. However, there are fewer studies on the biotoxicity aspects of nanomedicines, and the localized alternating magnetic field uniformity used for heating and the safety of the alternating magnetic field after irradiation of the human body have not been sufficiently discussed. Ultimately, the purpose of this paper is to advance research related to magnetic induction thermotherapy that can be applied in clinical treatment.
Collapse
Affiliation(s)
| | - Mai Lu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
5
|
Bhadla D, Parekh K, Jain N. Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective. Nanotoxicology 2024; 18:464-478. [PMID: 39091195 DOI: 10.1080/17435390.2024.2386019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
The need of the hour with respect to cancer treatment is a targeted approach with minimal or nil ramifications. Apropos, magnetic fluid hyperthermia (MFH) is emerging as a potential therapeutic strategy with anticipated reduced side effects for solid tumors. MFH causes cytotoxicity due to the heat generated owing to Hysteresis, Neel, and Brownian relaxation losses once magnetic nanoparticles (MNPs) carrying cancer cells are placed under an alternating magnetic field. With respect to MFH, iron oxide-based MNPs have been most extensively studied to date compared to other metal oxides with magnetic properties. The effectiveness of MFH relies on the composition, coating, size, physical and biocompatible properties of the MNPs. Pure iron oxide and doped iron oxide MNPs have been utilized to study their effects on cancer cell killing through MFH. This review evaluates the biocompatibility of pure and doped iron oxide MNPs and their subsequent hyperthermic effect for effectively killing cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Dharti Bhadla
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Kinnari Parekh
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| | - Neeraj Jain
- Dr. K C Patel Research and Development Centre, University Research Centre(s), Charotar University of Science and Technology (CHARUSAT), Changa, India
| |
Collapse
|
6
|
Liu S, Sun J. Magnetic nanomaterials mediate precise magnetic therapy. Biomed Phys Eng Express 2024; 10:052001. [PMID: 38981447 DOI: 10.1088/2057-1976/ad60cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Magnetic nanoparticle (MNP)-mediated precision magnet therapy plays a crucial role in treating various diseases. This therapeutic strategy compensates for the limitations of low spatial resolution and low focusing of magnetic stimulation, and realizes the goal of wireless teletherapy with precise targeting of focal areas. This paper summarizes the preparation methods of magnetic nanomaterials, the properties of magnetic nanoparticles, the biological effects, and the measurement methods for detecting magnetism; discusses the research progress of precision magnetotherapy in the treatment of psychiatric disorders, neurological injuries, metabolic disorders, and bone-related disorders, and looks forward to the future development trend of precision magnet therapy.
Collapse
Affiliation(s)
- Sha Liu
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People's Republic of China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, People's Republic of China
| |
Collapse
|
7
|
Shen K, Li L, Tan F, Ang CCL, Jin T, Xue Z, Wu S, Chee MY, Yan Y, Lew WS. NIR and magnetism dual-response multi-core magnetic vortex nanoflowers for boosting magneto-photothermal cancer therapy. NANOSCALE 2024; 16:10428-10440. [PMID: 38742446 DOI: 10.1039/d4nr00104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Due to the relatively low efficiency of magnetic hyperthermia and photothermal conversion, it is rather challenging for magneto-photothermal nanoagents to be used as an effective treatment during tumor hyperthermal therapy. The advancement of magnetic nanoparticles exhibiting a vortex-domain structure holds great promise as a viable strategy to enhance the application performance of conventional magnetic nanoparticles while retaining their inherent biocompatibility. Here, we report the development of Mn0.5Zn0.5Fe2O4 nanoflowers with ellipsoidal magnetic cores, and show them as effective nanoagents for magneto-photothermal synergistic therapy. Comparative studies were conducted on the heating performance of anisometric Mn0.5Zn0.5Fe2O4 (MZF) nanoparticles, including nanocubes (MZF-C), hollow spheres (MZF-HS), nanoflowers consisting of ellipsoidal magnetic cores (MZF-NFE), and nanoflowers consisting of needle-like magnetic cores (MZF-NFN). MZF-NFE exhibits an intrinsic loss parameter (ILP) of up to 15.3 N h m2 kg-1, which is better than that of commercial equivalents. Micromagnetic simulations reveal the magnetization configurations and reversal characteristics of the various MZF shapes. Additionally, all nanostructures displayed a considerable photothermal conversion efficiency rate of more than 18%. Our results demonstrated that by combining the dual exposure of MHT and PTT for hyperthermia treatments induced by MZF-NFE, BT549, MCF-7, and 4T1 cell viability can be significantly decreased by ∼95.7% in vitro.
Collapse
Affiliation(s)
- Kaiming Shen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Lixian Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Funan Tan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Calvin Ching Lan Ang
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Tianli Jin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Zongguo Xue
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Shuo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| | - Yunfei Yan
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China.
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.
| |
Collapse
|
8
|
Srivastava N, Chudasama B, Baranwal M. Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases 2023; 18:060801. [PMID: 38078795 DOI: 10.1116/6.0003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Magnetic hyperthermia utilizing magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF) represents a promising approach in the field of cancer treatment. Active targeting has emerged as a valuable strategy to enhance the effectiveness and specificity of drug delivery. Active targeting utilizes specific biomarkers that are predominantly found in abundance on cancer cells while being minimally expressed on healthy cells. Current comprehensive review provides an overview of several cancer-specific biomarkers, including human epidermal growth factor, transferrin, folate, luteinizing hormone-releasing hormone, integrin, cluster of differentiation (CD) receptors such as CD90, CD95, CD133, CD20, and CD44 also CXCR4 and vascular endothelial growth factor, these biomarkers bind to ligands present on the surface of MNPs, enabling precise targeting. Additionally, this review touches various combination therapies employed to combat cancer. Magnetic hyperthermia synergistically enhances the efficacy of conventional cancer treatments such as targeted chemotherapy, radiation therapy, gene therapy, and immunotherapy.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
9
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
10
|
Li C, Ding Z, Han Y. Mn-Doped Nano-Hydroxyapatites as Theranostic Agents with Tumor pH-Amplified MRI-Signal Capabilities for Guiding Photothermal Therapy. Int J Nanomedicine 2023; 18:6101-6118. [PMID: 37915749 PMCID: PMC10617543 DOI: 10.2147/ijn.s429336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Background The integration of diagnostic and therapeutic functions into a biosafe nanoplatform with intelligent response functions at the tumor microenvironment (TME) is a promising strategy for cancer therapy. Methods Mn-doped nano-hydroxyapatite (nHAPMn) nanoparticles were successfully prepared via a simple coprecipitation method for magnetic resonance imaging (MRI)-guided photothermal therapy. This study is the first to report on the use of Mn to render biodegradable hydroxyapatite suitable for MRI and effective photothermal therapy (PTT) simultaneously by regulating the pH of nHAPMn during the preparation process. Results Combined with near-infrared (NIR) laser irradiation, a photothermal conversion efficiency of 26% and effective photothermal lethality in vitro were achieved. Moreover, the degradation of nHAPMn led to the release of Mn ions and amplified the MRI signals in an acidic TME, which confirmed that nHAPMn had a good pH-responsive MRI capacity in solid tumors. In animal experiments, tumors in the nHAPMn5+NIR group completely abated after 14 days of treatment, with no significant recurrence during the experiment. Conclusion Therefore, nHAPMn is promising as a nanotheranostic agent and can be effective in clinical diagnosis and therapy for treating cancer.
Collapse
Affiliation(s)
- Chengyu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Ziyou Ding
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, People’s Republic of China
| |
Collapse
|
11
|
Du R, Zhao Z, Cui J, Li Y. Manganese-Based Nanotheranostics for Magnetic Resonance Imaging-Mediated Precise Cancer Management. Int J Nanomedicine 2023; 18:6077-6099. [PMID: 37908669 PMCID: PMC10614655 DOI: 10.2147/ijn.s426311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Manganese (Mn)-based magnetic resonance imaging (MRI) has become a competitive imaging modality for cancer diagnosis due to its advantages of non-invasiveness, high resolution and excellent biocompatibility. In recent years, a variety of Mn contrast agents based on different material systems have been synthesized, and a series of multi-purpose Mn nanocomposites have also emerged, showing satisfactory relaxation efficiency and MRI performance thus possess the transformation and application value in MRI-synergized cancer diagnosis and treatment. This tutorial review starts from the classification and properties of Mn-based nanomaterials, and then summarizes various preparation and functionalization strategies of nanosized Mn contrast agents, especially focuses on the latest progress of Mn contrast agents in MRI-synergized precise cancer theranostics. In addition, present review also discusses the current clinical transformation obstacles such as unclear molecular mechanisms, potential nanotoxicity, and scale production constraints. This paper provides evidence-based recommendations about the future prospects of multifunctional nanoplatforms, as well as technical guidance and panoramic expectations for the design of clinically meaningful cancer management programs.
Collapse
Affiliation(s)
- Ruochen Du
- Department of Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Ziwei Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Jing Cui
- College of Public Health, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
12
|
Soleymani M, Poorkhani A, Khalighfard S, Velashjerdi M, Khori V, Khodayari S, Khodayari H, Dehghan M, Alborzi N, Agah S, Alizadeh AM. Folic acid-conjugated dextran-coated Zn 0.6Mn 0.4Fe 2O 4 nanoparticles as systemically delivered nano heaters with self-regulating temperature for magnetic hyperthermia therapy of liver tumors. Sci Rep 2023; 13:13560. [PMID: 37604883 PMCID: PMC10442415 DOI: 10.1038/s41598-023-40627-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/14/2023] [Indexed: 08/23/2023] Open
Abstract
Successful cancer treatment using magnetic hyperthermia therapy (MHT) strongly depends on biocompatible magnetic nanoparticles (NPs). They can effectively accumulate in tumor tissues after systemic injection and generate heat in the therapeutic temperature range (42-48 °C) by exposure to an AC magnetic field (AMF). For this purpose, folic acid-conjugated dextran-coated Zn0.6Mn0.4Fe2O4 (FA-Dex-ZMF) NPs were synthesized as smart nano heaters with self-regulating temperatures for MHT of liver tumors. Animal studies on BALB/c mice showed that the prepared NPs did not cause acute toxicity upon administration up to 100 mg kg-1. Likewise, no significant changes in hematological and biochemical factors were observed. FA-Dex-ZMF NPs were studied by exposing them to different safe AC magnetic fields (f = 150 kHz, H = 6, 8, and 10 kA m-1). Calorimetric experiments revealed that the NPs reached the desired temperature range (42-48 °C), which was suitable for MHT. Moreover, the efficacy of FA-Dex-ZMF NPs in MHT of liver tumors was investigated in vivo in liver-tumor-bearing mice. The obtained results revealed that the average volume of tumors in the control group increased 2.2 times during the study period. In contrast, the tumor volume remained almost constant during treatment in the MHT group. The results indicated that folic acid-conjugated dextran-coated Zn0.6Mn0.4Fe2O4 NPs with self-regulating temperature could be a promising tool for systemically delivered MHT.
Collapse
Affiliation(s)
- Meysam Soleymani
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-88349, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Mohammad Velashjerdi
- Department of Material Science and Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Hamid Khodayari
- International Center for Personalized Medicine, Düsseldorf, Germany
| | - Mohammad Dehghan
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nazila Alborzi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Alizadeh
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, P.O.: 1419733141, Tehran, Iran.
| |
Collapse
|
13
|
Xia Q, Shen J, Ding H, Liu S, Li F, Li F, Feng N. Intravenous nanocrystals: fabrication, solidification, in vivo fate, and applications for cancer therapy. Expert Opin Drug Deliv 2023; 20:1467-1488. [PMID: 37814582 DOI: 10.1080/17425247.2023.2268512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Intravenous nanocrystals (INCs) have shown intrinsic advantages in antitumor applications, particularly their properties of high drug loading, low toxicity, and controllable size. Therefore, it has a very bright application prospect as a drug delivery system. AREAS COVERED The ideal formulation design principles, fabrication, solidification, in vivo fate of INCs, the applications in drug delivery system (DDS) and the novel applications are covered in this review. EXPERT OPINION It is vital to select a suitable formulation and fabrication method to produce a stable and sterile INCs. Besides, the type of stabilizers and physical characteristics can also influence the in vivo fate of INCs, which is worthy of further studying. Based on wide researches about applications of INCs in cancer, biomimetic INCs are concerned increasingly for its favorable compatibility. The output of these studies suggested that INCs-based drug delivery could be a novel strategy for addressing the delivery of the drug that faces solubility, bioavailability, and toxicity problems.
Collapse
Affiliation(s)
- Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siyi Liu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Fengqian Li
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Marques SM, Kumar L. Factors affecting the preparation of nanocrystals: characterization, surface modifications and toxicity aspects. Expert Opin Drug Deliv 2023; 20:871-894. [PMID: 37222381 DOI: 10.1080/17425247.2023.2218084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
INTRODUCTION The fabrication of well-defined nanocrystals in size and form is the focus of much investigation. In this work, we have critically reviewed several recent instances from the literature that shows how the production procedure affects the physicochemical properties of the nanocrystals. AREAS COVERED Scopus, MedLine, PubMed, Web of Science, and Google Scholar were searched for peer-review articles published in the past few years using different key words. Authors chose relevant publications from their files for this review. This review focuses on the range of techniques available for producing nanocrystals. We draw attention to several recent instances demonstrating the impact of various process and formulation variables that affect the nanocrystals' physicochemical properties. Moreover, various developments in the characterization techniques explored for nanocrystals concerning their size, morphology, etc. have been discussed. Last but not least, recent applications, the effect of surface modifications, and the toxicological traits of nanocrystals have also been reviewed. EXPERT OPINION The selection of an appropriate production method for the formation of nanocrystals, together with a deep understanding of the relationship between the drug's physicochemical properties, unique features of the various formulation alternatives, and anticipated in-vivo performance, would significantly reduce the risk of failure during human clinical trials that are inadequate.
Collapse
Affiliation(s)
- Shirleen Miriam Marques
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, India
| |
Collapse
|
15
|
Itzhaki E, Elias Y, Moskovits N, Stemmer SM, Margel S. Proteinoid Polymers and Nanocapsules for Cancer Diagnostics, Therapy and Theranostics: In Vitro and In Vivo Studies. J Funct Biomater 2023; 14:jfb14040215. [PMID: 37103305 PMCID: PMC10145953 DOI: 10.3390/jfb14040215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
Proteinoids-simple polymers composed of amino acids-were suggested decades ago by Fox and coworkers to form spontaneously by heat. These special polymers may self-assemble in micrometer structures called proteinoid microspheres, presented as the protocells of life on earth. Interest in proteinoids increased in recent years, in particular for nano-biomedicine. They were produced by stepwise polymerization of 3-4 amino acids. Proteinoids based on the RGD motif were prepared for targeting tumors. Nanocapsules form by heating proteinoids in an aqueous solution and slowly cooling to room temperature. Proteinoid polymers and nanocapsules suit many biomedical applications owing to their non-toxicity, biocompatibility and immune safety. Drugs and/or imaging reagents for cancer diagnostic, therapeutic and theranostic applications were encapsulated by dissolving them in aqueous proteinoid solutions. Here, recent in vitro and in vivo studies are reviewed.
Collapse
Affiliation(s)
- Ella Itzhaki
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yuval Elias
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Neta Moskovits
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
| | - Salomon M Stemmer
- Felsenstein Medical Research Center, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomo Margel
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
16
|
Zhang Y, Peng L, Hu K, Gu N. Stress Relaxation-Induced Colon Tumor Multicellular Spheroid Culture Based on Biomimetic Hydrogel for Nanoenzyme Ferroptosis Sensitization Evaluation. Adv Healthc Mater 2023; 12:e2202009. [PMID: 36300602 DOI: 10.1002/adhm.202202009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Indexed: 01/26/2023]
Abstract
Ferroptosis has recently become a research hotspot, and the induction of tumor cell ferroptosis has emerged as a powerful method for tumor therapy. However, the efficiency of tumor cell ferroptosis induction remains unmet for clinical use, which may be attributed to the large discrepancies between in vitro and in vivo models. To address this issue, in this study, a hydrogel platform with stress relaxation is utilized to develop a multicellular spheroid model of the DLD1 colon cancer cell line through cancer cell self-organization. The spheroids are highly similar to real tumor tissue, and ferroptosis resistance at the transcriptional, protein, and cellular levels. Collaboration of the ferroptosis induction reagent erastin and the nanoenzyme MnZnFe2 O4 @PEG-COOH to overcome the ferroptosis resistance of the spheroids is also demonstrated. Taken together, this study demonstrates the effectiveness of the model developed using this hydrogel platform for further mechanistic studies, and for the assessment of novel cancer treatment strategies based on ferroptosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Liyi Peng
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China
| | - Ke Hu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China
| | - Ning Gu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, 211103, China.,Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| |
Collapse
|
17
|
Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Demessie AA, Park Y, Singh P, Moses AS, Korzun T, Sabei FY, Albarqi HA, Campos L, Wyatt CR, Farsad K, Dhagat P, Sun C, Taratula OR, Taratula O. An Advanced Thermal Decomposition Method to Produce Magnetic Nanoparticles with Ultrahigh Heating Efficiency for Systemic Magnetic Hyperthermia. SMALL METHODS 2022; 6:e2200916. [PMID: 36319445 PMCID: PMC9772135 DOI: 10.1002/smtd.202200916] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Due to the limited heating efficiency of available magnetic nanoparticles, it is difficult to achieve therapeutic temperatures above 44 °C in relatively inaccessible tumors during magnetic hyperthermia following systemic administration of nanoparticles at clinical dosage (≤10 mg kg-1 ). To address this, a method for the preparation of magnetic nanoparticles with ultrahigh heating capacity in the presence of an alternating magnetic field (AMF) is presented. The low nitrogen flow rate of 10 mL min-1 during the thermal decomposition reaction results in cobalt-doped nanoparticles with a magnetite (Fe3 O4 ) core and a maghemite (γ-Fe2 O3 ) shell that exhibit the highest intrinsic loss power reported to date of 47.5 nH m2 kg-1 . The heating efficiency of these nanoparticles correlates positively with increasing shell thickness, which can be controlled by the flow rate of nitrogen. Intravenous injection of nanoparticles at a low dose of 4 mg kg-1 elevates intratumoral temperatures to 50 °C in mice-bearing subcutaneous and metastatic cancer grafts during exposure to AMF. This approach can also be applied to the synthesis of other metal-doped nanoparticles with core-shell structures. Consequently, this method can potentially be used for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for cancer treatment.
Collapse
Affiliation(s)
- Ananiya A Demessie
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Youngrong Park
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Prem Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Abraham S Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Fahad Y Sabei
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, 88723, Kingdom of Saudi Arabia
| | - Hassan A Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 55461, Kingdom of Saudi Arabia
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR, 97239, USA
- Advanced Imaging Research Center, Oregon Health & Sciences University, Portland, OR, 97239, USA
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Pallavi Dhagat
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Olena R Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, 97201, USA
| |
Collapse
|
19
|
Shivanna AT, Dash BS, Chen JP. Functionalized Magnetic Nanoparticles for Alternating Magnetic Field- or Near Infrared Light-Induced Cancer Therapies. MICROMACHINES 2022; 13:mi13081279. [PMID: 36014201 PMCID: PMC9413965 DOI: 10.3390/mi13081279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 05/14/2023]
Abstract
The multi-faceted nature of functionalized magnetic nanoparticles (fMNPs) is well-suited for cancer therapy. These nanocomposites can also provide a multimodal platform for targeted cancer therapy due to their unique magnetic guidance characteristics. When induced by an alternating magnetic field (AMF), fMNPs can convert the magnetostatic energy to heat for magnetic hyperthermia (MHT), as well as for controlled drug release. Furthermore, with the ability to convert near-infrared (NIR) light energy to heat energy, fMNPs have attracted interest for photothermal therapy (PTT). Other than MHT and PTT, fMNPs also have a place in combination cancer therapies, such as chemo-MHT, chemo-PTT, and chemo-PTT-photodynamic therapy, among others, due to their versatile properties. Thus, this review presents multifunctional nanocomposites based on fMNPs for cancer therapies, induced by an AMF or NIR light. We will first discuss the different fMNPs induced with an AMF for cancer MHT and chemo-MHT. Secondly, we will discuss fMNPs irradiated with NIR lasers for cancer PTT and chemo-PTT. Finally, fMNPs used for dual-mode AMF + NIR-laser-induced magneto-photo-hyperthermia (MPHT) will be discussed.
Collapse
Affiliation(s)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
- Correspondence: ; Tel.: +886-3-2118800
| |
Collapse
|
20
|
Chaturvedi S, Garg A. A comprehensive review on novel delivery approaches for exemestane. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
22
|
Solid Magnetoliposomes as Multi-Stimuli-Responsive Systems for Controlled Release of Doxorubicin: Assessment of Lipid Formulations. Biomedicines 2022; 10:biomedicines10051207. [PMID: 35625942 PMCID: PMC9138220 DOI: 10.3390/biomedicines10051207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Stimuli-responsive liposomes are a class of nanocarriers whose drug release occurs, preferentially, when exposed to a specific biological environment, to an external stimulus, or both. This work is focused on the design of solid magnetoliposomes (SMLs) as lipid-based nanosystems aiming to obtain multi-stimuli-responsive vesicles for doxorubicin (DOX) controlled release in pathological areas under the action of thermal, magnetic, and pH stimuli. The effect of lipid combinations on structural, colloidal stability, and thermodynamic parameters were evaluated. The results confirmed the reproducibility for SMLs synthesis based on nine lipid formulations (combining DPPC, DSPC, CHEMS, DOPE and/or DSPE-PEG), with structural and colloidal properties suitable for biological applications. A loss of stability and thermosensitivity was observed for formulations containing dioleoylphosphatidylethanolamine (DOPE) lipid. SMLs PEGylation is an essential step to enhance both their long-term storage stability and stealth properties. DOX encapsulation (encapsulation efficiency ranging between 87% and 96%) in the bilayers lowered its pKa, which favors the displacement of DOX from the acyl chains to the surface when changing from alkaline to acidic pH. The release profiles demonstrated a preferential release at acidic pH, more pronounced under mimetic mild-hyperthermia conditions (42 °C). Release kinetics varied with the lipid formulation, generally demonstrating hyperthermia temperatures and acidic pH as determining factors in DOX release; PEGylation was shown to act as a diffusion barrier on the SMLs surface. The integrated assessment and characterization of SMLs allows tuning lipid formulations that best respond to the needs for specific controlled release profiles of stimuli-responsive nanosystems as a multi-functional approach to cancer targeting and therapy.
Collapse
|
23
|
Zhang Z, Zhou F, Davies G, Williams GR. Theranostics for MRI‐guided therapy: Recent developments. VIEW 2022. [DOI: 10.1002/viw.20200134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Ziwei Zhang
- UCL School of Pharmacy University College London London UK
- UCL Department of Chemistry University College London London UK
| | - Feng‐Lei Zhou
- Department of Medical Physics and Biomedical Engineering University College London London UK
- College of Textiles and Clothing Qingdao University Qingdao PR China
| | | | | |
Collapse
|
24
|
Magnetic Hyperthermia Nanoarchitectonics via Iron Oxide Nanoparticles Stabilised by Oleic Acid: Anti-Tumour Efficiency and Safety Evaluation in Animals with Transplanted Carcinoma. Int J Mol Sci 2022; 23:ijms23084234. [PMID: 35457052 PMCID: PMC9025391 DOI: 10.3390/ijms23084234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we developed iron oxide nanoparticles stabilised with oleic acid/sodium oleate that could exert therapeutic effects for curing tumours via magnetic hyperthermia. A suspension of iron oxide nanoparticles was produced and characterised. The toxicity of the synthesised composition was examined in vivo and found to be negligible. Histological examination showed a low local irritant effect and no effect on the morphology of the internal organs. The efficiency of magnetic hyperthermia for the treatment of transplanted Walker 256 carcinoma was evaluated. The tumour was infiltrated with the synthesised particles and then treated with an alternating magnetic field. The survival rate was 85% in the studied therapy group of seven animals, while in the control group (without treatment), all animals died. The physicochemical and pharmaceutical properties of the synthesised fluid and the therapeutic results, as seen in the in vivo experiments, provide insights into therapeutic hyperthermia using injected magnetite nanoparticles.
Collapse
|
25
|
Chen M, Huang H, Pan Y, Li Z, Ouyang S, Ren C, Zhao Q. Preparation of layering-structured magnetic fluorescent liposomes and labeling of HepG2 cells. Biomed Mater Eng 2022; 33:147-158. [PMID: 35180107 DOI: 10.3233/bme-228000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND At present, surgical resection and chemotherapy are still the main treatments for hepatocellular carcinoma and other cancers, but the curative effect and survival rate are not ideal. OBJECTIVE In this study, we aim to prepare a carrier with low toxicity, high biocompatibility and targeted transport for the treatment of hepatocellular carcinoma. METHODS CdSe quantum dots (QDs) modified with oleic acid were synthesized. Then hydrophobic CdSe QDs and hydrophilic super-paramagnetic Fe3O4 particles were encapsulated into different layers of liposomes to form magnetic fluorescent liposomes (MFLs). MFLs in the aqueous would quickly drift towards the external magnet and the entire process was clearly observed with fluorescence microscope. The fluorescence spectra revealed that the fluorescence properties of MFLs were similar to that of CdSe QDs. RESULTS QDs had an average size of 3.32 nm with good fluorescence properties. The size of MFLs was about 100 nm (transmission electron microscopy (TEM) analysis showed the average size of MFLs was about 82.8 nm and dynamic light scattering (DLS) detection showed 111.9 nm). After being cultured with MFLs for 8 h, HepG2 cells were labeled by MFLs and good fluorescence images were obtained. MTT analysis also expressed their good biocompatibility. CONCLUSION The prepared MFLs had multi-function and could be used as ideal drug carriers.
Collapse
Affiliation(s)
- Mengxiao Chen
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Huaying Huang
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Yujin Pan
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Zhenzhen Li
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Si Ouyang
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Changjing Ren
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Qiang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
26
|
Maffei ME. Magnetic Fields and Cancer: Epidemiology, Cellular Biology, and Theranostics. Int J Mol Sci 2022; 23:1339. [PMID: 35163262 PMCID: PMC8835851 DOI: 10.3390/ijms23031339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 02/08/2023] Open
Abstract
Humans are exposed to a complex mix of man-made electric and magnetic fields (MFs) at many different frequencies, at home and at work. Epidemiological studies indicate that there is a positive relationship between residential/domestic and occupational exposure to extremely low frequency electromagnetic fields and some types of cancer, although some other studies indicate no relationship. In this review, after an introduction on the MF definition and a description of natural/anthropogenic sources, the epidemiology of residential/domestic and occupational exposure to MFs and cancer is reviewed, with reference to leukemia, brain, and breast cancer. The in vivo and in vitro effects of MFs on cancer are reviewed considering both human and animal cells, with particular reference to the involvement of reactive oxygen species (ROS). MF application on cancer diagnostic and therapy (theranostic) are also reviewed by describing the use of different magnetic resonance imaging (MRI) applications for the detection of several cancers. Finally, the use of magnetic nanoparticles is described in terms of treatment of cancer by nanomedical applications for the precise delivery of anticancer drugs, nanosurgery by magnetomechanic methods, and selective killing of cancer cells by magnetic hyperthermia. The supplementary tables provide quantitative data and methodologies in epidemiological and cell biology studies. Although scientists do not generally agree that there is a cause-effect relationship between exposure to MF and cancer, MFs might not be the direct cause of cancer but may contribute to produce ROS and generate oxidative stress, which could trigger or enhance the expression of oncogenes.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| |
Collapse
|
27
|
Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol 2022; 104:103201. [DOI: 10.1016/j.jtherbio.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
28
|
Bai M, Yang M, Gong J, Xu H, Wei Z. Progress and Principle of Drug Nanocrystals for Tumor Targeted Delivery. AAPS PharmSciTech 2021; 23:41. [PMID: 34964079 DOI: 10.1208/s12249-021-02200-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Drugs are referred to as drug nanocrystals when they exist as nanoscale crystal structures. This kind of nanocarrier has been widely utilized to increase the solubility and absorption for poorly aqueous soluble drugs after oral administration, or prolong the drug circulation when intravenous administration. The systemic cytotoxicity caused by antitumor drugs usually come from the nonspecific drug distribution. To solve the disadvantage of poor targetability, drug nanocrystals for tumor targeted delivery have been developed in recent years. In this review, the targeting mechanisms of various surface modified drug nanocrystals are introduced with the focus on passive targeting, active targeting and stimuli-responsive targeting in details. Function and application of common surface modified materials are also discussed.
Collapse
|
29
|
Koudan EV, Zharkov MN, Gerasimov MV, Karshieva SS, Shirshova AD, Chrishtop VV, Kasyanov VA, Levin AA, Parfenov VA, Karalkin PA, Pereira FDAS, Petrov SV, Pyataev NA, Khesuani YD, Mironov VA, Sukhorukov GB. Magnetic Patterning of Tissue Spheroids Using Polymer Microcapsules Containing Iron Oxide Nanoparticles. ACS Biomater Sci Eng 2021; 7:5206-5214. [PMID: 34610738 DOI: 10.1021/acsbiomaterials.1c00805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations. These microcapsules can be readily internalized and retained intracellularly for a long time in various types of cells. The low cytotoxicity of these microcapsules was previously shown in 2D cell culture. This paper has demonstrated that cells containing these nontoxic nanomaterials can form viable 3D tissue spheroids for the first time. The spheroids retained labeled fluorescent microcapsules with magnetic nanoparticles without a detectable cytotoxic effect. The high concentration of packed nanoparticles inside the microcapsules enables the evident magnetic properties of the labeled spheroids to be maintained. Finally, magnetic spheroids can be effectively used for magnetic patterning and biofabrication of tissue-engineering constructs.
Collapse
Affiliation(s)
- Elizaveta V Koudan
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Mikhail N Zharkov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68-1, Saransk 430005, Russia
| | - Mikhail V Gerasimov
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68-1, Saransk 430005, Russia
| | - Saida Sh Karshieva
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia.,Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia
| | | | - Vladimir V Chrishtop
- SCAMT Institute, ITMO University, Lomonosova Str. 9, Saint Petersburg 191002, Russia
| | | | - Aleksandr A Levin
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Vladislav A Parfenov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Pavel A Karalkin
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Bolshaya Pirogovskaya Str. 2-4, Moscow 119991, Russia.,P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre, 2 Botkinskiy proezd 3, Moscow 125284, Russia
| | - Frederico D A S Pereira
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Stanislav V Petrov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Nikolay A Pyataev
- National Research Ogarev Mordovia State University, Bolshevistskaya Str. 68-1, Saransk 430005, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia
| | - Vladimir A Mironov
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe Highway 68-2, Moscow 115409, Russia.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Bolshaya Pirogovskaya Str. 2-4, Moscow 119991, Russia
| | - Gleb B Sukhorukov
- School of Engineering and Material Science, Queen Mary University of London,Mile End Road, London E1 4NS, United Kingdom.,Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Moscow 121205, Russia
| |
Collapse
|
30
|
Kim HJ, Hyun SW, Kim SH, Choi H. Mn–Zn ferrite nanoparticles for application in magnetic hyperthermia. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
32
|
An Y, Yang R, Wang X, Han Y, Jia G, Hu C, Zhang Z, Liu D, Tang Q. Facile Assembly of Thermosensitive Liposomes for Active Targeting Imaging and Synergetic Chemo-/Magnetic Hyperthermia Therapy. Front Bioeng Biotechnol 2021; 9:691091. [PMID: 34422777 PMCID: PMC8371754 DOI: 10.3389/fbioe.2021.691091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer stem cells (CSCs) are thought to be responsible for the recurrence of liver cancer, highlighting the urgent need for the development of effective treatment regimens. In this study, 17-allylamino-17-demethoxygeldanamycin (17-AAG) and thermosensitive magnetoliposomes (TMs) conjugated to anti-CD90 (CD90@17-AAG/TMs) were developed for temperature-responsive CD90-targeted synergetic chemo-/magnetic hyperthermia therapy and simultaneous imaging in vivo. The targeting ability of CD90@DiR/TMs was studied with near-infrared (NIR) resonance imaging and magnetic resonance imaging (MRI), and the antitumor effect of CD90@17-AAG/TM-mediated magnetic thermotherapy was evaluated in vivo. After treatment, the tumors were analyzed with Western blotting, hematoxylin and eosin staining, and immunohistochemical (IHC) staining. The relative intensity of fluorescence was approximately twofold higher in the targeted group than in the non-targeted group, while the T2 relaxation time was significantly lower in the targeted group than in the non-targeted group. The combined treatment of chemotherapy, thermotherapy, and targeting therapy exhibited the most significant antitumor effect as compared to any of the treatments alone. The anti-CD90 monoclonal antibody (mAb)-targeted delivery system, CD90@17-AAG/TMs, exhibited powerful targeting and antitumor efficacies against CD90+ liver cancer stem cells in vivo.
Collapse
Affiliation(s)
- Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xihui Wang
- School of Medicine, Southeast University, Nanjing, China
| | - Yong Han
- School of Medicine, Southeast University, Nanjing, China
| | - Gang Jia
- School of Medicine, Southeast University, Nanjing, China
| | - Chunmei Hu
- Department of Tuberculosis, The Second Affiliated Hospital of Southeast University (The Second Hospital of Nanjing), Nanjing, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dongfang Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Qiusha Tang
- School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
33
|
Huynh KH, Hahm E, Noh MS, Lee JH, Pham XH, Lee SH, Kim J, Rho WY, Chang H, Kim DM, Baek A, Kim DE, Jeong DH, Park SM, Jun BH. Recent Advances in Surface-Enhanced Raman Scattering Magnetic Plasmonic Particles for Bioapplications. NANOMATERIALS 2021; 11:nano11051215. [PMID: 34064407 PMCID: PMC8147842 DOI: 10.3390/nano11051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 01/10/2023]
Abstract
The surface-enhanced Raman scattering (SERS) technique, that uses magnetic plasmonic particles (MPPs), is an advanced SERS detection platform owing to the synergetic effects of the particles’ magnetic and plasmonic properties. As well as being an ultrasensitive and reliable SERS material, MPPs perform various functions, such as aiding in separation, drug delivery, and acting as a therapeutic material. This literature discusses the structure and multifunctionality of MPPs, which has enabled the novel application of MPPs to various biological fields.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Mi Suk Noh
- Medical Device & Bio-research Team, Bio-medical & Environ-chemical Division, Korea Testing Certification, Gunpo, Gyeonggi-do 15809, Korea;
| | - Jong-Hwan Lee
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Korea;
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Korea;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, 1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea;
| | - Dong Min Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Ahruem Baek
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
- Center for Educational Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seung-min Park
- Department of Urology, Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University,120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea; (K.-H.H.); (E.H.); (X.-H.P.); (J.K.); (D.M.K.); (A.B.); (D.-E.K.)
- Correspondence: (S.-m.P.); (B.-H.J.); Tel.: +82-2-450-0521 (B.-H.J.)
| |
Collapse
|
34
|
Pan J, Xu Y, Wu Q, Hu P, Shi J. Mild Magnetic Hyperthermia-Activated Innate Immunity for Liver Cancer Therapy. J Am Chem Soc 2021; 143:8116-8128. [PMID: 33928777 DOI: 10.1021/jacs.1c02537] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia therapy (MHT) is noninvasive and features excellent tissue penetration for deep-seated tumors, but unfortunately, it suffers the low therapeutic efficacy due to the limited magneto-thermal efficiency and insufficient intratumor accumulation of conventional intravenous-injected magnetic nanoparticles, which are actually mostly sequestered by the mononuclear phagocyte system, especially the liver. Such a disadvantageous characteristic of preferential liver uptake is here exploited, for the first time as far as we know, to treat orthotopic liver cancer by mild MHT using specially designed composite magnetic nanoparticles. A kind of core-shell-structured and Zn2+-doped Zn-CoFe2O4@Zn-MnFe2O4 superparamagnetic nanoparticles (ZCMF) has been synthesized which exhibits excellent and highly controllable magnetic hyperthermia performance owing to an exchange-coupled magnetism between the core and shell, and Zn2+ doping. The controllable mild MHT at 43-44 °C based on ZCMF demonstrates almost complete inhibition of liver cancer cell proliferation and tumor growth, which is associated with the suppression of heat shock protein 70 (HSP70) expression. More importantly, the mild MHT-treated liver cancer cells are capable of activating natural killer (NK) cells by dramatically upregulating the expression of UL16-binding proteins (ULBPs), ligands of natural killer group 2 member D (NKG2D). As a result, the growth of both xenograft tumors and orthotopic liver tumors were almost completely suppressed under mild MHT via induced NK-cell-related antitumor immunity in vivo. This work not only evidences the great potential of mild MHT but also reveals the underlying immunity activation mechanism in liver cancer treatment by mild MHT.
Collapse
Affiliation(s)
- Jiong Pan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.,School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yingying Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
35
|
Kumar R, Chauhan A, Kuanr BK. A robust in vitro anticancer activity via magnetic hyperthermia mediated by colloidally stabilized mesoporous silica encapsulated La0.7Sr0.3MnO3 core- shell structure. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
He Y, Yi C, Zhang X, Zhao W, Yu D. Magnetic graphene oxide: Synthesis approaches, physicochemical characteristics, and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liu S, Shi D, Chen L, Yan Y, Wang X, Song Y, Pu S, Liang Y, Zhao Y, Zhang Y, Xie J. Paclitaxel-loaded magnetic nanocrystals for tumor neovascular-targeted theranostics: an amplifying synergistic therapy combining magnetic hyperthermia with chemotherapy. NANOSCALE 2021; 13:3613-3626. [PMID: 33537695 DOI: 10.1039/d0nr08197c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combination of chemotherapy and targeted magnetic hyperthermia (TMH) via a designed magnetic nanocrystal (MNC) drug delivery system was considered as an effective tumor synergistic therapy strategy. In this paper, we successfully synthesized tumor neovascular-targeted Mn-Zn ferrite MNCs, which encapsulated paclitaxel (PTX) in a biocompatible PEG-phospholipid (DSPE-PEG2000) layer and surface, simultaneously coupled with a tripeptide of arginine-glycine-aspartic acid (RGD). The high-performance RGD-modified MNC loaded with PTX (MNCs-PTX@RGD) embodied excellent magnetic properties, including high-contrast magnetic resonance imaging (MRI) and remarkable magnetically induced heat generation ability. We established the mouse model bearing subcutaneous 4T1 breast tumor, and demonstrated that MNCs-PTX@RGD could be effectively located in the tumor neovascular epithelial cells under the guidance of in vivo MRI. Notably, MNCs-PTX@RGD could easily penetrate into the tumor tissue from the tumor-fenestrated vascular networks for capturing a sufficient temperature (around 43 °C) exposed to an alternative current magnetic field (ACMF, 2.58 kA m-1, 390 kHz), leading to an effective TMH effect. Subsequently, the TMH-mediated temperature elevation accelerated the PTX release from the inner lipid layer, promoting the synergetic thermo-chemotherapy in vivo. The amplifying synergistic treatment strategy obviously improved the anti-tumor efficacy of MNCs-PTX@RGD, and simultaneously increased the survival time of the mice to more than 46 days, which provided a broad development prospect in clinical applications.
Collapse
Affiliation(s)
- Shuangyu Liu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Dongsheng Shi
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Ling Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China. and School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Yu Yan
- Department of Chemistry, Bengbu Medical College, Bengbu 233030, P. R. China
| | - Xingqi Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yingying Song
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Shengyan Pu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Yijun Liang
- School of Medical engineering, Foshan University, Foshan 528000, P. R. China
| | - Yang Zhao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| | - Jun Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, P. R. China. and State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210096, P. R. China.
| |
Collapse
|
38
|
Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Am J Cancer Res 2021; 11:579-601. [PMID: 33391494 PMCID: PMC7738852 DOI: 10.7150/thno.48811] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Current cancer therapies, including chemotherapy and radiotherapy, are imprecise, non-specific, and are often administered at high dosages - resulting in side effects that severely impact the patient's overall well-being. A variety of multifunctional, cancer-targeted nanotheranostic systems that integrate therapy, imaging, and tumor targeting functionalities in a single platform have been developed to overcome the shortcomings of traditional drugs. Among the imaging modalities used, magnetic resonance imaging (MRI) provides high resolution imaging of structures deep within the body and, in combination with other imaging modalities, provides complementary diagnostic information for more accurate identification of tumor characteristics and precise guidance of anti-cancer therapy. This review article presents a comprehensive assessment of nanotheranostic systems that combine MRI-based imaging (T1 MRI, T2 MRI, and multimodal imaging) with therapy (chemo-, thermal-, gene- and combination therapy), connecting a range of topics including hybrid treatment options (e.g. combined chemo-gene therapy), unique MRI-based imaging (e.g. combined T1-T2 imaging, triple and quadruple multimodal imaging), novel targeting strategies (e.g. dual magnetic-active targeting and nanoparticles carrying multiple ligands), and tumor microenvironment-responsive drug release (e.g. redox and pH-responsive nanomaterials). With a special focus on systems that have been tested in vivo, this review is an essential summary of the most advanced developments in this rapidly evolving field.
Collapse
|
39
|
Montha W, Maneeprakorn W, Tang IM, Pon-On W. Hyperthermia evaluation and drug/protein-controlled release using alternating magnetic field stimuli-responsive Mn-Zn ferrite composite particles. RSC Adv 2020; 10:40206-40214. [PMID: 35520877 PMCID: PMC9057567 DOI: 10.1039/d0ra08602a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine. In this study, we have prepared magnetic Mn–Zn ferrite ((Mn,Zn)Fe2O4) (MZF) nanoparticles coated with chitosan-g-N-isopropylacrylamide (Chi-g-NIPAAm) polymer (MZF@Chi-g-NIPAAm) to deliver the anticancer drug (Doxorubicin, DOX) and bioactive proteins (Bone morphogenic protein (BMP-2)-immobilized bovine serum albumin (BSA)) (P//MZF@Chi-g-NIPAAm) and be used as chemo-hyperthermia and vector delivering biomolecules. For these purposes, we first show that the as-prepared MZF@Chi-g-NIPAAm particles exhibit super paramagnetic behavior and under certain conditions, they can act as a heat source with a specific absorption rate (SAR) of 34.88 W g−1. Under acidic conditions and in the presence of AMF, the fast release of DOX was seen at around 58.9% within 20 min. In vitro evaluations indicated that concurrent thermo-chemotherapy treatment by DOX-MZF@Chi-g-NIPAAm using AMF had a better antitumor effect, compared with those using either DOX or DOX-MZF@Chi-g-NIPAAm without AMF (89.02% of cells were killed as compared to 71.82% without AMF exposure). Up to 28.18% of the BSA (used as the model protein to determine the controlled release) is released from the P//MZF@Chi-g-NIPAAm particles under AMF exposure for 1 h (only 17.31% was released without AMF). These results indicated that MZF@Chi-g-NIPAAm particles could be used to achieve hyperthermia at a precise location, effectively enhancing the chemotherapy treatments, and have a promising future as drug or bioactive delivering molecules for cancer treatment and cartilage or bone regenerative applications. Drug delivery particles in which the release of biomolecules is triggered by a magnetic simulant have attracted much attention and may have great potential in the fields of cancer therapy and tissue regenerative medicine.![]()
Collapse
Affiliation(s)
- Wararat Montha
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| | - Weerakanya Maneeprakorn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - I-Ming Tang
- Computational & Applied Science doe Smart Innovation Clusters, Faculty of Science, King Mongkut's University of Technology, Thonburi Bangkok 10140 Thailand
| | - Weeraphat Pon-On
- Department of Physics, Faculty of Science, Kasetsart University Bangkok 10900 Thailand
| |
Collapse
|
40
|
A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Hadad E, Rudnick-Glick S, Grinberg I, Kolitz-Domb M, Chill JH, Margel S. Synthesis and Characterization of Poly(RGD) Proteinoid Polymers and NIR Fluorescent Nanoparticles of Optimal d,l-Configuration for Drug-Delivery Applications- In Vitro Study. ACS OMEGA 2020; 5:23568-23577. [PMID: 32984676 PMCID: PMC7512439 DOI: 10.1021/acsomega.0c01916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/07/2020] [Indexed: 05/12/2023]
Abstract
RGD sequence is a tripeptide composed of three amino acids: arginine (R), glycine (G), and aspartic acid (D). The RGD peptide has a high affinity to the integrin alpha v beta 3, which is overexpressed on the membrane of many cancer cells and is attracted to areas of angiogenesis. Proteinoids are biodegradable polymers based on amino acids which are formed by bulk thermal step-growth polymerization mechanism. Hollow proteinoid nanoparticles (NPs) may be formed via self-assembly process of the proteinoid polymers. We propose using novel RGD-based proteinoid polymers to manufacture NPs in which the RGD motif is self-incorporated in the proteinoid backbone. Such P(RGD) NPs can act both as a drug carrier (by encapsulation of a desired drug) and as a targeting delivery system. This article presents the synthesis of four RGD proteinoids with different RGD optical configurations, (d) or (l) arginine, glycine, and (d) or (l) aspartic acid, in order to determine which configuration is optimal as a drug-targeting carrier. These new RGD proteinoid polymers possess high molecular weights and molecular weight monodispersity. Homonuclear nuclear magnetic resonance methods were employed to predict the expected concentration of RGD tripeptide sequence in the polymer. Near infrared fluorescent NPs have been prepared by the encapsulation of indocyanine green (ICG) dye within the different P(RGD) NPs. The dry diameters of the hollow P(RdGDd), P(RdGD), P(RGD), and P(RGDd) NPs are 55 ± 13, 48 ± 9, 45 ± 11, and 42 ± 9 nm, respectively, whereas those of the ICG-encapsulated NPs were significantly higher, 141 ± 24, 95 ± 13, 86 ± 11, and 87 ± 12 nm, respectively. The ICG-encapsulated P(RdGD) NPs exhibited higher selectivity toward epithelial injury, as demonstrated using an in vitro scratch assay, because the P(RdGD) NPs accumulated in the injured area at higher concentrations when compared to other P(RGD) NPs with different chiralities. Therefore, the P(RdGD) polymer configuration is the polymer of choice for use as a targeted drug carrier to areas of angiogenesis, such as in tumors, wounds, or cuts.
Collapse
Affiliation(s)
- Elad Hadad
- Department
of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Safra Rudnick-Glick
- Department
of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Igor Grinberg
- Department
of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Michal Kolitz-Domb
- Department
of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Jordan H. Chill
- Department
of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department
of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
42
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
43
|
Huynh KH, Pham XH, Kim J, Lee SH, Chang H, Rho WY, Jun BH. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. Int J Mol Sci 2020; 21:E5174. [PMID: 32708351 PMCID: PMC7404399 DOI: 10.3390/ijms21145174] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/23/2022] Open
Abstract
Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
Collapse
Affiliation(s)
- Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| | - Sang Hun Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA;
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon 24341, Korea;
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Korea;
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Korea; (K.-H.H.); (X.-H.P.); (J.K.)
| |
Collapse
|
44
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
45
|
Wang Y, Zou L, Qiang Z, Jiang J, Zhu Z, Ren J. Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn–Zn Ferrite Magnetic Nanoparticles. ACS Biomater Sci Eng 2020; 6:3550-3562. [DOI: 10.1021/acsbiomaterials.0c00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yijue Wang
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jianhai Jiang
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institute of Thoracic Oncology, Fudan University, Shanghai 200032, China
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
46
|
Chauhan A, Kumar R, Singh P, Jha SK, Kuanr BK. RF hyperthermia by encapsulated Fe3O4 nanoparticles induces cancer cell death via time-dependent caspase-3 activation. Nanomedicine (Lond) 2020; 15:355-379. [DOI: 10.2217/nnm-2019-0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: To explore the optimum temperature for cancer cell death using magnetic hyperthermia (MH), which in turn will affect the mode of cell death. Method: The focus of this study is to improve upon the existing methodology for the synthesis of chitosan encapsulated Fe3O4. MH was done at different temperatures. The cell death pathway was explored using flow cytometry and western blot. Results: Coated Fe3O4 exhibited low cytotoxicity, high stability and heating efficiency. MH at 43°C was the optimum temperature for robust cell death. Cell death pathway suggested that during the initial stages of recovery, apoptosis was the main mode of cell death. While at later stages, major apoptosis and minor necrosis were observed. Conclusion: It is important to find out the long-term effect of hyperthermia treatment on cancer cells and their consequences on surrounding healthy cells.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
47
|
Principles and applications of nanomaterial-based hyperthermia in cancer therapy. Arch Pharm Res 2020; 43:46-57. [PMID: 31993968 DOI: 10.1007/s12272-020-01206-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/19/2022]
Abstract
Over the past few decades, hyperthermia therapy (HTT) has become one of the most promising strategies to treat cancer. HTT has been applied with nanotechnology to overcome drawbacks such as non-selectivity and invasiveness and to maximize therapeutic efficacy. The high temperature of HTT induces protein denaturation that leads to apoptosis or necrosis. It can also enhance the effects of other cancer therapies because heat-damaged tissues reduce radioresistance and help accumulate anticancer drugs. Gold nanoparticles and superparamagnetic iron oxide with different energy sources are commonly used as hyperthermia agents. New types of nanoparticles such as those whose surface is coated with several polymers and those modified with targeting moieties have been studied as novel HTT agents. In this review, we introduce principles and applications of nanotechnology-based HTT using gold nanoparticles and superparamagnetic iron oxide.
Collapse
|
48
|
Talluri S, Malla RR. Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers. Curr Drug Metab 2020; 20:942-945. [DOI: 10.2174/1389200220666191016124958] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022]
Abstract
Background:
The potential of Super Paramagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic
agents for cancer has been investigated extensively. SPIONS can be utilized for diagnostic imaging, drug delivery as
well as for therapeutic applications. SPIONS are of particular interest because of their potential for non-invasive
diagnosis and non-invasive therapeutic applications. This article is a review of in vivo and clinical studies of SPIONs
for diagnosis and treatment of breast, ovarian and cervical cancer. The current limitations of this technology with
relation to clinical therapeutic applications and the potential to overcome these limitations are also discussed.
Methods:
NCBI Pubmed was searched for relevant documents by using keyword and MESH based search. The following
keyword combinations were used: ‘breast cancer’ and SPION, ‘ovarian cancer’ and SPION, and ‘cervical
cancer’ and SPION. The resulting list was manually scanned for the studies involving clinical and in vivo studies.
Results:
The 29 most relevant publications were identified and reviewed.
Conclusion:
Although numerous in vitro and in vivo studies have demonstrated the safety and effectiveness of the
use of SPIONs for both diagnostic and therapeutic applications, there is relatively little progress towards translation
to clinical applications involving breast, ovarian and cervical cancer.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, India
| | - Rama R. Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
49
|
Mo H, Fu C, Wu Z, Liu P, Wen Z, Hong Q, Cai Y, Li G. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv 2020; 10:15346-15353. [PMID: 35495447 PMCID: PMC9052309 DOI: 10.1039/c9ra10509c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
Vulnerable plaques of atherosclerosis (AS) are the main culprit lesion for the serious risk of acute cardiovascular disease (CVD). Therefore, developing new non-invasive methods to detect vulnerable plaques and to evaluate their stability effectively is of great value in the early diagnosis of CVD. IL-6 plays a vital role in the development and rupture of AS. In this study, IL-6-targeted superparamagnetic iron oxide nanoparticles (Anti-IL-6-USPIO) are synthesized by a chemical condensation reaction. An AS model was established by damaging rabbit abdominal aortic intima with Foley's tube in combination with a high cholesterol diet. The results confirm that Anti-IL-6-USPIO have excellent IL-6-targeting ability and usefulness in detecting vulnerable plaques in vitro and in vivo, which may provide a novel, non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs. Herein, we report Anti-IL-6-USPIO for detecting IL-6 in inflammatory macrophages and MR imaging vulnerable plaques of atherosclerosis in rabbit, which would provide a novel non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs.![]()
Collapse
Affiliation(s)
- Huaqiang Mo
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Chenxing Fu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhiye Wu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Peng Liu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhibo Wen
- Department of Radiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Qingqing Hong
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Yanbin Cai
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Gongxin Li
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| |
Collapse
|
50
|
Role of zinc substitution in magnetic hyperthermia properties of magnetite nanoparticles: interplay between intrinsic properties and dipolar interactions. Sci Rep 2019; 9:18048. [PMID: 31792227 PMCID: PMC6889006 DOI: 10.1038/s41598-019-54250-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 01/29/2023] Open
Abstract
Optimizing the intrinsic properties of magnetic nanoparticles for magnetic hyperthermia is of considerable concern. In addition, the heating efficiency of the nanoparticles can be substantially influenced by dipolar interactions. Since adequate control of the intrinsic properties of magnetic nanoparticles is not straightforward, experimentally studying the complex interplay between these properties and dipolar interactions affecting the specific loss power can be challenging. Substituting zinc in magnetite structure is considered as an elegant approach to tune its properties. Here, we present experimental and numerical simulation results of magnetic hyperthermia studies using a series of zinc-substituted magnetite nanoparticles (ZnxFe1-xFe2O4, x = 0.0, 0.1, 0.2, 0.3 and 0.4). All experiments were conducted in linear regime and the results were inferred based on the numerical simulations conducted in the framework of the linear response theory. The results showed that depending on the nanoparticles intrinsic properties, interparticle interactions can have different effects on the specific loss power. When dipolar interactions were strong enough to affect the heating efficiency, the parameter σ = KeffV/kBT (Keff is the effective anisotropy and V the volume of the particles) determined the type of the effect. Finally, the sample x = 0.1 showed a superior performance with a relatively high intrinsic loss power 5.4 nHm2kg-1.
Collapse
|