1
|
Li L, Lu X, He Q, Shu C, Walter ERH, Wang L, Long NJ, Jiang L. NADPH-Independent Fluorescent Probe for Live-Cell Imaging of Heme Oxygenase-1. ACS Sens 2025; 10:499-506. [PMID: 39745434 PMCID: PMC11773557 DOI: 10.1021/acssensors.4c02978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025]
Abstract
Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection. Probes functioning in a NADPH-dependent way may influence other NADPH-consuming pathways, as all these pathways share a common NADPH pool. Here, we report the peptide-based fluorescent probe NBD-P5 as a simple alternative approach for HO-1 sensing. The designed probe NBD-P5 functions independently of the catalytic activity of HO-1, therefore enabling fast and sensitive detection of HO-1 with no requirements of other substances, including NADPH and biliverdin reductase. Moreover, it overcomes the need for a large substrate amount and long incubation time during the detection. NBD-P5 can be quickly taken up by cells, demonstrates an excellent colocalization with the endoplasmic reticulum (where HO-1 is mainly located), and is shown to be reliable in reporting changes in HO-1 levels in live cells. This work provides a simple alternative approach for designing HO-1 fluorescent probes, and we expect it will act as a practical tool for further studying HO-1 biology.
Collapse
Affiliation(s)
- Liang Li
- Hubei
Key Laboratory of Genetic Regulation & Integrative Biology, Key
Laboratory of Pesticide and Chemical Biology of Ministry of Education,
School of Life Sciences, Central China Normal
University, Wuhan 430079, China
| | - Xuanyi Lu
- Hubei
Key Laboratory of Genetic Regulation & Integrative Biology, Key
Laboratory of Pesticide and Chemical Biology of Ministry of Education,
School of Life Sciences, Central China Normal
University, Wuhan 430079, China
| | - Qiyuan He
- Hubei
Key Laboratory of Genetic Regulation & Integrative Biology, Key
Laboratory of Pesticide and Chemical Biology of Ministry of Education,
School of Life Sciences, Central China Normal
University, Wuhan 430079, China
| | - Chao Shu
- State
Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Edward R. H. Walter
- Department
of Chemistry, Imperial College London, MSRH Building, White City Campus, London W12 0BZ, U.K.
| | - Lin Wang
- Institute
of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215028, China
| | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, MSRH Building, White City Campus, London W12 0BZ, U.K.
| | - Lijun Jiang
- Hubei
Key Laboratory of Genetic Regulation & Integrative Biology, Key
Laboratory of Pesticide and Chemical Biology of Ministry of Education,
School of Life Sciences, Central China Normal
University, Wuhan 430079, China
| |
Collapse
|
2
|
Parmar K, Patel JK. Babesiosis. RISING CONTAGIOUS DISEASES 2024:253-260. [DOI: 10.1002/9781394188741.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Huang L, Sun Y, Huo DD, Xu M, Xia LY, Yang N, Hong W, Huang L, Nie WM, Liao RH, Zhang MZ, Zhu DY, Li Y, Ma HC, Zhang X, Li YG, Huang XA, Wang JY, Cao WC, Wang FS, Jiang JF. Successful treatment with doxycycline monotherapy for human infection with Babesia venatorum (Babesiidae, Sporozoa) in China: a case report and proposal for a clinical regimen. Infect Dis Poverty 2023; 12:67. [PMID: 37443058 PMCID: PMC10339522 DOI: 10.1186/s40249-023-01111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human babesiosis is a worldwide disease caused by intraerythrocytic protozoa of the genus Babesia. It is transmitted by bites from ixodid ticks, and mechanically transmitted by blood transfusion. It is primarily treated with quinine and/or atovaquone, which are not readily available in China. In this study, we developed a novel treatment regimen involving doxycycline monotherapy in a patient with severe Babesia venatorum infection as an alternative therapeutic medication. The aim of our study is to provide a guidance for clinical practice treatment of human babesiosis. CASE PRESENTATION A 73-year-old man who had undergone splenectomy and blood transfusion 8 years prior, presented with an unexplained fever, headache, and thrombocytopenia, and was admitted to the Fifth Medical Center of the PLA General Hospital. He was diagnosed with B. venatorum infection by morphological review of thin peripheral blood smears, which was confirmed by multi-gene polymerase chain reaction (PCR), and sequencing of the entire 18s rRNA and partial β-tubulin encoding genes, as well as isolation by animal inoculation. The doxycycline monotherapy regimen (peros, 0.1 g bisindie) was administered following pharmacological guidance and an effective outcome was observed. The patient recovered rapidly following the doxycycline monotherapy. The protozoan load in peripheral blood samples decreased by 88% in hematocrit counts after 8 days, and negative PCR results were obtained after 90 days of follow-up at the hospital. The treatment lasted for 3 months without any side effects or sequelae. The nine-month follow-up survey of the patient did not reveal any signs of recrudescence or anti-babesial tolerance. CONCLUSIONS We have reported a clinical case of successful doxycycline monotherapy for human babesiosis caused by B. venatorum, which provides an optional medical intervention for human babesiosis.
Collapse
Affiliation(s)
- Lei Huang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Dan-Dan Huo
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- Inner Mongolia Medical University, Hohhot, 010059, People's Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China
| | - Ning Yang
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Wei Hong
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Lin Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Wei-Min Nie
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Ru-He Liao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China
| | - Yan Li
- The Center for Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - He-Cheng Ma
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xin Zhang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yong-Gang Li
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Xin-An Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510000, People's Republic of China
| | - Jing-Yuan Wang
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
- School of Public Health, Shandong University, Jinan, 250100, People's Republic of China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People's Republic of China.
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, People's Republic of China.
| |
Collapse
|
4
|
Attram HD, Korkor CM, Taylor D, Njoroge M, Chibale K. Antimalarial Imidazopyridines Incorporating an Intramolecular Hydrogen Bonding Motif: Medicinal Chemistry and Mechanistic Studies. ACS Infect Dis 2023; 9:928-942. [PMID: 36946433 PMCID: PMC10111423 DOI: 10.1021/acsinfecdis.2c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
We previously identified a novel class of antimalarial benzimidazoles incorporating an intramolecular hydrogen bonding motif. The frontrunner of the series, analogue A, showed nanomolar activity against the chloroquine-sensitive NF54 and multi-drug-resistant K1 strains of Plasmodium falciparum (PfNF54 IC50 = 0.079 μM; PfK1 IC50 = 0.335 μM). Here, we describe a cell-based medicinal chemistry structure-activity relationship study using compound A as a basis. This effort led to the identification of novel antimalarial imidazopyridines with activities of <1 μM, favorable cytotoxicity profiles, and good physicochemical properties. Analogue 14 ( PfNF54 IC50 = 0.08 μM; PfK1 IC50 = 0.10 μM) was identified as the frontrunner of the series. Preliminary mode of action studies employing molecular docking, live-cell confocal microscopy, and a cellular heme fractionation assay revealed that 14 does not directly inhibit the conversion of heme to hemozoin, although it could be involved in other processes in the parasite's digestive vacuole.
Collapse
Affiliation(s)
- Henrietta D Attram
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Dale Taylor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
5
|
Konan KE, Abollé A, Barré E, Aka EC, Coeffard V, Felpin FX. Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Continuous flow photo-thiol–ene reactions on cinchona alkaloids with a variety of organic thiols have been developed using enabling technologies such as a self-optimizing flow photochemical reactor.
Collapse
Affiliation(s)
- Kouakou Eric Konan
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Abollé Abollé
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Elvina Barré
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Ehu Camille Aka
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Vincent Coeffard
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - François-Xavier Felpin
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
6
|
Renard I, Ben Mamoun C. Treatment of Human Babesiosis: Then and Now. Pathogens 2021; 10:pathogens10091120. [PMID: 34578153 PMCID: PMC8469882 DOI: 10.3390/pathogens10091120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Babesiosis is an emerging tick-borne disease caused by apicomplexan parasites of the genus Babesia. With its increasing incidence worldwide and the risk of human-to-human transmission through blood transfusion, babesiosis is becoming a rising public health concern. The current arsenal for the treatment of human babesiosis is limited and consists of combinations of atovaquone and azithromycin or clindamycin and quinine. These combination therapies were not designed based on biological criteria unique to Babesia parasites, but were rather repurposed based on their well-established efficacy against other apicomplexan parasites. However, these compounds are associated with mild or severe adverse events and a rapid emergence of drug resistance, thus highlighting the need for new therapeutic strategies that are specifically tailored to Babesia parasites. Herein, we review ongoing babesiosis therapeutic and management strategies and their limitations, and further review current efforts to develop new, effective, and safer therapies for the treatment of this disease.
Collapse
|
7
|
Thissera B, Hallyburton I, Ngwa CJ, Cherif-Silini H, Hassane ASI, Anderson M, Campbell LA, Mutter N, Eshelli M, Abdelmohsen UR, Yaseen M, Pradel G, Belbahri L, Elgendy B, Hegazy L, Rateb ME. Potent antiplasmodial alkaloids from the rhizobacterium Pantoea agglomerans as hemozoin modulators. Bioorg Chem 2021; 115:105215. [PMID: 34358799 DOI: 10.1016/j.bioorg.2021.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 12/22/2022]
Abstract
Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility. This study initially aimed at the targeted isolation of hydroxyquinoline derivatives following our published genomics and metabolomics study of Pantoea agglomerans (Pa). Fermentation of Pa on a pre-selected medium followed by chromatographic isolation, NMR and HRMS analyses led to the characterisation of one new hydroxyquinoline alkaloid together with another six known congeners and two known hydroxyquinolone derivatives. When screened for their antimalarial activity by high throughput screening against asexual blood-stage parasites, almost all compounds showed potent and selective sub-micromolar activities. Computational investigation was performed to identify the antiplasmodial potential targets. Ligand-based similarity search predicted the tested compounds to act as hemozoin inhibitors. Computational target identification results were further validated by competitive hemozoin inhibitory properties of hydroxyquinoline and hydroxyquinolone derivatives in vitro. The overall results suggest this natural scaffold is of potential to be developed as antimalarial drug lead.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Irene Hallyburton
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, Setif 19000, Algeria
| | - Ahmed S I Hassane
- Aberdeen Royal Infirmary, Foresterhill Health Campus, Foresterhill Road, Aberdeen AB25 2ZN, Scotland, UK
| | - Mark Anderson
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorna A Campbell
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicole Mutter
- Drug Discovery Unit, Wellcome Centre for Anti-infective Research, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Manal Eshelli
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK; Food Science and Technology Department, Faculty of Agriculture, University of Tripoli, Tripoli 13275, Libya
| | - Usama R Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA; Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Lamees Hegazy
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA.
| | - Mostafa E Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA12BE Paisley, UK.
| |
Collapse
|
8
|
Broichhagen J, Kilian N. Chemical Biology Tools To Investigate Malaria Parasites. Chembiochem 2021; 22:2219-2236. [PMID: 33570245 PMCID: PMC8360121 DOI: 10.1002/cbic.202000882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Parasitic diseases like malaria tropica have been shaping human evolution and history since the beginning of mankind. After infection, the response of the human host ranges from asymptomatic to severe and may culminate in death. Therefore, proper examination of the parasite's biology is pivotal to deciphering unique molecular, biochemical and cell biological processes, which in turn ensure the identification of treatment strategies, such as potent drug targets and vaccine candidates. However, implementing molecular biology methods for genetic manipulation proves to be difficult for many parasite model organisms. The development of fast and straightforward applicable alternatives, for instance small-molecule probes from the field of chemical biology, is essential. In this review, we will recapitulate the highlights of previous molecular and chemical biology approaches that have already created insight and understanding of the malaria parasite Plasmodium falciparum. We discuss current developments from the field of chemical biology and explore how their application could advance research into this parasite in the future. We anticipate that the described approaches will help to close knowledge gaps in the biology of P. falciparum and we hope that researchers will be inspired to use these methods to gain knowledge - with the aim of ending this devastating disease.
Collapse
Affiliation(s)
- Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGermany
| | - Nicole Kilian
- Centre for Infectious DiseasesParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| |
Collapse
|
9
|
Melis DR, Hsiao CY, Combrinck JM, Wiesner L, Smith GS. Subcellular Localisation of a Quinoline-Containing Fluorescent Cyclometallated Ir III Complex in Plasmodium falciparum. Chembiochem 2021; 22:1568-1572. [PMID: 33453069 DOI: 10.1002/cbic.202000847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/31/2020] [Indexed: 11/06/2022]
Abstract
A fluorescent analogue of a previously synthesised N,N-chelated IrIII complex was prepared by coordination of the organic ligand to an extrinsic bis(2-phenylpyridine)iridium(III) fluorophore. This cyclometallated IrIII complex in itself displays good, micromolar activity against the chloroquine-sensitive NF54 strain of Plasmodium falciparum. Live-cell confocal microscopy found negligible localisation of the fluorescent complex within the digestive vacuole of the parasite. This eliminated the haem detoxification pathway as a potential mechanism of action. Similarly, no localisation of the complex within the parasitic nucleus was found, thus suggesting that this complex probably does not interfere with the DNA replication process. A substantial saturation of fluorescence from the complex was found near phospholipid structures such as the plasma and nuclear membranes but not in neutral lipid bodies. This indicates that an association with these membranes, or organelles such as the endoplasmic reticulum or branched mitochondrion, could be essential to the efficacies of these types of antimalarial compounds.
Collapse
Affiliation(s)
- Diana R Melis
- Department of Chemistry, University of Cape Town, PD Hahn, Chemistry Mall, Rondebosch, 7701, Cape Town, South Africa
| | - Chiao-Yu Hsiao
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jill M Combrinck
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Gregory S Smith
- Department of Chemistry, University of Cape Town, PD Hahn, Chemistry Mall, Rondebosch, 7701, Cape Town, South Africa
| |
Collapse
|
10
|
Korkor CM, Garnie LF, Amod L, Egan TJ, Chibale K. Intrinsic fluorescence properties of antimalarial pyrido[1,2- a]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite Plasmodium falciparum. Org Biomol Chem 2020; 18:8668-8676. [PMID: 33078179 PMCID: PMC7710849 DOI: 10.1039/d0ob01730b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The intrinsic fluorescence properties of two related pyrido[1,2-a]benzimidazole antimalarial compounds suitable for the cellular imaging of the human malaria parasite Plasmodium falciparum without the need to attach extrinsic fluorophores are described. Although these compounds are structurally related, they have been shown by confocal microscopy to not only accumulate selectively within P. falciparum but to also accumulate differently in the organelles investigated. Localization to the digestive vacuole and nearby neutral lipids was observed for compound 2 which was shown to inhibit hemozoin formation using a cellular fractionation assay indicating that this is a contributing mechanism of action. By contrast, compound 1, which differs from compound 2 by the replacement of the imidazole[1,2-a:4,5-b']dipyridine core with the benzimidazole core as well as the presence of Cl substituents, shows very different localisation patterns and shows no evidence of hemozoin inhibition, suggesting a different mechanism of antimalarial action. Docking profiles of both compounds on the hemozoin surface further provided insight into their mechanisms of action.
Collapse
Affiliation(s)
- Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Larnelle F Garnie
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Leah Amod
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa. and South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Department of Chemistry, Rondebosch 7701, South Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
11
|
de Sousa ACC, Maepa K, Combrinck JM, Egan TJ. Lapatinib, Nilotinib and Lomitapide Inhibit Haemozoin Formation in Malaria Parasites. Molecules 2020; 25:molecules25071571. [PMID: 32235391 PMCID: PMC7180468 DOI: 10.3390/molecules25071571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
With the continued loss of antimalarials to resistance, drug repositioning may have a role in maximising efficiency and accelerating the discovery of new antimalarial drugs. Bayesian statistics was previously used as a tool to virtually screen USFDA approved drugs for predicted β-haematin (synthetic haemozoin) inhibition and in vitro antimalarial activity. Here, we report the experimental evaluation of nine of the highest ranked drugs, confirming the accuracy of the model by showing an overall 93% hit rate. Lapatinib, nilotinib, and lomitapide showed the best activity for inhibition of β-haematin formation and parasite growth and were found to inhibit haemozoin formation in the parasite, providing mechanistic insights into their mode of antimalarial action. We then screened the USFDA approved drugs for binding to the β-haematin crystal, applying a docking method in order to evaluate its performance. The docking method correctly identified imatinib, lapatinib, nilotinib, and lomitapide. Experimental evaluation of 22 of the highest ranked purchasable drugs showed a 24% hit rate. Lapatinib and nilotinib were chosen as templates for shape and electrostatic similarity screening for lead hopping using the in-stock ChemDiv compound catalogue. The actives were novel structures worthy of future investigation. This study presents a comparison of different in silico methods to identify new haemozoin-inhibiting chemotherapeutic alternatives for malaria that proved to be useful in different ways when taking into consideration their strengths and limitations.
Collapse
Affiliation(s)
- Ana Carolina C. de Sousa
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa;
| | - Keletso Maepa
- Department of Medicine, Division of Pharmacology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; (K.M.); (J.M.C.)
| | - Jill M. Combrinck
- Department of Medicine, Division of Pharmacology, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa; (K.M.); (J.M.C.)
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Diseases Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Timothy J. Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch 7701, South Africa;
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
- Correspondence:
| |
Collapse
|
12
|
Canales NA, Gress Hansen TN, Cornett C, Walker K, Driver F, Antonelli A, Maldonado C, Nesbitt M, Barnes CJ, Rønsted N. Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography technologies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112375. [PMID: 31698039 DOI: 10.1016/j.jep.2019.112375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the genus Cinchona (Rubiaceae) have been used in traditional medicine, and as a source for quinine since its discovery as an effective medicine against malaria in the 17th century. Despite being the sole cure of malaria for almost 350 years, little is known about the chemical diversity between and within species of the antimalarial alkaloids found in the bark. Extensive historical Cinchona bark collections housed at the Royal Botanic Gardens, Kew, UK, and in other museums may shed new light on the alkaloid chemistry of the Cinchona genus and the history of the quest for the most effective Cinchona barks. AIM OF THE STUDY We used High-Pressure Liquid Chromatography (HPLC) coupled with fluorescence detection (FLD) to reanalyze a set of Cinchona barks originally annotated for the four major quinine alkaloids by John Eliot Howard and others more than 150 years ago. MATERIALS AND METHODS We performed an archival search on the Cinchona bark collections in the Economic Botany Collection housed in Kew, focusing on those with historical alkaloid content information. Then, we performed HPLC analysis of the bark samples to separate and quantify the four major quinine alkaloids and the total alkaloid content using fluorescence detection. Correlations between historic and current annotations were calculated using Spearman's rank correlation coefficient, before paired comparisons were performed using Wilcox rank sum tests. The effects of source were explored using generalized linear modelling (GLM), before the significance of each parameter in predicting alkaloid concentrations were assessed using chi-square tests as likelihood ratio testing (LRT) models. RESULTS The total alkaloid content estimation obtained by our HPLC analysis was comparatively similar to the historical chemical annotations made by Howard. Additionally, the quantity of two of the major alkaloids, quinine and cinchonine, and the total content of the four alkaloids obtained were significantly similar between the historical and current day analysis using linear regression. CONCLUSIONS This study demonstrates that the historical chemical analysis by Howard and current day HPLC alkaloid content estimations are comparable. Current day HPLC analysis thus provide a realistic estimate of the alkaloid contents in the historical bark samples at the time of sampling more than 150 years ago. Museum collections provide a powerful but underused source of material for understanding early use and collecting history as well as for comparative analyses with current day samples.
Collapse
Affiliation(s)
- Nataly Allasi Canales
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark
| | | | - Claus Cornett
- Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kim Walker
- Royal Botanic Gardens, Kew, Richmond, UK; Royal Holloway University of London, UK
| | - Felix Driver
- Royal Botanic Gardens, Kew, Richmond, UK; Royal Holloway University of London, UK
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, UK; Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Carla Maldonado
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, La Paz, Bolivia
| | | | - Christopher J Barnes
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Denmark; National Tropical Botanical Garden, Kalaheo, HI, USA.
| |
Collapse
|
13
|
Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Sci Rep 2020; 10:3374. [PMID: 32099045 PMCID: PMC7042288 DOI: 10.1038/s41598-020-60221-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Malaria remains a major public health problem. With the loss of antimalarials to resistance, the malaria burden will likely continue for decades. New antimalarial scaffolds are crucial to avoid cross-resistance. Here, we present the first structure based virtual screening using the β-haematin crystal as a target for new inhibitor scaffolds by applying a docking method. The ZINC15 database was searched for compounds with high binding affinity with the surface of the β-haematin crystal using the PyRx Virtual Screening Tool. Top-ranked compounds predicted to interact with β-haematin were submitted to a second screen applying in silico toxicity and drug-likeness predictions using Osiris DataWarrior. Fifteen compounds were purchased for experimental testing. An NP-40 mediated β-haematin inhibition assay and parasite growth inhibition activity assay were performed. The benzoxazole moiety was found to be a promising scaffold for further development, showing intraparasitic haemozoin inhibition using a cellular haem fractionation assay causing a decrease in haemozoin in a dose dependent manner with a corresponding increase in exchangeable haem. A β-haematin inhibition hit rate of 73% was found, a large enrichment over random screening, demonstrating that virtual screening can be a useful and cost-effective approach in the search for new haemozoin inhibiting antimalarials.
Collapse
|
14
|
Veale CGL, Jayram J, Naidoo S, Laming D, Swart T, Olivier T, Akerman MP, de Villiers KA, Hoppe HC, Jeena V. Insights into structural and physicochemical properties required for β-hematin inhibition of privileged triarylimidazoles. RSC Med Chem 2019; 11:85-91. [PMID: 33479606 DOI: 10.1039/c9md00468h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/22/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, we investigated a series of triarylimidazoles, in an effort to elucidate critical SAR information pertaining to their anti-plasmodial and β-hematin inhibitory activity. Our results showed that in addition to the positional effects of ring substitution, subtle changes to lipophilicity and imidazole ionisability were important factors in SAR interpretation. Finally, in silico adsorption analysis indicated that these compounds exert their effect by inhibiting β-hematin crystal growth at the fast growing 001 face.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Janeeka Jayram
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Shivani Naidoo
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Dustin Laming
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tarryn Swart
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Tania Olivier
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Matthew P Akerman
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science , Stellenbosch University , Private Bag X1 , Matieland , 7602 , South Africa . ;
| | - Heinrich C Hoppe
- Department of Biochemistry and Microbiology , Rhodes University , Grahamstown , 6140 , South Africa
| | - Vineet Jeena
- School of Chemistry and Physics , Pietermaritzburg Campus , University of KwaZulu-Natal , Private Bag X01 , Scottsville , 3209 , South Africa
| |
Collapse
|
15
|
Woodland JG, Hunter R, Smith PJ, Egan TJ. Chemical Proteomics and Super-resolution Imaging Reveal That Chloroquine Interacts with Plasmodium falciparum Multidrug Resistance-Associated Protein and Lipids. ACS Chem Biol 2018; 13:2939-2948. [PMID: 30208272 DOI: 10.1021/acschembio.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well established that chloroquine, a quinoline antimalarial, inhibits hemozoin formation in the malaria parasite. Counterintuitively, this archetypal antimalarial is also used in the treatment of diseases in which hemozoin biocrystallization does not play a role. Hence, we decided to investigate whether chloroquine possesses binding targets other than Fe(III) protoporphyrin IX in blood stage Plasmodium falciparum parasites and whether these are related to sites of accumulation within the parasite other than the digestive vacuole. A 7-nitrobenz-2-oxa-1,3-diazole (NBD)-labeled fluorescent derivative of chloroquine, especially sensitive to regions outside the digestive vacuole and retaining the antiplasmodial pharmacophore, was synthesized to investigate subcellular localization in the parasite. Super-resolution microscopy revealed association with membranes including the parasite plasma membrane, the endoplasmic reticulum, and possibly also the mitochondrion. A drug-labeled affinity matrix was then prepared to capture protein binding targets of chloroquine. SDS-PAGE revealed a single prominent band between 200 and 250 kDa from the membrane-associated fraction. Subsequent proteomic analysis revealed that this band corresponded to P. falciparum multidrug resistance-associated protein (PfMRP1). Intrigued by this finding, we demonstrated pull-down of PfMRP1 by matrices labeled with Cinchona alkaloids quinine and quinidine. While PfMRP1 has been implicated in resistance to quinolines and other antimalarials, this is the first time that these drugs have been found to bind directly to this protein. Based on previous reports, PfMRP1, the only prominent protein found to bind to quinolines in this work, is likely to modulate the activity of these antimalarials in P. falciparum rather than act as a drug target.
Collapse
Affiliation(s)
- John G. Woodland
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| | | | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch, Cape Town 7701, South Africa
| |
Collapse
|
16
|
L'abbate FP, Müller R, Openshaw R, Combrinck JM, de Villiers KA, Hunter R, Egan TJ. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. Eur J Med Chem 2018; 159:243-254. [PMID: 30296683 DOI: 10.1016/j.ejmech.2018.09.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/23/2022]
Abstract
The 2-phenylbenzimidazole scaffold has recently been discovered to inhibit β-hematin (synthetic hemozoin) formation by high throughput screening. Here, a library of 325,728 N-4-(1H-benzo[d]imidazol-2-yl)aryl)benzamides was enumerated, and Bayesian statistics used to predict β-hematin and Plasmodium falciparum growth inhibition. Filtering predicted inactives and compounds with negligible aqueous solubility reduced the library to 35,124. Further narrowing to compounds with terminal aryl ring substituents only, reduced the library to 18, 83% of which were found to inhibit β-hematin formation <100 μM and 50% parasite growth <2 μM. Four compounds showed nanomolar parasite growth inhibition activities, no cross-resistance in a chloroquine resistant strain and low cytotoxicity. QSAR analysis showed a strong association of parasite growth inhibition with inhibition of β-hematin formation and the most active compound inhibited hemozoin formation in P. falciparum, with consequent increasing exchangeable heme. Pioneering use of molecular docking for this system demonstrated predictive ability and could rationalize observed structure activity trends.
Collapse
Affiliation(s)
- Fabrizio P L'abbate
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Ronel Müller
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roxanne Openshaw
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Jill M Combrinck
- Department of Medicine, Division of Clinical Pharmacology, University of Cape Town, Observatory, 7925, South Africa
| | - Katherine A de Villiers
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|