1
|
Çapan İ, Hawash M, Qaoud MT, Gülüm L, Tunoglu ENY, Çifci KU, Çevrimli BS, Sert Y, Servi S, Koca İ, Tutar Y. Synthesis of novel carbazole hydrazine-carbothioamide scaffold as potent antioxidant, anticancer and antimicrobial agents. BMC Chem 2024; 18:102. [PMID: 38773663 PMCID: PMC11110238 DOI: 10.1186/s13065-024-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Carbazole-based molecules containing thiosemicarbazide functional groups are recognized for their diverse biological activities, particularly in enhancing therapeutic anticancer effects through inhibiting crucial pathways. These derivatives also exhibit noteworthy antioxidant properties. OBJECTIVES This study aims to synthesize, characterize, and evaluate the antioxidant and anticancer activities of 18 novel carbazole derivatives. METHODS The radical scavenging capabilities of the compounds were assessed using the 2,2-diphenyl-1-picrylhydrazyl assay. Antiproliferative activities were evaluated on MCF-7 cancer cell lines through viability assays. Additionally, the modulation of the PI3K/Akt/mTOR pathway, apoptosis/necrosis induction, and cell cycle analysis were conducted for the most promising anticancer agents. RESULTS nine compounds showed potent antioxidant activities with IC50 values lower than the positive control acarbose, with compounds 4 h and 4y exhibiting the highest potency (IC50 values of 0.73 and 0.38 µM, respectively). Furthermore, compounds 4o and 4r displayed significant anticancer effects, with IC50 values of 2.02 and 4.99 µM, respectively. Compound 4o, in particular, exhibited promising activity by targeting the PI3K/Akt/mTOR signaling pathway, inhibiting tumor survival, inducing apoptosis, and causing cell cycle arrest in MCF-7 cell lines. Furthermore, compound 4o was showed significant antimicrobial activities against S. aureus and E. coli, and antifungal effect against C. albicans. Its potential to overcome drug resistance through this pathway inhibition highlights its promise as an anticancer agent. Molecular docking simulations supported these findings, revealing favorable binding profiles and interactions within the active sites of the enzymes PI3K, AKT1, and mTOR. Moreover, assessing the druggability of the newly synthesized thiosemicarbazide derivatives demonstrated optimal physicochemical properties, further endorsing their potential as drug candidates.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, 06330, Ankara, Türkiye.
- Sente Kimya Research and Development Inc., 06200, Ankara, Türkiye.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Mohammed T Qaoud
- Department of Pharmacy, Faculty of Pharmacy, Cyprus International University, Northern Cyprus, Mersin 10, 99258, Nicosia, Türkiye
| | - Levent Gülüm
- Department of Plant and Animal Production, Mudurnu Süreyya Astarcı Vocational College, Bolu Abant İzzet Baysal University, Bolu, Türkiye
| | - Ezgi Nurdan Yenilmez Tunoglu
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Demiroğlu Bilim University, Istanbul, Türkiye
| | - Kezban Uçar Çifci
- Department of Molecular Medicine, Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye
- Division of Basic Sciences and Health, Hemp Research Institute, Yozgat Bozok University, Yozgat, Türkiye
| | - Bekir Sıtkı Çevrimli
- Department of Chemistry and Chemical Processing Technologies, Technical Sciences Vocational College, Gazi University, Ankara, Türkiye
| | - Yusuf Sert
- Sorgun Vocational College, Yozgat Bozok University, Yozgat, Türkiye
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Türkiye
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Türkiye
| | - Yusuf Tutar
- Medical School, Division of Biochemistry, Recep Tayyip Erdogan University, Rize, Türkiye
- Faculty of Pharmacy, Division of Biochemistry, University of Health Sciences, Istanbul, Türkiye
| |
Collapse
|
2
|
Sangar FH, Farahpour MR, Tabatabaei ZG. Facile synthesis of 2-hydroxy-β-cyclodextrin/polyacrylamide/carbazole hydrogel and its application for the treatment of infected wounds in a murine model. Int J Biol Macromol 2024; 267:131252. [PMID: 38554897 DOI: 10.1016/j.ijbiomac.2024.131252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
This work aimed to synthesize hydrogels by combining carbazole (Carb) with 2-hydroxy, β-cyclodextrin (HPβCD)/polyacrylamide (PAA) hybrid complexes. The hydrogels were then evaluated for their potential use in treating infected wounds. The physicochemical structures of the preparations were evaluated using several characterization methods including FTIR, FESEM, EDX, XRD, pH sensitivity, and TGA. Moreover, In vitro release, toxicity, antibacterial activity and in vivo infected wound healing activity were evaluated. Physicochemical testing verified the effective synthesis of the preparations and the timely release of Carb. The P(AA-co-AM)/HPβCD material exhibited an open structure characterized by macroscopic voids, whereas the hydrogels displayed surfaces that were not uniform. The FTIR analysis revealed the creation of a novel polymeric hydrogel composed of HPβCD as the main polymer structure. The hydrogels exhibited good reversible swelling and recoverable deformation, with an optimal swelling ratio of 30.12 achieved at pH 7.4. The antibacterial and safety of the formulations were validated by in vitro studies. β.Dex/PAA/Carb hydrogels have been shown to effectively expedite the healing of infected wounds by promoting the production of CD31, FGF-2, and COL1A, while reducing the levels of ROS, CD68, COX-2, and NF-κB. Overall, the combination of Carb, β.Dex, and PAA molecules had a synergistic impact on the healing process of infected wounds.
Collapse
Affiliation(s)
- Fatemeh Hemmatpour Sangar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
3
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
4
|
Munawar S, Zahoor AF, Mansha A, Bokhari TH, Irfan A. Update on novel synthetic approaches towards the construction of carbazole nuclei: a review. RSC Adv 2024; 14:2929-2946. [PMID: 38239436 PMCID: PMC10794906 DOI: 10.1039/d3ra07270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Tanveer Hussain Bokhari
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| |
Collapse
|
5
|
Iqbal Andrabi N, Sarkar AR, Assim Haq S, Kumar D, Kour D, Saroch D, Kumar Shukla S, Kumar A, Bhagat A, Ali A, Kour G, Ahmed Z. Site-selective synthesis and pharmacological elucidation of novel semi-synthetic analogues of koenimbine as a potential anti-inflammatory agent. Int Immunopharmacol 2024; 126:111059. [PMID: 37979450 DOI: 10.1016/j.intimp.2023.111059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/20/2023]
Abstract
Koenimbine (1), a carbazole alkaloid isolated from Murraya koenigii, belongs to the Rutaceae family. Various pharmacological effects such as anti-diabetic, melanogenesis inhibition, anti-diarrheal, anti-cancer, and anti-inflammatory properties of koenimbine have already been reported. In the current study, we investigated the anti-inflammatory role of koenimbine (1) and its novel semi-synthetic derivative 8-methoxy-3,3,5-trimethylpyrano[3,2-a] carbazole-11(3H)-yl) (3-(trifluoromethyl) phenyl) methanone (1G) in both in vitro and in vivo biological systems. Our results demonstrated that the anti-inflammatory activity of 1G significantly lowered the production of NO, pro-inflammatory cytokines (IL-6, TNF-α & IL-1β), LTB4 following LPS stimulation in RAW 264.7 macrophages. Furthermore, 1G significantly attenuated the expression levels of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner and also decreased the production of reactive oxygen species (ROS) in LPS-activated RAW 264.7 cells. In addition, the oral administration of 1G reduced the inflammatory response in carrageenan-induced paw edema in BALB/C mice. Moreover, it effectively reduced NO, IL-6, IL-1β & TNF-α levels, liver markers (AST, ALT), and kidney markers (BUN, CRE, and Urea). Also, 1G reverted the infiltration of inflammatory cells and tissue damage in lungs, liver and kidney enhanced the survival rate in LPS-challenged mice. 1G blocks NF-κB p65 from translocating into the nucleus and activating inflammatory gene transcription. These results illustrated that 1G suppresses the inflammatory effects both in-vitro and in-vivo studies via downregulating the nuclear factor kappa-B (NF-κB) signaling pathway. In conclusion, our results demonstrate that semi-synthetic derivative 1G can effectively attenuate the inflammatory response via NF-κB and MAPK signaling pathways; suggesting 1G is a potential novel anti-inflammatory drug candidate in treating inflammatory disorders.
Collapse
Affiliation(s)
- Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aminur R Sarkar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Syed Assim Haq
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diljeet Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Saroch
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket Kumar Shukla
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asif Ali
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Gurleen Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Parveen S, Maurya N, Meena A, Luqman S. Cinchonine: A Versatile Pharmacological Agent Derived from Natural Cinchona Alkaloids. Curr Top Med Chem 2024; 24:343-363. [PMID: 38031797 DOI: 10.2174/0115680266270796231109171808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Cinchonine is one of the Cinchona alkaloids that is commercially extracted from the Peruvian bark of Cinchona officinalis L. (Family: Rubiaceae). It is also obtained in much lower quantities from other species of Cinchona, such as Cinchona calisaya, Cinchona succirubra, and Cinchona pubescens, and in some other plants, such as Remijia peruviana. Cinchonine has been historically used as an anti-malarial agent. It also has a wide range of other biological properties, including anti-cancer, anti-obesity, anti-inflammatory, anti-parasitic, antimicrobial, anti-platelet aggregation, and anti-osteoclast differentiation. AIM AND OBJECTIVE This review discusses the pharmacological activity of cinchonine under different experimental conditions, including in silico, in vitro, and in vivo. It also covers the compound's physicochemical properties, toxicological aspects, and pharmacokinetics. METHODOLOGY A comprehensive literature search was conducted on multiple online databases, such as PubMed, Scopus, and Google Scholar. The aim was to retrieve a wide range of review/research papers and bibliographic sources. The process involved applying exclusion and inclusion criteria to ensure the selection of relevant and high-quality papers. RESULTS Cinchonine has numerous pharmacological properties, making it a promising compound for various therapeutic applications. It induces anti-cancer activity by activating caspase-3 and PARP-1, and triggers the endoplasmic reticulum stress response. It up-regulates GRP78 and promotes the phosphorylation of PERK and ETIF-2α. Cinchonine also inhibits osteoclastogenesis, inhibiting TAK1 activation and suppressing NFATc1 expression by regulating AP-1 and NF-κB. Its potential anti-inflammatory effects reduce the impact of high-fat diets, making it suitable for targeting obesity-related diseases. However, research on cinchonine is limited, and further studies are needed to fully understand its therapeutic potential. Further investigation is needed to ensure its safety and efficacy in clinical applications. CONCLUSION Overall, this review article explains the pharmacological activity of cinchonine, its synthesis, and physicochemical properties, toxicological aspects, and pharmacokinetics.
Collapse
Affiliation(s)
- Shahnaz Parveen
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Nidhi Maurya
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Ding YY, Zhou H, Peng-Deng, Zhang BQ, Zhang ZJ, Wang GH, Zhang SY, Wu ZR, Wang YR, Liu YQ. Antimicrobial activity of natural and semi-synthetic carbazole alkaloids. Eur J Med Chem 2023; 259:115627. [PMID: 37467619 DOI: 10.1016/j.ejmech.2023.115627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Peng-Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Yohanes R, Harneti D, Supratman U, Fajriah S, Rudiana T. Phytochemistry and Biological Activities of Murraya Species. Molecules 2023; 28:5901. [PMID: 37570872 PMCID: PMC10421387 DOI: 10.3390/molecules28155901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Murraya is a plant genus within the Rutaceae family comprising over 17 species, which are widely distributed in Asia, Australia, and the Pacific Islands. Furthermore, these species have been used in traditional medicine to treat fever, pain, and dysentery. Several reports have also extensively studied the leaves, seeds, stembark, and bark of Murraya from 1965 to 2023 to explore their natural product composition. Various phytochemical studies have revealed the isolation of 413 compounds recorded, comprising coumarins, terpenoids, flavonoids, and aromatics, as well as alkaloids, which constitute the largest proportion (46.9%). These isolated compounds have long been known to exhibit different bioactivities, such as cytotoxic and anti-inflammatory properties. Cytotoxic activity has been observed against HCT 116, HeLa, HepG2, and other cell lines. Previous studies have also reported the presence of antifungal, hepatoprotective, antihyperlipidemic, antidiarrheal, and antioxidant effects. Therefore, this review provides a comprehensive overview of Murraya species, highlighting their phytochemistry, biological activities, and potential as a source of active natural compounds.
Collapse
Affiliation(s)
- Ricky Yohanes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor, Sumedang 45363, Indonesia
| | - Sofa Fajriah
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Complex Cibinong Science—BRIN, Cibinong 16911, Indonesia
| | - Tarso Rudiana
- Department of Chemistry, Faculty of Sciences Pharmacy and Health, Universitas Mathlaul Anwar, Pandeglang 42273, Indonesia
| |
Collapse
|
9
|
Elmorsy MR, Eltoukhi M, Fadda AA, Abdel-Latif E, Abdelmoaz MA. Synthesis of New Carbazole–Thiazole Analogues and Evaluating their Anticancer Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mohamed R. Elmorsy
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mariam Eltoukhi
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Miral A. Abdelmoaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantra, Egypt
| |
Collapse
|
10
|
Natural carbazole alkaloid murrayafoline A displays potent anti-neuroinflammatory effect by directly targeting transcription factor Sp1 in LPS-induced microglial cells. Bioorg Chem 2022; 129:106178. [DOI: 10.1016/j.bioorg.2022.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
11
|
Sulaiman M, Jannat K, Nissapatorn V, Rahmatullah M, Paul AK, de Lourdes Pereira M, Rajagopal M, Suleiman M, Butler MS, Break MKB, Weber JF, Wilairatana P, Wiart C. Antibacterial and Antifungal Alkaloids from Asian Angiosperms: Distribution, Mechanisms of Action, Structure-Activity, and Clinical Potentials. Antibiotics (Basel) 2022; 11:1146. [PMID: 36139926 PMCID: PMC9495154 DOI: 10.3390/antibiotics11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The emergence of multidrug-resistant bacteria and fungi requires the development of antibiotics and antifungal agents. This review identified natural products isolated from Asian angiosperms with antibacterial and/or antifungal activities and analyzed their distribution, molecular weights, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and a library search from 1979 to 2022. One hundred and forty-one antibacterial and/or antifungal alkaloids were identified during this period, mainly from basal angiosperms. The most active alkaloids are mainly planar, amphiphilic, with a molecular mass between 200 and 400 g/mol, and a polar surface area of about 50 Å2, and target DNA and/or topoisomerase as well as the cytoplasmic membrane. 8-Acetylnorchelerythrine, cryptolepine, 8-hydroxydihydrochelerythrine, 6-methoxydihydrosanguinarine, 2'-nortiliacorinine, pendulamine A and B, rhetsisine, sampangine, tiliacorine, tryptanthrin, tylophorinine, vallesamine, and viroallosecurinine yielded MIC ≤ 1 µg/mL and are candidates for the development of lead molecules.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Monica Suleiman
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81411, Saudi Arabia
| | - Jean-Frédéric Weber
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR ŒNOLOGIE, EA 4577, USC 1366, ISVV, Université de Bordeaux, 210 Chemin de Leysotte, 33882 Villenave d’Ornon, France
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Christophe Wiart
- Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
12
|
Affiliation(s)
- Li He
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yongjun Xu
- Harbin Institute of Technology School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
13
|
Phyto-Carbazole Alkaloids from the Rutaceae Family as Potential Protective Agents against Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11030493. [PMID: 35326143 PMCID: PMC8944741 DOI: 10.3390/antiox11030493] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Plant-derived (phyto) carbazole alkaloids are an important class of compounds, presented in the family of Rutaceae (Genera Murraya, Clausena, Glycosmis, Micromelum and Zanthoxylum). Due to several significant biological activities, such as antitumor, antibacterial, antiviral, antidiabetic, anti-HIV and neuroprotective activities of the parent skeleton (3-methylcarbazole), carbazole alkaloids are recognized as an important class of potential therapeutic agents. Neurodegenerative diseases (NDs) may exhibit a vast range of conditions, affecting neurons primarily and leading ultimately to the progressive losses of normal motor and cognitive functions. The main pathophysiological indicators of NDs comprise increasing atypical protein folding, oxidative stresses, mitochondrial dysfunctions, deranged neurotransmissions and neuronal losses. Phyto-carbazole alkaloids can be investigated for exerting multitarget approaches to ameliorating NDs. This review presents a comprehensive evaluation of the available scientific literature on the neuroprotective mechanisms of phyto-carbazole alkaloids from the Rutaceae family in ameliorating NDs.
Collapse
|
14
|
Kumar P, Kumar P, Venkataramani S, Ramasastry SSV. Pd-Catalyzed Formal [3 + 3] Heteroannulation of Allylic gem-Diacetates: Synthesis of Chromene-Based Natural Products and Exploration of Photochromic Properties. ACS Catal 2021. [DOI: 10.1021/acscatal.1c05450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Prashant Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - S. S. V. Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
15
|
Gutiérrez-García C, Ahmed SSSJ, Ramalingam S, Selvaraj D, Srivastava A, Paul S, Sharma A. Identification of microRNAs from Medicinal Plant Murraya koenigii by High-Throughput Sequencing and Their Functional Implications in Secondary Metabolite Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010046. [PMID: 35009050 PMCID: PMC8747174 DOI: 10.3390/plants11010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 05/05/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling. However, information about their involvement in secondary metabolism is still limited. Murraya koenigii is a popular medicinal plant, better known as curry leaves, that possesses pharmaceutically active secondary metabolites. The present study utilized high-throughput sequencing technology to investigate the miRNA profile of M. koenigii and their association with secondary metabolite biosynthesis. A total of 343,505 unique reads with lengths ranging from 16 to 40 nt were obtained from the sequencing data, among which 142 miRNAs were identified as conserved and 7 as novel miRNAs. Moreover, 6078 corresponding potential target genes of M. koenigii miRNAs were recognized in this study. Interestingly, several conserved and novel miRNAs of M. koenigii were found to target key enzymes of the terpenoid backbone and the flavonoid biosynthesis pathways. Furthermore, to validate the sequencing results, the relative expression of eight randomly selected miRNAs was determined by qPCR. To the best of our knowledge, this is the first report of the M. koenigii miRNA profile that may provide useful information for further elucidation of the involvement of miRNAs in secondary metabolism. These findings might be crucial in the future to generate artificial-miRNA-based, genetically engineered M. koenigii plants for the overproduction of medicinally highly valuable secondary metabolites.
Collapse
Affiliation(s)
- Claudia Gutiérrez-García
- Tecnologico de Monterrey, Centre of Bioengineering, School of Engineering and Sciences, Queretaro CP 76130, Mexico;
| | - Shiek S. S. J. Ahmed
- Omics and Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, India;
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India; (S.R.); (D.S.)
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India; (S.R.); (D.S.)
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Sujay Paul
- Tecnologico de Monterrey, Centre of Bioengineering, School of Engineering and Sciences, Queretaro CP 76130, Mexico;
- Correspondence: (S.P.); (A.S.)
| | - Ashutosh Sharma
- Tecnologico de Monterrey, Centre of Bioengineering, School of Engineering and Sciences, Queretaro CP 76130, Mexico;
- Correspondence: (S.P.); (A.S.)
| |
Collapse
|
16
|
Nandan S, Singh SK, Singh P, Bajpai V, Mishra AK, Joshi T, Mahar R, Shukla SK, Mishra DK, Kanojiya S. Quantitative Analysis of Bioactive Carbazole Alkaloids in Murraya koenigii (L.) from Six Different Climatic Zones of India Using UPLC/MS/MS and Their Principal Component Analysis. Chem Biodivers 2021; 18:e2100557. [PMID: 34643999 DOI: 10.1002/cbdv.202100557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/07/2021] [Indexed: 11/06/2022]
Abstract
Murraya koenigii (L.) Spreng (Curry leaf) is a commercially important medicinal plant in South Asia, containing therapeutically valuable carbazole alkaloids (CAs). Thus, the quantitative evaluation of these compounds from different climatic zones of India are an important aspect for quality assessment and economic isolation of targeted compounds from the plant. In this study, quantitative estimation of CAs among 34 Indian natural populations of M. koenigii was assessed using UPLC/MS/MS. The collected populations represent the humid subtropical, tropical wet & dry, tropical wet, semi-arid, arid, and montane climatic zones of India. A total of 11 CAs viz. koenine-I, murrayamine A, koenigine, koenimbidine, koenimbine, O-methylmurrayamine A, girinimbine, mahanine, 8,8''-biskoenigine, isomahanimbine, and mahanimbine were quantified using multiple reaction monitoring (MRM) experiments within 5.0 min. The respective range for natural abundance of CAs were observed as 0.097-1.222, 0.092-5.014, 0.034-0.661, 0.010-1.673, 0.013-7.336, 0.010-0.310, 0.010-0.114, 0.049-5.288, 0.031-1.731, 0.491-3.791, and 0.492-5.399 mg/g in leaves of M. koenigii. The developed method shown linearity regression coefficient (r2 >0.9995), LOD (0.003-0.248 ng/mL), LOQ (0.009-0.754 ng/mL), and the recovery was between 88.803-103.729 %. The bulk of these CAs were recorded in their highest concentrations in the humid subtropical zone, followed by the tropical wet & dry zones of India. Further, principal component analysis (PCA) was performed which differentiated the climatic zones according to the dominant and significant CAs contents within the populations. The study concludes that the method established is simple, rapid, with high sample throughput, and can be used as a tool for commercial purposes and quality control of M. koenigii.
Collapse
Affiliation(s)
- Shiv Nandan
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sumit K Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pratibha Singh
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ashwanee K Mishra
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Trapti Joshi
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rohit Mahar
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Dipak K Mishra
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Kanojiya
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Müller D, Saha P, Panda D, Dash J, Schwalbe H. Insights from Binding on Quadruplex Selective Carbazole Ligands. Chemistry 2021; 27:12726-12736. [PMID: 34138492 PMCID: PMC8518889 DOI: 10.1002/chem.202101866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 01/11/2023]
Abstract
Polymorphic G-quadruplex (G4) secondary DNA structures have received increasing attention in medicinal chemistry owing to their key involvement in the regulation of the maintenance of genomic stability, telomere length homeostasis and transcription of important proto-oncogenes. Different classes of G4 ligands have been developed for the potential treatment of several human diseases. Among them, the carbazole scaffold with appropriate side chain appendages has attracted much interest for designing G4 ligands. Because of its large and rigid π-conjugation system and ease of functionalization at three different positions, a variety of carbazole derivatives have been synthesized from various natural or synthetic sources for potential applications in G4-based therapeutics and biosensors. Herein, we provide an updated close-up of the literatures on carbazole-based G4 ligands with particular focus given on their detailed binding insights studied by NMR spectroscopy. The structure-activity relationships and the opportunities and challenges of their potential applications as biosensors and therapeutics are also discussed. This review will provide an overall picture of carbazole ligands with remarkable G4 topological preference, fluorescence properties and significant bioactivity; portraying carbazole as a very promising scaffold for assembling G4 ligands with a range of novel functional applications.
Collapse
Affiliation(s)
- Diana Müller
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| | - Puja Saha
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Deepanjan Panda
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of ScienceJadavpurKolkata-700032India
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Strasse 7Frankfurt am Main60438Germany
| |
Collapse
|
18
|
Tran QT, Pham TD, Nguyen TD, Luu VH, Nghi Do H, Duy Le X, Nguyen PH, Nguyen MC, Luu VC, Pham MQ, Huyen Vu T, Pham TN, Pham DTN. Optimization of Murrayafoline A ethanol extraction process from the roots of Glycosmis stenocarpa, and evaluation of its Tumorigenesis inhibition activity on Hep-G2 cells. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Glycosmis stenocarpa is a species of shrub found in the Northern provinces of Vietnam. Its roots contain different carbazolic derivatives, mainly Murrayafoline A (Mu-A), which exhibits valuable biological activities. In this study, we performed an extraction of Mu-A from the roots of G. stenocarpa and optimized this process using response surface methodology (RSM) according to a central composite design, with three independent parameters including extraction time (min), extraction temperature (°C), and solvent/material ratio (mL/g). Two dependent variables were the Mu-A content (mg/g raw materials) and extraction efficiency (%). The optimal conditions to extract Mu-A were found to be as follows: extraction temperature, 67°C; extraction time, 165 min; and solvent/material ratio, 5:1. Under these conditions, the Mu-A content and extraction efficiency were 38.94 ± 1.31 mg/g raw materials and 34.98 ± 1.18%, respectively. Mu-A exhibited antiproliferation and antitumor-promoting activity against the HepG-2 cell line. The present optimization work of Mu-A extraction from G. stenocarpa roots contributed to the attempt of designing a large-scale extraction process for the compound and further exploitation of its potential in vivo applications.
Collapse
Affiliation(s)
- Quoc Toan Tran
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi 10072 , Vietnam
| | - The Dan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST) , 18 Hoang Quoc Viet, Cau Giay , Hanoi , Vietnam
| | - Thanh Duong Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Van Huyen Luu
- Faculty of Environment, Hanoi University of Natural Resources and Environment , No 41A Phu Dien Road, Phu Dien Precinct, North-Tu Liem District , Hanoi , Vietnam
| | - Huu Nghi Do
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Xuan Duy Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Phi Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Manh Cuong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Van Chinh Luu
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology , 18 Hoang Quoc Viet St., Cau Giay Dist. , Hanoi 10072 , Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology , Hanoi 10072 , Vietnam
| | - Thi Huyen Vu
- Faculty of Environment, Vietnam National University of Agriculture , Hanoi , Vietnam
| | - Tri Nhut Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| | - Dung Thuy Nguyen Pham
- Center of Excellence for Biochemistry and Natural Products, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University , Ho Chi Minh City , Vietnam
| |
Collapse
|
19
|
Xie YP, Ansari MF, Zhang SL, Zhou CH. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104849. [PMID: 33993967 DOI: 10.1016/j.pestbp.2021.104849] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Staphylococcus aureus resistance poses nonnegligible threats to the livestock industry. In light of this, carbazole-oxadiazoles were designed and synthesized for treating S. aureus infection. Bioassay discovered that 3,6-dibromocarbazole derivative 13a had effective inhibitory activities to several Gram-positive bacteria, in particular to S. aureus, S. aureus ATCC 29213, MRSA and S. aureus ATCC 25923 (MICs = 0.6-4.6 nmol/mL), which was more active than norfloxacin (MICs = 6-40 nmol/mL). Subsequent studies showed that 3,6-dibromocarbazole derivative 13a acted rapidly on S. aureus ATCC 29213 and possessed no obvious tendency to induce bacterial resistance. Further evaluations indicated that 3,6-dibromocarbazole derivative 13a showed strong abilities to disrupt bacterial biofilm and interfere with DNA, which might be the power sources of antibacterial performances. Moreover, 3,6-dibromocarbazole derivative 13a also exhibited slight cell lethality toward Hek 293 T and LO2 cells and low hemolytic toxicity to red blood cells. The above results implied that the active molecule 13a could be studied in the future development of agricultural available antibiotics.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Huang X, Liu HW, Long ZQ, Li ZX, Zhu JJ, Wang PY, Qi PY, Liu LW, Yang S. Rational Optimization of 1,2,3-Triazole-Tailored Carbazoles As Prospective Antibacterial Alternatives with Significant In Vivo Control Efficiency and Unique Mode of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4615-4627. [PMID: 33855856 DOI: 10.1021/acs.jafc.1c00707] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant bacterial diseases can potentially damage agricultural products around the world, and few effective bactericides can manage these infections. Herein, to sequentially explore highly effective antibacterial alternatives, 1,2,3-triazole-tailored carbazoles were rationally fabricated. These compounds could suppress the growth of three main intractable pathogens including Xanthomonas oryzae pv oryzae (Xoo), X. axonopodis pv citri (Xac), and Pseudomonas syringae pv actinidiae (Psa) with lower EC50 values of 3.36 (3p), 2.87 (3p), and 4.57 μg/mL (3r), respectively. Pot experiments revealed that compound 3p could control the rice bacterial blight with protective and curative efficiencies of 53.23% and 50.78% at 200 μg/mL, respectively. Interestingly, the addition of 0.1% auxiliaries such as organic silicon and orange oil could significantly enhance the surface wettability of compound 3p toward rice leaves, resulting in improved control effectiveness of 65.50% and 61.38%, respectively. Meanwhile, compound 3r could clearly reduce the white pyogenic exudates triggered by Psa infection and afforded excellent control efficiencies of 79.42% (protective activity) and 78.74% (curative activity) at 200 μg/mL, which were quite better than those of commercial pesticide thiodiazole copper. Additionally, a plausible apoptosis mechanism for the antibacterial behavior of target compounds was proposed by flow cytometry, reactive oxygen species detection, and defensive enzyme (e.g., catalase and superoxide dismutase) activity assays. The current work can promote the development of 1,2,3-triazole-tailored carbazoles as prospective antibacterial alternatives bearing an intriguing mode of action.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Hong-Wu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhou-Qing Long
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Zhen-Xing Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Jian-Jun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Pu-Ying Qi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Li-Wei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
21
|
Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur J Med Chem 2021; 213:113165. [PMID: 33454546 DOI: 10.1016/j.ejmech.2021.113165] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is an adaptive response of the immune system to tissue malfunction or homeostatic imbalance. Corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) are frequently applied to treat varieties of inflammatory diseases but are associated with gastrointestinal, cardiovascular, and kidney side effects. Developing more effective and less toxic agents remain a challenge for pharmaceutical chemist due to the complexity of the different inflammatory processes. Alkaloids are widely distributed in plants with diverse anti-inflammatory activities, providing various potential lead compounds or candidates for the design and discovery of new anti-inflammatory drug candidates. Therefore, re-examining the anti-inflammatory alkaloid natural products is advisable, bringing more opportunities. In this review, we summarized and described the recent advances of natural alkaloids with anti-inflammatory activities and possible mechanisms in the period from 2009 to 2020. It is hoped that this review of anti-inflammatory alkaloids can provide new ideas for researchers engaged in the related fields and potential lead compounds for the discovery of anti-inflammatory drugs.
Collapse
|
22
|
Puttaswamy H, Gowtham HG, Ojha MD, Yadav A, Choudhir G, Raguraman V, Kongkham B, Selvaraju K, Shareef S, Gehlot P, Ahamed F, Chauhan L. In silico studies evidenced the role of structurally diverse plant secondary metabolites in reducing SARS-CoV-2 pathogenesis. Sci Rep 2020; 10:20584. [PMID: 33239694 PMCID: PMC7689506 DOI: 10.1038/s41598-020-77602-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Plants are endowed with a large pool of structurally diverse small molecules known as secondary metabolites. The present study aims to virtually screen these plant secondary metabolites (PSM) for their possible anti-SARS-CoV-2 properties targeting four proteins/ enzymes which govern viral pathogenesis. Results of molecular docking with 4,704 ligands against four target proteins, and data analysis revealed a unique pattern of structurally similar PSM interacting with the target proteins. Among the top-ranked PSM which recorded lower binding energy (BE), > 50% were triterpenoids which interacted strongly with viral spike protein-receptor binding domain, > 32% molecules which showed better interaction with the active site of human transmembrane serine protease were belongs to flavonoids and their glycosides, > 16% of flavonol glycosides and > 16% anthocyanidins recorded lower BE against active site of viral main protease and > 13% flavonol glycoside strongly interacted with active site of viral RNA-dependent RNA polymerase. The primary concern about these PSM is their bioavailability. However, several PSM recorded higher bioavailability score and found fulfilling most of the drug-likeness characters as per Lipinski's rule (Coagulin K, Kamalachalcone C, Ginkgetin, Isoginkgetin, 3,3'-Biplumbagin, Chrysophanein, Aromoline, etc.). Natural occurrence, bio-transformation, bioavailability of selected PSM and their interaction with the target site of selected proteins were discussed in detail. Present study provides a platform for researchers to explore the possible use of selected PSM to prevent/ cure the COVID-19 by subjecting them for thorough in vitro and in vivo evaluation for the capabilities to interfering with the process of viral host cell recognition, entry and replication.
Collapse
Affiliation(s)
- Hariprasad Puttaswamy
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India.
| | | | - Monu Dinesh Ojha
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Ajay Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Gourav Choudhir
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Vasantharaja Raguraman
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Bhani Kongkham
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Koushalya Selvaraju
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Shazia Shareef
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Priyanka Gehlot
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Faiz Ahamed
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| | - Leena Chauhan
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, Delhi, 110016, India
| |
Collapse
|
23
|
Lyu HN, Zhou Y, Wen R, Tu PF, Jiang Y. Nitric Oxide Inhibitory Carbazole Alkaloids from the Folk Medicine Murraya tetramera C.C. Huang. Chem Biodivers 2020; 17:e2000490. [PMID: 32960486 DOI: 10.1002/cbdv.202000490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
The phytochemical investigation of the leaves and stems of Murraya tetramera C.C. Huang, a traditional folk medicine used as an anti-inflammatory agent, yielded 19 simple carbazole alkaloids, two of which (1-ethoxy-3-methyl-9H-carbazol-2-ol (1) and 7-hydroxy-2,8-dimethoxy-6-methyl-9H-carbazole-1-carbaldehyde (2)) are new ones. The structures of the new compounds were determined by extensive spectroscopic analysis including NMR and HR-EI-MS experiments, as well as comparison with the reported data. Most of the isolates showed potent inhibitory effects on NO production in LPS-stimulated BV-2 microglial cells with IC50 values ranging from 5.1 to 15.1 μM.
Collapse
Affiliation(s)
- Hai-Ning Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China
| | - Ying Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,Zhejiang Institute for Food and Drug Control, Hangzhou, 310004, P. R. China
| | - Ran Wen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China.,School of Pharmacy, Hebei Medical University, Shijiazhuang, 050017, P. R. China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. China
| |
Collapse
|
24
|
Pandya PN, Kumar SP, Bhadresha K, Patel CN, Patel SK, Rawal RM, Mankad AU. Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning, molecular docking, dynamics simulations and binding free energy calculations. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1764552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pujan N. Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Sivakumar Prasanth Kumar
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Kinjal Bhadresha
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Chirag N. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Saumya K. Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Rakesh M. Rawal
- Department of Life Sciences, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Archana U. Mankad
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
25
|
Balakrishnan R, Vijayraja D, Jo SH, Ganesan P, Su-Kim I, Choi DK. Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds. Antioxidants (Basel) 2020; 9:E101. [PMID: 31991665 PMCID: PMC7070712 DOI: 10.3390/antiox9020101] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
The discovery of several revitalizing molecules that can stop or reduce the pathology of a wide range of diseases will be considered a major breakthrough of the present time. Available synthetic compounds may provoke side effects and health issues, which heightens the need for molecules from plants and other natural resources under discovery as potential methods of replacing synthetic compounds. In traditional medicinal therapies, several plant extracts and phytochemicals have been reported to impart remedial effects as better alternatives. Murraya koenigii (M. koenigii) belongs to the Rutaceae family, which is commonly used as a medicinally important herb of Indian origin in the Ayurvedic system of medicine. Previous reports have demonstrated that the leaves, roots, and bark of this plant are rich sources of carbazole alkaloids, which produce potent biological activities and pharmacological effects. These include antioxidant, antidiabetic, anti-inflammatory, antitumor, and neuroprotective activities. The present review provides insight into the major components of M. koenigii and their pharmacological activities against different pathological conditions. The review also emphasizes the need for more research on the molecular basis of such activity in various cellular and animal models to validate the efficacy of M. koenigii and its derivatives as potent therapeutic agents.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dhanraj Vijayraja
- Department of Biochemistry, Rev. Jacob Memorial Christian College, Ambilikkai 624612, Tamilnadu, India;
| | - Song-Hee Jo
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Palanivel Ganesan
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| | - In Su-Kim
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
| | - Dong-Kug Choi
- Department of Applied Life Sciences and Integrated Bioscience, Graduate School, Konkuk University, Chungju 27478, Korea; (R.B.); (S.-H.J.)
- Department of Integrated Bio Science and Biotechnology, College of Biomedical and Health Science, Nanotechnology Research Center, Konkuk University, Chungju 27478, Korea;
| |
Collapse
|
26
|
Accelerative effects of carbazole-type alkaloids from Murraya koenigii on neurite outgrowth and their derivative's in vivo study for spatial memory. J Nat Med 2020; 74:448-455. [PMID: 31960209 DOI: 10.1007/s11418-020-01388-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Murraya koenigii is a medicinal plant that contains several carbazole-type alkaloids as its characteristic constituents. Blood-brain barrier permeable constituents of M. koenigii accelerated neurite outgrowth in PC-12 cells. Nine compounds were isolated from M. koenigii and their effects on neurite outgrowth were examined. Murrayamine-E (8) at 10 μM showed significant effect. Focusing on the carbazole skeleton, we synthesized derivatives to attenuate cytotoxicity. 9-Benzyl-9H-carbazol-4-ol (15) exhibited strong neurite outgrowth accelerative effect. In addition, the novel object recognition test and the Morris water maze test were performed to evaluate memory improvement of 15 in APdE9 mice. Compound 15 tended to improve spatial memory in the Morris water maze test. These results suggest that carbazole derivative 15 would be a seed compound for Alzheimer's disease drug.
Collapse
|
27
|
Liu YP, Guo JM, Wang XP, Liu YY, Zhang W, Wang T, Qiang L, Fu YH. Geranylated carbazole alkaloids with potential neuroprotective activities from the stems and leaves of Clausena lansium. Bioorg Chem 2019; 92:103278. [DOI: 10.1016/j.bioorg.2019.103278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
|
28
|
Yan G, Li YJ, Zhao YY, Guo JM, Zhang WH, Zhang MM, Fu YH, Liu YP. Neuroprotective carbazole alkaloids from the stems and leaves of Clausena lenis. Nat Prod Res 2019; 35:2002-2009. [PMID: 31523980 DOI: 10.1080/14786419.2019.1652285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The investigation on the stems and leaves of Clausena lenis led to the isolation of a previously undescribed carbazole alkaloid, clausenalenine A (1), along with seven known analogues (2-8). The structure of 1 was elucidated based on comprehensive spectroscopic analyses and the known compounds were identified by comparisons with data reported in the literatures. All known compounds (2-8) were isolated from C. lenis for the first time. All isolated compounds were evaluated for their neuroprotective activities against 6-hydroxydopamine induced cell death in human neuroblastoma SH-SY5Y cells in vitro. Compounds 1-8 showed significant neuroprotective effects with EC50 values ranging from 0.68 to 18.76 μM.
Collapse
Affiliation(s)
- Gui Yan
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Yu-Jie Li
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Ying-Ying Zhao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Jia-Ming Guo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Wen-Hao Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Ming-Ming Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Yan-Hui Fu
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P.R. China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China
| | - Yan-Ping Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, P. R. China.,Key Laboratory of Southern Medicinal Plants Resources of Haikou City, Hainan Normal University, Haikou, P.R. China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
29
|
Noël‐Duchesneau L, Maddaluno J, Durandetti M. Synthesis of
N
‐Heterocycles‐Fused Azasilines by Palladium‐Catalyzed Si‐Si Bond Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Jacques Maddaluno
- Normandie Univ, UNIROUENINSA Rouen, CNRS, COBRA (UMR 6014 & FR 3038) 76000 Rouen France
| | - Muriel Durandetti
- Normandie Univ, UNIROUENINSA Rouen, CNRS, COBRA (UMR 6014 & FR 3038) 76000 Rouen France
| |
Collapse
|
30
|
Iqbal S, Khan MA, Ansari Z, Jabeen A, Faheem A, Fazal-Ur-Rehman S, Basha FZ. Synthesis of new bicarbazole-linked triazoles as non-cytotoxic reactive oxygen species (ROS) inhibitors. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1620281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shazia Iqbal
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Maria A. Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Almas Jabeen
- PCMD, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Aisha Faheem
- PCMD, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Fatima Z. Basha
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
31
|
Kumar C, Kumar A, Nalli Y, Lone WI, Satti NK, Verma MK, Ahmed Z, Ali A. Design, synthesis and biological evaluation of alantolactone derivatives as potential anti-inflammatory agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02337-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
32
|
Gupta S, Khajuria V, Wani A, Nalli Y, Bhagat A, Ali A, Ahmed Z. Murrayanine Attenuates Lipopolysaccharide-induced Inflammation and Protects Mice from Sepsis-associated Organ Failure. Basic Clin Pharmacol Toxicol 2019; 124:351-359. [PMID: 29719125 DOI: 10.1111/bcpt.13032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/16/2018] [Indexed: 12/30/2022]
Abstract
Murrayanine (MK) is the main compound isolated from Murraya koenigii, an aromatic plant belonging to the Rutaceae family, also known as curry leaf tree. Murrayanine was reported to possess potential antioxidant, antimycobacterial and antifungal effects. However, its effect in sepsis remains unclear. This study was designed to investigate the anti-inflammatory effect of MK using both in vitro and in vivo assay. Results of this study indicated that MK decreased NO, TNF-α and IL-6 production in both lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and murine peritoneal macrophages. Moreover, iNOS and COX-2 protein expression as well as their downstream product, PGE2, was also decreased effectively in RAW 264.7 cells. Furthermore, MK decreased the phosphorylation of IKB and repressed NF-kB activity in LPS-activated RAW 264.7 cells. Additionally, we evaluated MK efficacy in vivo using LPS-induced sepsis, a systemic inflammation model in mice. Administration of MK inhibits pro-inflammatory cytokines (TNF-α and IL-6) secretion; decreases AST, ALT, BUN and CRE level in mouse sera; mitigates lung, liver and kidney injuries; and also increases LPS-challenged mice survival rate. Collectively, our results suggest that MK exerts potential as a new anti-inflammatory and immunosuppressive drug in sepsis treatment.
Collapse
Affiliation(s)
- Shilpa Gupta
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India.,Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India
| | - Vidushi Khajuria
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India.,Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India
| | - Abubakar Wani
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India.,Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India
| | - Yedukondalu Nalli
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Asha Bhagat
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India
| | - Asif Ali
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Zabeer Ahmed
- Inflammation Pharmacology Division, CSIR-Indian Institute of Integrative Medicines, Jammu Tawi, Jammu and Kashmir, India
| |
Collapse
|
33
|
Ma X, Cao N, Zhang C, Guo X, Zhao M, Tu P, Jiang Y. Cytotoxic carbazole alkaloid derivatives from the leaves and stems of Murraya microphylla. Fitoterapia 2018; 127:334-340. [DOI: 10.1016/j.fitote.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
|
34
|
Noland WE, Brown CD, Zabronsky AE, Tritch KJ. Synthesis of 2-(9H-carbazol-1-yl)anilines from 2,3′-biindolyl and ketones. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Phytochemical portfolio and anticancer activity of Murraya koenigii and its primary active component, mahanine. Pharmacol Res 2018; 129:227-236. [DOI: 10.1016/j.phrs.2017.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/07/2023]
|
36
|
Day AJ, Lam HC, Sumby CJ, George JH. Biomimetic Total Synthesis of Rhodonoids C and D, and Murrayakonine D. Org Lett 2017; 19:2463-2465. [DOI: 10.1021/acs.orglett.7b00779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aaron J. Day
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hiu C. Lam
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Jonathan H. George
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
37
|
Nalli Y, Thakur V, Mohmmed A, Kumar Gupta V, Ali A. POCl3-mediated cyclization of (+)-S-mahanimbine led to the divergent synthesis of natural product derivatives with antiplasmodial activity. NEW J CHEM 2017. [DOI: 10.1039/c7nj00487g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
POCl3 mediated divergent synthesis of (+)-S-mahanimbine provides five natural and seven new natural derived unusual oxidative cyclised tetracyclic carbazole compounds (2–13). 1–13 were screened for the first time against Plasmodium falciparum and 2, 6 and 7 were proven the most potent (IC50 values of 2.7, 4.5, and 3.2 μM respectively).
Collapse
Affiliation(s)
- Yedukondalu Nalli
- Natural Product Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research
| | - Vandana Thakur
- International Centre for Genetic Engineering and Biotechnology
- New Delhi 110 067
- India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology
- New Delhi 110 067
- India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics & Electronics
- University of Jammu
- Jammu Tawi 180 006
- India
| | - Asif Ali
- Natural Product Chemistry Division
- CSIR-Indian Institute of Integrative Medicine
- Jammu 180001
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
38
|
Somai Magar KB, Edison TNJI, Lee YR. Regioselective synthesis of 3-anthracenyloxindoles and 3-carbazolyloxindoles by indium(iii)-catalyzed direct arylation and their fluorescent chemosensor properties. Org Biomol Chem 2016; 14:7313-23. [DOI: 10.1039/c6ob01315e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient protocol for diverse 3-anthracenyloxindoles and 3-carbazolyloxindoles has been developed by In(OTf)3-catalyzed direct arylation of 3-diazooxindoles with anthracenes or carbazoles.
Collapse
Affiliation(s)
| | | | - Yong Rok Lee
- School of Chemical Engineering
- Yeungnam University
- 38541 Gyeongsan
- Republic of Korea
| |
Collapse
|