1
|
Zhai H, Guo Y, Wang D, Liu Y, Li C, Wang J, Mahmood N, Jian X. Carbon nanofiber coated ionic crystal architecture withconfinement effect for high-performance microwave absorption along with high-efficiency water harvesting from air. J Colloid Interface Sci 2025; 678:487-496. [PMID: 39260297 DOI: 10.1016/j.jcis.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Water is considered an effective microwave absorber due to its high transmittance and frequency-dispersive dielectric constant, yet it is challenging to form it into a stable state as an absorber. Herein, we developed a water-containing microwave absorber using chemical vapor deposition (CVD), namely, the bifunctional carbon/NaCl multi-interfaces hybrid with excellent water harvesting and microwave absorption performance. Carbon/NaCl exhibits remarkable water harvesting abilities from air, exceeding 210 % of its weight in 12 h. The development of the hydrophilic/hydrophobic heterojunction interface is responsible for this outstanding performance. Additionally, the interfacial polarization provided by carbon/NaCl, along with the dipole polarization induced by the internally captured water and defects, enhances its microwave absorption. The carbon/NaCl hybrid achieved a minimum reflection loss (RLmin) of -69.62 dB at 17.1 GHz with a thickness of 2.13 mm, and a maximum effective absorption bandwidth (EABmax) of 6.74 GHz at a thickness of 2.5 mm. Compared with raw NaCl (RLmin of -24.5 dB, EABmax of 3.88 GHz), the RLmin and EABmax values of the absorber increased by approximately 2.85 and 1.74 times. These results highlight the potential for bifunctional carbon/NaCl hybrid in applications within extreme environments, presenting a promising avenue for further research and development.
Collapse
Affiliation(s)
- Haocheng Zhai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Guo
- School of Electrical and Information Engineering, University of Panzhihua, Panzhihua 617000, China
| | - Dingchuan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunsheng Li
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Junwei Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Nasir Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, 3001 Melbourne, Victoria, Australia
| | - Xian Jian
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China.
| |
Collapse
|
2
|
Yang K, Han F, Jin Y, Li X. C-GCS@ZIF-F/PL based electrochemical sensor for rapid and ultra-sensitive detection of rutin in foods. Food Chem 2024; 460:140382. [PMID: 39126741 DOI: 10.1016/j.foodchem.2024.140382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
Herein, a stable and ultra-sensitive rutin electrochemical sensor was successfully developed. This sensor based on glassy carbon electrode (GCE) modified with C-GCS@ZIF-F/PL nanocomposite, which was made of thermally carbonized glucose (GCS) doped with flower-like ZIF (ZIF-F) and pencil lead (PL). The electrochemical response of rutin was considerably significant at C-GCS@ZIF-F/PL/GCE, demonstrating favorable conductivity and electrocatalytic properties for detection of rutin. Under optimal conditions, the linear range is 0.1-100 μM, with a low detection limit (LOD) of 0.0054 μM. It also exhibits excellent stability, reproducibility, as well as selectivity over common interfering ions such as Na+, uric acid, quercetin and riboflavin, etc. Meanwhile, the practical utility of developed sensor was evaluated in food samples including honey, orange, and buckwheat tea, achieving satisfactory recovery rates ranging from 98.2% to 101.7%. This paper introduces a novel technique for the detection of rutin in foods.
Collapse
Affiliation(s)
- Kaifeng Yang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Fangming Han
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Yafeng Jin
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| | - Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
3
|
Tanmathusorachai W, Aulia S, Rinawati M, Chang LY, Chang CY, Huang WH, Lin MH, Su WN, Yuliarto B, Yeh MH. High-Entropy Prussian Blue Analogue Derived Heterostructure Nanoparticles as Bifunctional Oxygen Conversion Electrocatalysts for the Rechargeable Zinc-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62022-62032. [PMID: 39492631 PMCID: PMC11565479 DOI: 10.1021/acsami.4c13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR (E1/2 = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm-2) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm-2. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm-2 demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.
Collapse
Affiliation(s)
- Wuttichai Tanmathusorachai
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Sofiannisa Aulia
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Mia Rinawati
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
| | - Ling-Yu Chang
- Department
of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Chia-Yu Chang
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Hsiang Huang
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ming-Hsien Lin
- Department
of Chemical and Materials Engineering, Chung
Cheng Institute of Technology, National Defense University, Dasi, Taoyuan 335, Taiwan
- Sustainable
Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Nien Su
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Brian Yuliarto
- Advanced
Functional Materials Laboratory, Department of Engineering Physics, Institute of Technology Bandung (ITB), Bandung 40132, Indonesia
| | - Min-Hsin Yeh
- Department
of Chemical Engineering, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- Sustainable
Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
4
|
Wu X, Chen A, Yu X, Tian Z, Li H, Jiang Y, Xu J. Microfluidic Synthesis of Multifunctional Micro-/Nanomaterials from Process Intensification: Structural Engineering to High Electrochemical Energy Storage. ACS NANO 2024. [PMID: 39086355 DOI: 10.1021/acsnano.4c07599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Multifunctional micro-/nanomaterials featuring functional superiority and high value-added physicochemical nature have received immense attention in electrochemical energy storage. Microfluidic synthesis has become an emergent technology for massively producing multifunctional micro-/nanomaterials with tunable microstructure and morphology due to its rapid mass/heat transfer and precise fluid controllability. In this review, the latest progresses and achievements in microfluidic-synthesized multifunctional micro-/nanomaterials are summarized via reaction process intensification, multifunctional micro-/nanostructural engineering and electrochemical energy storage applications. The reaction process intensification mechanisms of various micro-/nanomaterials, including quantum dots (QDs), metal materials, conducting polymers, metallic oxides, polyanionic compounds, metal-organic frameworks (MOFs) and two-dimensional (2D) materials, are discussed. Especially, the multifunctional structural engineering principles of as-fabricated micro-/nanomaterials, such as vertically aligned structure, heterostructure, core-shell structure, and tunable microsphere, are introduced. Subsequently, the electrochemical energy storage application of as-prepared multifunctional micro-/nanomaterials is clarified in supercapacitors, lithium-ion batteries, sodium-ion batteries, all-vanadium redox flow batteries, and dielectric capacitors. Finally, the current problems and future forecasts are illustrated.
Collapse
Affiliation(s)
- Xingjiang Wu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xude Yu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhicheng Tian
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yanjun Jiang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Feng JH, Lu F, Chen Z, Jia MM, Chen YL, Lin WH, Wu QY, Li Y, Xue M, Chen XM. Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon. Chem Sci 2024; 15:9557-9565. [PMID: 38939138 PMCID: PMC11206206 DOI: 10.1039/d4sc01802h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Sorption-based atmospheric water-harvesting (AWH) could help to solve global freshwater scarcity. The search for adsorbents with high water-uptake capacity at low relative humidity, rapid adsorption-desorption kinetics and high thermal conductivity is a critical challenge in AWH. Herein, we report a MAF-4 (aka ZIF-8)-derived nanoporous carbon (NPCMAF-4-800) with multiple N-doped sites, considerable micropore characteristics and inherent photothermal properties, for efficient water production in a relatively arid climate. NPCMAF-4-800 exhibited optimal water-sorption performance of 306 mg g-1 at 40% relative humidity (RH). An excellent sunlight-absorption rate was realized (97%) attributed to its high degree of graphitization. A proof-of-concept device was designed and investigated for the practical harvesting of water from the atmosphere using natural sunlight. NPCMAF-4-800 achieved an unprecedentedly high water production rate of 380 mg g-1 h-1 at 40% RH, and could produce 1.77 L kg-1 freshwater during daylight hours in an outdoor low-humidity climate of ∼25 °C and 40% RH. These findings may shed light on the potential of MOF-derived porous carbons in the AWH field, and inspire the future development of solar-driven water-generation systems.
Collapse
Affiliation(s)
- Jin-Hua Feng
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Feng Lu
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Zhen Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Miao-Miao Jia
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Yi-Le Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Wei-Hai Lin
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Yi Li
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Ming Xue
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Xiao-Ming Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
6
|
Rabani I, Lee JW, Lim T, Truong HB, Nisar S, Afzal S, Seo YS. Construction of a uniform zeolitic imidazole framework (ZIF-8) nanocrystal through a wet chemical route towards supercapacitor application. RSC Adv 2024; 14:118-130. [PMID: 38173577 PMCID: PMC10758760 DOI: 10.1039/d3ra06941a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
Exploring larger surface area electrode materials is crucial for the development of an efficient supercapacitors (SCs) with superior electrochemical performance. Herein, a cost-effective strategy was adopted to synthesize a series of ZIF8 nanocrystals, and their size effect as a function of surface area was also examined. The resultant ZIF8-4 nanocrystal exhibits a uniform hexagonal structure with a large surface area (2800 m2 g-1) and nanometre size while maintaining a yield as high as 78%. The SCs performance was explored by employing different aqueous electrolytes (0.5 M H2SO4 and 1 M KOH) in a three-electrode set-up. The SC performance using a basic electrolyte (1 M KOH) was superior owing to the high ionic mobility of K+. The optimized ZIF8-4 nanocrystal electrode showed a faradaic reaction with a highest capacitance of 1420 F g-1 at 1 A g-1 of current density compared to other as-prepared electrodes in the three-electrode assembly. In addition, the resultant ZIF8-4 was embedded into a symmetric supercapacitor (SSC), and the device offered 350 F g-1 of capacitance with a maximum energy and power density of 43.7 W h kg-1 and 900 W kg-1 at 1 A g-1 of current density, respectively. To determine the practical viewpoint and real-world applications of the ZIF8-4 SSC device, 7000 GCD cycles were performed at 10 A g-1 of current density. Significantly, the device exhibited a cycling stability around 90% compared to the initial capacitance. Therefore, these findings provide a pathway for constructing large surface area ZIF8-based electrodes for high-value-added energy storage applications, particularly supercapacitors.
Collapse
Affiliation(s)
- Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Je-Won Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Taeyoon Lim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University Ho Chi Minh City Viet Nam
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University Ho Chi Minh City Viet Nam
| | - Sobia Nisar
- Department of Electronic Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Sitara Afzal
- Mixed Reality and Interaction Laboratory, Sejong University Seoul 05006 Republic of Korea
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| |
Collapse
|
7
|
Shahzad U, Marwani HM, Saeed M, Asiri AM, Repon MR, Althomali RH, Rahman MM. Progress and Perspectives on Promising Covalent-Organic Frameworks (COFs) Materials for Energy Storage Capacity. CHEM REC 2024; 24:e202300285. [PMID: 37986206 DOI: 10.1002/tcr.202300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, a new class of highly crystalline advanced permeable materials covalent-organic frameworks (COFs) have garnered a great deal of attention thanks to their remarkable properties, such as their large surface area, highly ordered pores and channels, and controllable crystalline structures. The lower physical stability and electrical conductivity, however, prevent them from being widely used in applications like photocatalytic activities and innovative energy storage and conversion devices. For this reason, many studies have focused on finding ways to improve upon these interesting materials while also minimizing their drawbacks. This review article begins with a brief introduction to the history and major milestones of COFs development before moving on to a comprehensive exploration of the various synthesis methods and recent successes and signposts of their potential applications in carbon dioxide (CO2 ) sequestration, supercapacitors (SCs), lithium-ion batteries (LIBs), and hydrogen production (H2 -energy). In conclusion, the difficulties and potential of future developing with highly efficient COFs ideas for photocatalytic as well as electrochemical energy storage applications are highlighted.
Collapse
Affiliation(s)
- Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Md Reazuddin Repon
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, LT-51424, Kaunas, Lithuania
- Laboratory of Plant Physiology, Nature Research Centre, Akademijos g. 2, 08412, Vilnius, Lithuania
- Department of Textile Engineering, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
8
|
Niobium- and cobalt-modified dual-source-derived porous carbon with a honeycomb-like stable structure for supercapacitor and hydrogen evolution reaction. J Colloid Interface Sci 2023; 639:33-48. [PMID: 36804791 DOI: 10.1016/j.jcis.2023.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Designing porous carbon materials with tailored architecture and appropriate compositions is essential for supercapacitor (SC) and hydrogen evolution reaction (HER). Herein, Nb/Co-modified dual-source porous carbon (Nb/Co-DSPC) with a honeycomb structure was obtained by introducing a secondary carbon source (Co/Zn-ZIF) and transition metal Nb into activated Typha carbon (ATC). The addition of a secondary carbon source and Nb resulted in superior specific surface area (1272.38 m2/g), excellent hydrophilicity (34.73°) and abundant bimetallic active sites (Nb/Co-Nx) in Nb/Co-DSPC, providing excellent charge storage capacity and electrocatalytic activity. The Nb/Co-DSPC electrode displayed an outstanding capacitance of 337 F/g at 0.5 A/g and showed excellent stability after 15,000 charge-discharge cycles. In addition, Nb/Co-DSPC shows an overpotential of 114 mV at 10 mA cm-2, better than those of Co-DSPC (139 mV) and ATC (162 mV) alone. This study offers a reliable strategy for advanced multifunctional porous carbon electrode materials preparations.
Collapse
|
9
|
Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
10
|
Anwar MI, Asad M, Ma L, Zhang W, Abbas A, Khan MY, Zeeshan M, Khatoon A, Gao R, Manzoor S, Naeem Ashiq M, Hussain S, Shahid M, Yang G. Nitrogenous MOFs and their composites as high-performance electrode material for supercapacitors: Recent advances and perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Wierzbicki S, Darvishzad T, Gryboś J, Stelmachowski P, Sojka Z, Kruczała K. Switching the Locus of Oxygen Reduction and Evolution Reactions between Spinel Active Phase and Carbon Carrier upon Heteroatoms Doping. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
13
|
Alharthi FA, Ababtain AS, Alanazi HS, Alshayiqi AA, Hasan I. Zinc Vanadate (Zn 3V 2O 8) Immobilized Multiwall Carbon Nanotube (MWCNT) Heterojunction as an Efficient Photocatalyst for Visible Light Driven Hydrogen Production. Molecules 2023; 28:molecules28031362. [PMID: 36771030 PMCID: PMC9919953 DOI: 10.3390/molecules28031362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Z-scheme photocatalytic reaction is considered an effective strategy to promote the photogenerated electron-hole separation for significantly improving the efficiency of photocatalytic hydrogen precipitation from splitting water. In this study, a heterojunction nanocomposite material based on Zn3V2O8 (ZV) with MWCNT was prepared by a hydrothermal process. The photocatalysts were characterized by X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared (FTIR), UV-visible absorption spectroscopy, and transmission electron microscopy (TEM) to understand crystal structure, morphology, and optical properties. The efficiency of the samples was evaluated for the photocatalytic H2 production under visible solar radiation using water glycerol as a sacrificial reagent. The obtained results suggest that, between ZV and ZV@MWCNT, the latter shows higher efficiency for H2 production. The maximum H2 production efficiency was found to be 26.87 μmol g-1 h-1 for ZV and 99.55 μmol g-1 h-1 for ZV@MWCNT. The synergistic effect of MWCNT to ZV resulted in improving the efficiency of charges and light-absorbing capacity, resulting in enhanced H2 production in the heterojunction nanocomposite material. The nanocomposite was stable and highly efficient for H2 production of six or more cycles. Based on the outcomes of this study, it can be observed that forming the heterojunction of individual nano systems could result in more efficient material for H2 production under visible solar energy.
Collapse
|
14
|
Wang Q, Cheng S, Ren S, Zheng Z. Construction of molecularly imprinted voltammetric sensor based on Cu N C polyhedron porous carbon from Cu doping ZIF-8 for the selective determination of norfloxacin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Liu W, Semcheddine F, Jiang H, Wang X. Acid-Responsive Multifunctional Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocomposites for Tumor Chemo-Photothermal Synergistic Therapy. Bioconjug Chem 2022; 33:1405-1414. [PMID: 35797716 DOI: 10.1021/acs.bioconjchem.2c00246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Camptothecin (CPT), a broad-spectrum anticancer drug, has been extensively used clinically. However, its hydrophobic properties seriously hinder its antitumor therapeutic effect. Herein, we synthesized acid-degradable Fe3O4@poly(vinylpyrrolidone) (Fe3O4@PVP)/gold nanoclusters@zeolitic imidazolate framework-8 composite nanoparticles (ZIF-8CNPs) via a facile method and utilized them as carriers to efficiently load CPT. The excellent fluorescence properties of gold nanoclusters (AuNCs) and the photothermal properties of Fe3O4@poly(vinylpyrrolidone) (Fe3O4@PVP) endowed the nanocomposites with excellent cell imaging and photothermal functions. In addition, the surface modification of the composite nanoparticles with folic acid-grafted bovine serum albumin (FA-BSA) enables them to efficiently target tumor cells. Once FA-BSA/ZIF-8CNPs-CPT are taken up by tumor cells and irradiated with a near-infrared laser, the nanoparticles show a highly effective inhibitory effect against various tumor cells through a chemo-photothermal synergistic effect. Hence, it is conceivable that this acid-responsive multifunctional ZIF-8 nanocomposite has promising bioapplication prospects in cancer treatment.
Collapse
Affiliation(s)
- Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Farouk Semcheddine
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat Commun 2022; 13:1227. [PMID: 35264594 PMCID: PMC8907192 DOI: 10.1038/s41467-022-28906-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Aerogel fibers have been recognized as the rising star in the fields of thermal insulation and wearable textiles. Yet, the lack of functionalization in aerogel fibers limits their applications. Herein, we report hygroscopic holey graphene aerogel fibers (LiCl@HGAFs) with integrated functionalities of highly efficient moisture capture, heat allocation, and microwave absorption. LiCl@HGAFs realize the water sorption capacity over 4.15 g g−1, due to the high surface area and high water uptake kinetics. Moreover, the sorbent can be regenerated through both photo-thermal and electro-thermal approaches. Along with the water sorption and desorption, LiCl@HGAFs experience an efficient heat transfer process, with a heat storage capacity of 6.93 kJ g−1. The coefficient of performance in the heating and cooling mode can reach 1.72 and 0.70, respectively. Notably, with the entrapped water, LiCl@HGAFs exhibit broad microwave absorption with a bandwidth of 9.69 GHz, good impedance matching, and a high attenuation constant of 585. In light of these findings, the multifunctional LiCl@HGAFs open an avenue for applications in water harvest, heat allocation, and microwave absorption. This strategy also suggests the possibility to functionalize aerogel fibers towards even broader applications. Functionalization of aerogel fibers, characterized by high porosity and low thermal conductivity, to obtain multifunctional materials is highly desirable. Here the authors report hygroscopic holey graphene aerogel fibers hosting LiCl salt, enabling moisture capture, heat allocation, and microwave absorption performance.
Collapse
|
17
|
Orqusha N. Grafting of the gold surface by heterocyclic moieties derived through electrochemical oxidation of amino triazole – an experimental and “ ab initio” study. RSC Adv 2022; 12:23017-23025. [PMID: 36105975 PMCID: PMC9379559 DOI: 10.1039/d2ra03125f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Surface modification of gold is accomplished by using the aminyl radicals formed through the electrochemical oxidation of the amino-triazole molecule dissolved in organic media (acetonitrile). The electrochemistry of the grafting process and the redox behavior of the grafted heterocyclic layer are similar to those of aliphatic amines. The presence of AT groups on the electrode surface was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) before and after the functionalization process to confirm and prove the formation of a layer on the surface. The capability of the modified surfaces for blocking redox reaction was assessed using a ferrocyanide–ferricyanide redox couple and displayed important differences. The redox probes display a decrease in electron transfer rate. The increase of the charge transfer resistance of the grafted layer is suggestive of a compact layer formation. Furthermore, the Au13 cluster was used to compute BDEs (bond dissociation energies) and a number of other important parameters such as bond strength and length of the interface, etc. These parameters were computed using ONTEP software (Order-N Total Energy Package), intended specifically for calculations on large systems, and it employs density functional theory (DFT) in the density matrix formulation. Surface modification of gold is accomplished by using the aminyl radicals formed through the electrochemical oxidation of the amino-triazole molecule dissolved in organic media (acetonitrile).![]()
Collapse
Affiliation(s)
- Nimet Orqusha
- Department of Chemistry, University of Prishtina ‘’Hasan Prishtina’’, FNMS, str. “Nëna Tereze” nr. 5, 10000 Prishtina, Republic of Kosovo
| |
Collapse
|
18
|
Liu S, Zhao Z, Jin L, Sun J, Jiao C, Wang Q. Nitrogen-Doped Carbon Networks with Consecutive Conductive Pathways from a Facile Competitive Carbonization-Etching Strategy for High-Performance Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104375. [PMID: 34677902 DOI: 10.1002/smll.202104375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Recently, new carbonization strategies for synthesizing structure-controlled and high-performance carbon electrode materials have attracted great attentions in the field of energy storage and conversion. Here a competitive carbonization-etching strategy to prepare nitrogen-doped carbon polyhedron@carbon nanosheet (NCP@CNS) hybrids derived from zeolitic imidazolate framework-8 is presented. Consecutive conductive networks are constructed in the NCP@CNS hybrids during a unique carbonization-etching pyrolysis, where a competition between the formation of NCPs and CNSs exists. When the NCP@CNS hybrids are employed as supercapacitor electrodes, their hierarchically porous NCPs serve as ion-buffering reservoirs for offering fast ion transport channels, and the CNSs within hybrids not only link the NCPs together to build electron transfer pathways but also restrict the volume fluctuation of electrodes during charging and discharging process. As a result, the as-fabricated NCP@CNS electrode displays excellent electrochemical performances including a superior specific capacitance of 320 F g-1 , a high energy density of 22.2 W h kg-1 (5.6 W h kg-1 for symmetric device), and a long cycle life with capacitance retention of ≈101.8% after 5000 cycles. This study opens an encouraging avenue toward the tailored synthesis of metal-organic frameworks (MOFs)-derived carbon electrodes for renewable energy storage applications and devices.
Collapse
Affiliation(s)
- Siliang Liu
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui, 230036, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Zhe Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Li Jin
- College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201620, P. R. China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Chenlu Jiao
- College of Light-Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Qin Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
19
|
Liu J, Jia J, Yu H, Zhang J, Li J, Ge H, Zhao Y. Graphite felt modified by nanoporous carbon as a novel cathode material for the EF process. NEW J CHEM 2022. [DOI: 10.1039/d2nj01679f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanoporous carbon prepared by carbonizing ZIF-8@MWCNTs can greatly improve the performance of graphite felt as an electro-Fenton cathode.
Collapse
Affiliation(s)
- Jiaman Liu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jiping Jia
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Huaqiang Yu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jialin Zhang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ji Li
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Honghua Ge
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Yuzeng Zhao
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
20
|
Qu J, Chu TC, Meng XX, Zhang LY, Li ZX. Coordination Polymer Derived Porous Carbon Activated in Situ by the ZnCl 2 Dot: Capacitances Greatly Enhanced by Redox-Activity Additives in Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14275-14283. [PMID: 34846900 DOI: 10.1021/acs.langmuir.1c01778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a 1D zinc coordination polymer [Zn(bibp)Cl2]∞ (CP-2-ZX) was assembled from the reaction of 4,4'-bis(imidazol-1-yl)-biphenyl (bibp) with ZnCl2. Through a calcination-thermolysis strategy, sponge-like highly porous carbon AC-Zn-CP was prepared by employing the coralloid sample of CP-2-ZX as the precursor. For comparisons, a series of activated carbon (AC-n) was obtained by the similar heating process on the mixture of bibp with ZnCl2 at different mass ratios. The results illustrate that the atomically dispersed ZnCl2 dot in the 1D chain of CP-2-ZX has an in situ activation effect on the generation of AC-Zn-CP, which can greatly promote the porosity and achieve high-efficiency utilization of ZnCl2. Therefore, the atomically dispersed activating agent provides a new method for environmentally friendly production of porous carbon materials. Significantly, the AC-Zn-CP electrode displays specific capacitance of 215 F g-1 in 3 M KOH solution, which will be largely promoted to 1419 F g-1 in the redox active electrolyte of K3[Fe(CN)6]/KOH. AC-Zn-CP also shows remarkable cycling stability (the capacity retention is 89.0% after 5000 cycles). Moreover, the fabricated symmetric supercapacitor owns a high energy density of 34.8 Wh kg-1 at 785.5 W kg-1. So, the AC-Zn-CP∩K3[Fe(CN)6] system has wide application prospects in supercapacitors.
Collapse
Affiliation(s)
- Jia Qu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Tian-Cheng Chu
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| | - Xiao-Xue Meng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Li-Ying Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), College of Chemistry and Material Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zuo-Xi Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, P. R. China
| |
Collapse
|
21
|
Huang X, Liu Q, Zhang W, Wu Z, Wang Y, Li J, Xiong B, Xian Z. Bilobalide molecularly imprinted polymers prepared using
MWCNTs
/
ZIF
‐67 composite as supporter for solid‐phase extraction of bilobalide from real samples. POLYM INT 2021. [DOI: 10.1002/pi.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xusheng Huang
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Qingsong Liu
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Wencheng Zhang
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zeyu Wu
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Yunchun Wang
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jianwen Li
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Baoyi Xiong
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Zhaojun Xian
- Engineering Research Center of Bio‐Process of Ministry of Education, school of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
22
|
Reversible switching of Cu-tetracarboxylic-based coordination polymers through in situ single-crystal-to-single-crystal structural transformation and their impact on carbon-based composite derivatives, fluorescence, and adsorption properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Qian L, Xie Y, Zou M, Zhang J. Building a Bridge for Carbon Nanotubes from Nanoscale Structure to Macroscopic Application. J Am Chem Soc 2021; 143:18805-18819. [PMID: 34714049 DOI: 10.1021/jacs.1c08554] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Through 30 years of research, researchers have gained a deep understanding of the synthesis, characteristics, and applications of carbon nanotubes (CNTs). However, up to now, there are still few industries using CNT as the leading material. The difficulty of CNTs to be applied in industry is the gap between the properties of CNT-based aggregates and those of a single carbon nanotube. Therefore, how to maintain the intrinsic properties of CNTs when they are assembled into aggregates is of great significance. Herein, we summarize and analyze the research status of CNT materials applied in different fields from proven techniques to potential industries, including energy storage, electronics, mechanical and other applications. For each application, the intrinsic properties of CNTs and the real performances of their aggregates are compared to figure out the key problems in CNT synthesis. Finally, we give an outlook for building a bridge for CNTs from nanoscale structure to macroscopic application, giving inspiration to researchers making efforts toward the real application of carbon nanotubes.
Collapse
Affiliation(s)
- Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying Xie
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mingzhi Zou
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
24
|
Abdelhamid HN, Al Kiey SA, Sharmoukh W. A high‐performance hybrid supercapacitor electrode based on ZnO/nitrogen‐doped carbon nanohybrid. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science Assiut University Assiut 71515 Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut 71515 Egypt
| | - Sherief A. Al Kiey
- Electrochemistry and corrosion Laboratory, National Research Centre, Tahrir St. Dokki Giza 12622 Egypt
- Material Engineering Lab, Central Network Laboratories National Research Centre, Tahrir St. Dokki Giza 12622 Egypt
| | - Walid Sharmoukh
- Department of Inorganic Chemistry National Research Centre, Tahrir St. Dokki Giza 12622 Egypt
| |
Collapse
|
25
|
Liu S, Wang R, Wang Q, Tian Q, Cui X. A facile synthesis of Ni 0.85Se@Cu 2-xSe nanorods as high-performance supercapacitor electrode materials. Dalton Trans 2021; 50:13543-13553. [PMID: 34505851 DOI: 10.1039/d1dt02199k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition-metal selenides are regarded as promising electrode materials due to their superior electrochemical performances for supercapacitors. In this study, a nanorod-like hybrid of Ni0.85Se@Cu2-xSe on a Ni-foam substrate is successfully synthesized via a facile one-step route. The Ni0.85Se@Cu2-xSe nanorods are found to be deposited uniformly on the Ni-form substrates. When used as a battery-type electrode in a supercapacitor, the as-deposited Ni0.85Se@Cu2-xSe electrode exhibits a high specific capacity of 1831 F g-1 at 1 A g-1 and 78.4% of capacitance retention after 8000 cycles at 10 A g-1. Moreover, the assembled Ni0.85Se@Cu2-xSe//AC asymmetric supercapacitor (ASC) exhibits an energy density of 63.2 W h kg-1 at a power density of 800.1 W kg-1, as well as good cycling stability (92.1% capacitance retention after 5000 cycles).
Collapse
Affiliation(s)
- Shuling Liu
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Rui Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Qiuting Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Qianhong Tian
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Xian Cui
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
26
|
Zhang H, Sun Y, Zhang X, Yang H, Lin B. A new straightforward uncalcined approach for morphology modulating to enhance the electrical capacity performance of Co-MOF. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Zhang Y, Tong Y, Li X, Guo S, Zhang H, Chen X, Cai K, Cheng L, He W. Pebax Mixed-Matrix Membrane with Highly Dispersed ZIF-8@CNTs to Enhance CO 2/N 2 Separation. ACS OMEGA 2021; 6:18566-18575. [PMID: 34337197 PMCID: PMC8319931 DOI: 10.1021/acsomega.1c00493] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/05/2021] [Indexed: 06/01/2023]
Abstract
In this work, zeolitic imidazolate frameworks (ZIF-8) and carboxylated carbon nanotubes (CNTs) were compounded to prepare a kebab-like one-dimensional linear composite, ZIF-8@CNTs. The mixed-matrix membrane (MMM) for separating carbon dioxide is prepared by embedding it into the polymer matrix Pebax-1657. The results indicated the successful synthesis of the ZIF-8@CNT composite. The combination of ZIF-8 and carboxylated CNTs avoided the aggregation of ZIF-8 in the polymer, increased the free volume of the MMM, and enhanced the CO2 adsorption performance and CO2/N2 separation performance. In addition, the interaction between CNTs and ZIF-8 provided a fast transport channel for CO2 molecules and improved the mechanical properties of the MMM. The 5 wt % ZIF-8@CNT MMM showed the best separation performance with a CO2 permeability of 225.5 Barrer and a CO2/N2 selectivity of 48.9, which exceeded the Robeson upper limit in 2008. The combination of high permeability and selectivity made Pebax/ZIF-8@CNT MMMs promising for industrial CO2 separation applications.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
- Key Laboratory of Micro-Nano Materials
for Energy Storage and Conversion of Henan Province, Institute of
Surface Micro and Nano Materials, College of Chemical and Materials
Engineering, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, P. R. China
| | - Yuping Tong
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
| | - Xinyu Li
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
| | - Shoujie Guo
- Key Laboratory of Micro-Nano Materials
for Energy Storage and Conversion of Henan Province, Institute of
Surface Micro and Nano Materials, College of Chemical and Materials
Engineering, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, P. R. China
- Henan Joint International Research Laboratory
of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, China
| | - Hailong Zhang
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
| | - Xi Chen
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
| | - Kun Cai
- Key Laboratory of Micro-Nano Materials
for Energy Storage and Conversion of Henan Province, Institute of
Surface Micro and Nano Materials, College of Chemical and Materials
Engineering, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, P. R. China
- Henan Joint International Research Laboratory
of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, China
| | - Linghe Cheng
- School of Materials
and Engineering, North China University
of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, Henan, P. R. China
| | - Weiwei He
- Key Laboratory of Micro-Nano Materials
for Energy Storage and Conversion of Henan Province, Institute of
Surface Micro and Nano Materials, College of Chemical and Materials
Engineering, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, P. R. China
- Henan Joint International Research Laboratory
of Nanomaterials for Energy and Catalysis, Xuchang University, 88 Bayi Road, Xuchang 461000, Henan, China
| |
Collapse
|
28
|
Boorboor Ajdari F, Dashti Najafi M, Izadpanah Ostad M, Naderi HR, Niknam Shahrak M, Kowsari E, Ramakrishna S. A symmetric ZnO-ZIF8//Mo-ZIF8 supercapacitor and comparing with electrochemical of Pt, Au, and Cu decorated ZIF-8 electrodes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ping Y, Yang S, Han J, Li X, Zhang H, Xiong B, Fang P, He C. N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138237] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
|
31
|
Carboxylated Group Effect of Graphene Oxide on Capacitance Performance of Zr-Based Metal Organic Framework Electrodes. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01935-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Wang X, Xu Y, Li Y, Li Y, Li Z, Zhang W, Zou X, Shi J, Huang X, Liu C, Li W. Rapid detection of cadmium ions in meat by a multi-walled carbon nanotubes enhanced metal-organic framework modified electrochemical sensor. Food Chem 2021; 357:129762. [PMID: 33872870 DOI: 10.1016/j.foodchem.2021.129762] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
This work presents an electrochemical device based on a composite modification of amine functionalized Zr(IV) metal-organic framework (UiO-66-NH2) and multi-walled carbon nanotubes (MWCNTs) for voltammetry determination of cadmium ions (Cd2+). The UiO-66-NH2@MWCNTs composites were prepared by one-pot hydrothermal reaction. The prepared sensor performs excellent performance, which was attributed to the synergism between UiO-66-NH2 with a special octahedral structure and enlarged surface area and MWCNTs with outstanding conductivity. Under optimal experiment condition, the fabricated sensor showed good linear relationship from 0.5 to 170 μg/L, with a detection limit of 0.2 μg/L. Finally, the sensor was successfully applied to detect Cd2+ in meat samples (N = 21) with relative standard deviation (RSD) lower than 4.5% and recovery of 95.1-107.5%, and the results were compared with certified method, there was no statistical significance difference between the developed sensor and certified method at a 95% confidence level.
Collapse
Affiliation(s)
- Xin Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center of Analysis and Test, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yiwei Xu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yahui Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Center of Analysis and Test, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wen Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Liu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
33
|
Gu Y, Miao L, Yin Y, Liu M, Gan L, Li L. Highly N/O co-doped ultramicroporous carbons derived from nonporous metal-organic framework for high performance supercapacitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Soncini C, Bondino F, Magnano E, Bhardwaj S, Kumar M, Cepek C, Pedio M. Electronic properties of carbon nanotubes as detected by photoemission and inverse photoemission. NANOTECHNOLOGY 2021; 32:105703. [PMID: 33331298 DOI: 10.1088/1361-6528/abce30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The relation between morphology and energy level alignment in carbon nanotubes (CNT) is a crucial information for the optimization of applications in nanoelectronics, optics, mechanics and (bio)chemistry. Here we present a study of the relation between the electronic properties and the morphology of single wall CNT (SWCNT), aligned multi wall CNT (MWCNT) and unaligned MWCNT. The CNT were synthesized via catalytic chemical vapor deposition in ultra-high vacuum conditions. Combined ultraviolet photoemission and inverse photoemission (IPES) spectra reveal a high sensitivity to the nanotube morphology. In the case of unaligned SWCNT the distinctive unoccupied Van Hove singularities (vHs) features are observed in the high resolution IPES spectra. Those features are assigned to semiconducting and metallic SWCNT states, according to calculated vHs DOS. The two MWCNT samples are similar in the diameter of the tube (about 15 nm) and present similar filled and empty electronic states, although the measured features in the aligned MWCNT are more defined. Noteworthy, interlayer states are also revealed. Their intensities are directly related to the MWCNT alignment. Focussing and geometrical effects associated to the MWCNT alignment are discussed to account the spectral differences.
Collapse
Affiliation(s)
- Cristian Soncini
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
- Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
| | - Federica Bondino
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| | - Elena Magnano
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
- Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Sunil Bhardwaj
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| | - Manvendra Kumar
- Department of Physics, Institute of Science, Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore 453111, India
| | - Cinzia Cepek
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| | - Maddalena Pedio
- Istituto Officina Materiali (CNR-IOM), Laboratorio TASC, I-34149 Trieste, Italy
| |
Collapse
|
35
|
Gao M, Wang L, Zhao B, Gu X, Li T, Huang L, Wu Q, Yu S, Liu S. Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors. Carbohydr Polym 2021; 255:117397. [PMID: 33436225 DOI: 10.1016/j.carbpol.2020.117397] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
The sandwich construction of chitosan (CS)/reduced graphene oxide (rGO) composite was synthesized through microwave-assisted hydrothermal method without further carbonization or activation process (CRG). CS homogeneous attached between the rGO slice sheet and improve the dispersion of CRG effectively, which can increase its specific surface area with hierarchical porous structure. Dehydration condensation occurred between CS and rGO, forming NHCO groups that can promote the wettability and conductivity of the composites. CRG exhibited improved degree of order and reduced graphitization defect, N-5 and OI groups were the dominant nitrogen and oxygen-containing groups. When used as additive-free electrode, CRG exhibited a high specific capacitance of 274 F g-1 at the current density of 0.5 A g-1 with good rate performance in a three-electrode system using 1 M H2SO4 electrolyte. Solid-state supercapacitor device was assembled with CRG electrode and lignin hydrogel electrolytes, high gravimetric energy densities of 8.4 Wh kg-1 at the power density of 50 W kg-1 was achieved.
Collapse
Affiliation(s)
- Mingming Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| | - Lu Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| | - Baozheng Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| | - Xinglong Gu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| | - Tong Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| | - Lang Huang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, PR China
| | - Qiong Wu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China.
| | - Shitao Yu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China.
| | - Shiwei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong Province, 266042, PR China
| |
Collapse
|
36
|
Abdel Maksoud MIA, Fahim RA, Shalan AE, Abd Elkodous M, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney DW. Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:375-439. [DOI: 10.1007/s10311-020-01075-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 09/02/2023]
Abstract
AbstractSupercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g−1 is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe2O4, MMoO4 and MCo2O4 where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo2S4, display a high specific capacitance of 1269 F g−1, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g−1. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.
Collapse
|
37
|
Pyrolysis transformation of ZIF-8 wrapped with polytriazine to nitrogen enriched core-shell polyhedrons carbon for supercapacitor. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-020-2005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
38
|
Li Z, Bu J, Zhang C, Cheng L, Pan D, Chen Z, Wu M. Electrospun carbon nanofibers embedded with MOF-derived N-doped porous carbon and ZnO quantum dots for asymmetric flexible supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d1nj01369f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hierarchical carbon nanofibers are embedded with MOF-derived N-doped porous carbon nanoparticles and decorated with ZnO quantum dots via a co-spinning method.
Collapse
Affiliation(s)
- Zhen Li
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai
- P. R. China
| | - Jingting Bu
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai
- P. R. China
| | - Chenying Zhang
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai
- P. R. China
| | - Lingli Cheng
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai
- P. R. China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| | - Zhiwen Chen
- Shanghai Applied Radiation Institute
- Shanghai University
- Shanghai
- P. R. China
| | - Minghong Wu
- School of Environmental and Chemical Engineering
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
39
|
Thiophene-based Ni-coordination polymer as a catalyst precursor and promoter for multi-walled carbon nanotubes synthesis in CVD. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Design of zinc vanadate (Zn3V2O8)/nitrogen doped multiwall carbon nanotubes (N-MWCNT) towards supercapacitor electrode applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114936] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Wen Y, Chen X, Mijowska E. Insight into the Effect of ZIF-8 Particle Size on the Performance in Nanocarbon-Based Supercapacitors. Chemistry 2020; 26:16328-16337. [PMID: 32663344 DOI: 10.1002/chem.202001979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 11/10/2022]
Abstract
Carbon materials derived from zeolitic imidazolate framework-8 (ZIF-8) and composites thereof have been intensively investigated in supercapacitors. The particle size of the used ZIF-8 ranges from dozens of nanometers to several microns. However, the influence of the particle size of ZIF-8 on the capacitive performances is still not clear. A series of ZIF-8 with different particle sizes (from 25 to 296 nm) has been synthesized and carbonized for supercapacitors. Based on TEM, EDX mapping, XRD, Raman, nitrogen adsorption-desorption, XPS, and the results of electrochemical tests, the optimal particle size (≈70 nm) for superior supercapacitor performances in both acidic and alkaline electrolytes has been obtained. This important result provides a significant reference to guide future ZIF-8 related research to achieve the best electrochemical performance.
Collapse
Affiliation(s)
- Yanliang Wen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Xuecheng Chen
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| | - Ewa Mijowska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065, Szczecin, Poland
| |
Collapse
|
42
|
Samuel E, Joshi B, Park C, Aldalbahi A, Rahaman M, Yoon SS. Supersonically sprayed rGO/ZIF8 on nickel nanocone substrate for highly stable supercapacitor electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137154] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Ahmad R, Khan UA, Iqbal N, Noor T. Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: an overview. RSC Adv 2020; 10:43733-43750. [PMID: 35519688 PMCID: PMC9058430 DOI: 10.1039/d0ra08560j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/13/2020] [Indexed: 01/31/2023] Open
Abstract
The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs). ZIFs represent an emerging and unique class of metal–organic frameworks with structures similar to conventional aluminosilicate zeolites, consisting of imidazolate linkers and metal ions. Their intrinsic porous properties, robust functionalities, and excellent thermal and chemical stabilities have resulted in a wide range of potential applications for various ZIF materials. In this rapidly expanding area, energetic research activities have emerged in the past few years, ranging from synthesis approaches to attractive applications of ZIFs. In this analysis, the development of high-performance supercapacitor electrodes and recent strategies to produce them, including the synthesis of various heterostructures and nanostructures, are analyzed and summarized. This analysis goes via the ingenuity of modern science when it comes to these nanoarchitecture electrodes. Despite these significant achievements, it is still difficult to accurately monitor the morphologies of materials derived from metal–organic frameworks (MOFs) because the induction force during structural transformations at elevated temperatures is in high demand. It is also desirable to achieve the direct synthesis of highly functionalized nanosized materials derived from zeolitic imidazolate frameworks (ZIFs) and the growth of nanoporous structures based on ZIFs encoded in specific substrates for the construction of active materials with a high surface area suitable for electrochemical applications. The latest improvements in this field of supercapacitors with materials formed from ZIFs as electrodes using ZIFs as templates or precursors are discussed in this review. Also, the possibility of usable materials derived from ZIFs for both existing and emerging energy storage technologies is discussed. The present analysis focuses on the synthetic methods used for the application of supercapacitors with various mysterious architectures derived from zeolitic imidazolate frameworks (ZIFs).![]()
Collapse
Affiliation(s)
- Rabia Ahmad
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Usman Ali Khan
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Naseem Iqbal
- US-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92-51-90855281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
44
|
Hong S, Kim Y, Kim Y, Suh K, Yoon M, Kim K. Hierarchical Porous Carbon Materials Prepared by Direct Carbonization of
Metal–Organic
Frameworks as an Electrode Material for Supercapacitors. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Soonsang Hong
- Center for Self‐assembly and Complexity Institute for Basic Science Pohang 37673 Republic of Korea
| | - Younghoon Kim
- Center for Self‐assembly and Complexity Institute for Basic Science Pohang 37673 Republic of Korea
| | - Yelin Kim
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology Pohang 37673 Republic of Korea
| | - Kyungwon Suh
- Center for Self‐assembly and Complexity Institute for Basic Science Pohang 37673 Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry and Green‐Nano Materials Research Center Kyungpook National University Daegu 41566 Republic of Korea
| | - Kimoon Kim
- Center for Self‐assembly and Complexity Institute for Basic Science Pohang 37673 Republic of Korea
- Department of Chemistry and Division of Advanced Materials Science Pohang University of Science and Technology Pohang 37673 Republic of Korea
| |
Collapse
|
45
|
Li X, Yu S, Li K, Ma C, Zhang J, Li H, Chang X, Zhu L, Xue Q. Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Liu C, Zhang T, Daneshvar F, Feng S, Zhu Z, Kotaki M, Mullins M, Sue HJ. High dielectric constant epoxy nanocomposites based on metal organic frameworks decorated multi-walled carbon nanotubes. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Lin YC, Chuang CH, Hsiao LY, Yeh MH, Ho KC. Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42634-42643. [PMID: 32845608 DOI: 10.1021/acsami.0c07821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To obtain renewable and clean fuels, exploration of effective electrocatalysts is highly desirable due to the sluggish kinetics of water splitting. In this study, the oxygen plasma-activated hybrid structure of Ni-Fe Prussian blue analogue (PBA) interconnected by carbon nanotubes (O-CNT/NiFe) is reported as a highly effective electrocatalytic material for the oxygen evolution reaction (OER). The electrocatalytic performance is significantly influenced by different mass ratios of CNTs to Ni-Fe PBA. Benefiting from the conductive and oxygen plasma-activated CNTs as well as ordered and distributed metal sites in the framework, the optimized O-CNT/NiFe 1:18 exhibits a competitive overpotential of 279 mV at a current density of 10 mA cm-2 and a low Tafel slope of 42.8 mV dec-1 in 1.0 M KOH. Furthermore, the composite shows superior durability for at least 100 h. These results suggest that the O-CNT/NiFe 1:18 possesses promising potential as a highly active electrocatalyst.
Collapse
Affiliation(s)
- Yin-Chen Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Hsun Chuang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Yin Hsiao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsin Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
48
|
Kim HC, Huh S. Porous Carbon-Based Supercapacitors Directly Derived from Metal-Organic Frameworks. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4215. [PMID: 32972017 PMCID: PMC7560464 DOI: 10.3390/ma13184215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023]
Abstract
Numerously different porous carbons have been prepared and used in a wide range of practical applications. Porous carbons are also ideal electrode materials for efficient energy storage devices due to their large surface areas, capacious pore spaces, and superior chemical stability compared to other porous materials. Not only the electrical double-layer capacitance (EDLC)-based charge storage but also the pseudocapacitance driven by various dopants in the carbon matrix plays a significant role in enhancing the electrochemical supercapacitive performance of porous carbons. Since the electrochemical capacitive activities are primarily based on EDLC and further enhanced by pseudocapacitance, high-surface carbons are desirable for these applications. The porosity of carbons plays a crucial role in enhancing the performance as well. We have recently witnessed that metal-organic frameworks (MOFs) could be very effective self-sacrificing templates, or precursors, for new high-surface carbons for supercapacitors, or ultracapacitors. Many MOFs can be self-sacrificing precursors for carbonaceous porous materials in a simple yet effective direct carbonization to produce porous carbons. The constituent metal ions can be either completely removed during the carbonization or transformed into valuable redox-active centers for additional faradaic reactions to enhance the electrochemical performance of carbon electrodes. Some heteroatoms of the bridging ligands and solvate molecules can be easily incorporated into carbon matrices to generate heteroatom-doped carbons with pseudocapacitive behavior and good surface wettability. We categorized these MOF-derived porous carbons into three main types: (i) pure and heteroatom-doped carbons, (ii) metallic nanoparticle-containing carbons, and (iii) carbon-based composites with other carbon-based materials or redox-active metal species. Based on these cases summarized in this review, new MOF-derived porous carbons with much enhanced capacitive performance and stability will be envisioned.
Collapse
Affiliation(s)
| | - Seong Huh
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Korea;
| |
Collapse
|
49
|
Guan JF, Zou J, Liu YP, Jiang XY, Yu JG. Hybrid carbon nanotubes modified glassy carbon electrode for selective, sensitive and simultaneous detection of dopamine and uric acid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110872. [PMID: 32559693 DOI: 10.1016/j.ecoenv.2020.110872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 06/07/2020] [Indexed: 05/20/2023]
Abstract
Based on a hybrid carbon nanotube composite, a novel electrochemical sensor with high sensitivity and selectivity was designed for the simultaneous determination of dopamine (DA) and uric acid (UA). The hybrid carbon nanotube composite was prepared by ultrasonic assembly of carboxylated multi-walled carbon nanotube (MWCNT-COOH) and hydroxylated single-walled carbon nanotube (SWCNT-OH). And the hybrid (MWCNT-COOH/SWCNT-OH) composite was characterized by field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy. The electrochemical performances of MWCNT-COOH/SWCNT-OH composite modified glassy carbon electrode (MWCNT-COOH/SWCNT-OH/GCE) were analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity and selectivity for DA and UA. The calibration curves obtained were linear for the currents versus DA and UA concentrations in the range 2-150 μM, and limits of detection (LODs) were calculated to be 0.37 μM and 0.61 μM (signal-to-noise ratio of 3, S/N = 3), respectively. The recoveries of DA and UA in bovine serum samples at MWCNT-COOH/SWCNT-OH/GCE were in the range 96.18-105.02%, and relative standard deviations (RSDs) were 3.34-7.27%. The proposed electrochemical sensor showed good anti-interference ability, excellent reproducibility and stability, as well as high selectivity, which might provide a promising platform for determination of DA and UA.
Collapse
Affiliation(s)
- Jin-Feng Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiao Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yi-Ping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
50
|
Yan L, Yang P, Cai H, Chen L, Wang Y, Li M. ZIF-8-modified Au-Ag/Si nanoporous pillar array for active capture and ultrasensitive SERS-based detection of pentachlorophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4064-4071. [PMID: 32760947 DOI: 10.1039/d0ay00388c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A novel SERS substrate based on a zeolitic imidazolate framework-8 (ZIF-8) film-modified Au-Ag/Si nanoporous pillar array (ZIF-8/Au-Ag/Si-NPA) was successfully fabricated for pentachlorophenol (PCP) detection. The Au-Ag/Si-NPA was synthesized through immersion plating and replacement reaction on the Si-NPA, which was prepared by the hydrothermal etching. The ZIF-8 film was coated via layer-by-layer growth technique. The ZIF-8 film is nanoporous and its thickness can be controlled by varying the growing number, which can significantly influence the SERS performance of the substrate. The substrate with optimal ZIF-8 thickness exhibited an excellent SERS response to PCP molecules. The SERS enhancement factor reached up to 1.8 × 107 and the detection limit was down to 10-13 M. Moreover, the substrate showed good uniformity with a relative standard deviation (RSD) of 8.7% and good selectivity. The PCP detection is hardly interfered by the coexisting organic compounds. The high SERS performance may be due to the enrichment effect of the ZIF-8 film. The ZIF-8 film could capture and enrich the trace PCP molecules by electrostatic interaction between the negatively charged PCP- and the positively charged ZIF-8. This work suggests that the ZIF-8/Au-Ag/Si-NPA substrate has potential application in SERS analysis of the polar organic pollutant detection in environmental media.
Collapse
Affiliation(s)
- Lingling Yan
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Peng Yang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Hongxin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Liang Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Yongqiang Wang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| | - Ming Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000, P. R. China.
| |
Collapse
|