1
|
Chorbacher J, Klopf J, Friedrich A, Fest M, Schneider JS, Engels B, Helten H. Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior. Angew Chem Int Ed Engl 2025; 64:e202416088. [PMID: 39614780 DOI: 10.1002/anie.202416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 12/12/2024]
Abstract
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain. The synthesis thereof was achieved by AB-type polymerization of a monomer featuring an N and a B terminus. Monodisperse oligomers with up to three BN units in the chain were additionally prepared and structurally characterized. Associated with the introduction of a dipole in the regioregular backbone structure, they display notable fluorescence already in solution and large Stokes shifts, distinct from their previously reported BBNN-sequenced congeners. All compounds show aggregation-induced emission enhancement (AIEE) properties. Computational studies provided evidence for emission from either locally excited (LE) or twisted intramolecular charge transfer (TICT) states. These processes can be optionally addressed by various stimuli, giving rise to dual emission, solvatochromic, thermochromic, and reversible mechanochromic behavior.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Strasse 42, 97074, Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Yao YW, Tsai CH, Liu CY, Wang FY, Hsu SCN, Lin CC, Chen HT, Kao CL. A 11B-NMR Method for the In Situ Monitoring of the Formation of Dynamic Covalent Boronate Esters in Dendrimers. Polymers (Basel) 2024; 16:3258. [PMID: 39684003 DOI: 10.3390/polym16233258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The in situ monitoring of dynamic covalent macromolecular boronate esters represents a difficult task. In this report, we present an in situ method using fluoride coordination and 11B NMR spectroscopy to determine the amount of boronate esters in a mixture of boronic acids and cis-diols. With fluoride coordination, the boronic acid and boronate esters afforded trifluoroborate and fluoroboronate esters, giving identical resonances at 3 and 9 ppm in the 11B NMR spectra. The same titration did not alter the resonance of amine-coordinated boronate esters, which gave resonances of 14 ppm in the 11B NMR spectra. Therefore, boronic acids, boronate esters, and amine-coordinated boronate esters gave three identical resonances, and the ratio of each component was obtained by deconvolution for a further equilibrium analysis. This method monitored the conversion among three species in various conditions, including separation. Accordingly, boronate esters were more stable after precipitation than chromatography, in which 29% and 20% of boronate esters were lost after purification. This method was applied to study the reaction between the boronic acid-decorated defect lysine dendron (16) and dopamine. No boronic acid signal was observed after adding 1 equivalent of dopamine; no boronic acid signal was observed in the NMR spectrum. According to the spectrum, the product contains 65% boronate ester and 35% N-B-coordinated derivatives. This method helps identify the presence of the three intermediates and provides more insights into this reaction.
Collapse
Affiliation(s)
- Yi-Wen Yao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ching-Hua Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chih-Yi Liu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Fang-Yu Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Cheng Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hui-Ting Chen
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Tropical Medicine and Infectious Disease Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
3
|
Jangid AK, Kim K. Phenylboronic acid-functionalized biomaterials for improved cancer immunotherapy via sialic acid targeting. Adv Colloid Interface Sci 2024; 333:103301. [PMID: 39260104 DOI: 10.1016/j.cis.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Phenylboronic acid (PBA) is recognized as one of the most promising cancer cell binding modules attributed to its potential to form reversible and dynamic boronic ester covalent bonds. Exploring the advanced chemical versatility of PBA is crucial for developing new anticancer therapeutics. The presence of a specific Lewis acidic boron atom-based functional group and a Π-ring-connected ring has garnered increasing interest in the field of cancer immunotherapy. PBA-derivatized functional biomaterials can form reversible bonds with diols containing cell surface markers and proteins. This review primarily focuses on the following topics: (1) the importance and versatility of PBA, (2) different PBA derivatives with pKa values, (3) specific key features of PBA-mediated biomaterials, and (4) cell surface activity for cancer immunotherapy applications. Specific key features of PBA-mediated materials, including sensing, bioadhesion, and gelation, along with important synthesis strategies, are highlighted. The utilization of PBA-mediated biomaterials for cancer immunotherapy, especially the role of PBA-based nanoparticles and PBA-mediated cell-based therapeutics, is also discussed. Finally, a perspective on future research based on PBA-biomaterials for immunotherapy applications is presented.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
4
|
Sha Y, Zhang J, Zhuang W, Zhang J, Chen Y, Ge L, Yang P, Zou F, Zhu C, Ying H. Dopamine-assisted surface functionalization of saccharide-responsive fibers for the controlled harvesting and continuous fermentation of Saccharomyces cerevisiae. Colloids Surf B Biointerfaces 2024; 245:114248. [PMID: 39293291 DOI: 10.1016/j.colsurfb.2024.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/01/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Continuous fermentation processes increasingly emphasized cell recycling, utilization, and renewal. In this study, to improve the sustainability of the immobilized Saccharomyces cerevisiae, the cells were recovered on the surface of the glucose-responsive supports through manipulating the competitive interactions of phenylboric acid groups between glycoproteins on the cells and glucose. Through a dopamine (DA)-assisted deposition approach, 3-acrylamidophenylboronic acid (APBA) was integrated to design the saccharide-sensitive cotton fibers (APBA@PDA-CF). The optimal co-deposition time (5 h) and ratio (1:1) resulted in an impressive immobilization efficiency of 69.64%. Meanwhile, 93.23% of Saccharomyces cerevisiae was captured and harvested on the surface of APBA@PDA-CF with the fermentation course through regulating the competitive interactions of phenylboric acid groups between glycoproteins on the cells and glucose regardless of pH. Notably, a strong interaction between the yeast cells and APBA@PDA-CF was observed at a low glucose concentration (0.1~2 g/L), with reduced sensitivity at high glucose concentrations (>5 g/L). Moreover, the ethanol production and yield could be increased to 25.37 g/L and 42.4% in the fifth-batch fermentation, respectively. Therefore, based on the feasible and versatile co-deposition method, this study not only broadened the application scope of APBA, but also explored the broad prospects of smart materials in cell immobilization, recovery and continuous fermentation.
Collapse
Affiliation(s)
- Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jinming Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| | - Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yong Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pengpeng Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Fengxia Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| |
Collapse
|
5
|
Wang S, Yang C, Zhang W, Zhao S, You J, Cai R, Wang H, Bao Y, Zhang Y, Zhang J, Ji K, Zhang Y, Ye X, Gu Z, Yu J. Glucose-Responsive Microneedle Patch with High Insulin Loading Capacity for Prolonged Glycemic Control in Mice and Minipigs. ACS NANO 2024. [PMID: 39259604 DOI: 10.1021/acsnano.4c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Transdermal microneedle-mediated glucose-responsive insulin delivery systems can modulate insulin release based on fluctuations in blood glucose levels, thus maintaining normoglycemia effectively in a continuous, convenient, and minimally invasive manner. However, conventional microneedles are limited by the low drug loading capacity, making it challenging to be applied on human skin at a reasonable size for a lasting glucose-controlling effect, thus hindering their clinical translation. Here, we design a microneedle patch with a solid insulin powder core to achieve a high loading capacity of insulin (>70 wt %) as well as a glucose-sensitive polymeric shell to realize glucose-responsive insulin release. Once exposed to hyperglycemia, the formation of negatively charged glucose-boronate complexes increases the charge density of the shell matrix, leading to swelling of the shell and accelerating insulin release from the core. We have demonstrated that this glucose-responsive microneedle patch could achieve long-term regulation of blood glucose levels in both type 1 diabetic mice and minipigs (up to 48 h with patches of ∼3.5 cm2 for minipigs >25 kg).
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changwei Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruisi Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao Ye
- Center for General Practice Medicine, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou 310014, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
6
|
Oyarzún Y, Ulloa J, Ceballos M, Urbano BF. Dynamic Covalent Boronic-Acid-Functionalized Alginate/PVA Hydrogels for pH and Shear-Responsive Drug Delivery. Gels 2024; 10:504. [PMID: 39195033 DOI: 10.3390/gels10080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Herein, we investigated hydrogels composed of boronic-acid-functionalized alginate and blended with polyvinyl alcohol (PVA) of different molecular weights to control the release of metoclopramide hydrochloride as a function of pH and shear stress. The functionalization of alginate introduced dynamic covalent bonding and pH-responsive properties that can modulate network connectivity. The study investigated the viscoelastic properties of the hydrogels, their drug release profiles, and their responsiveness to changes in pH and shear forces. The results showed that a higher PVA molecular weight and alkaline pH conditions increased hydrogel viscosity and stiffness due to a more stable and interconnected network structure than acidic pH. Metoclopramide release revealed that the hydrogels exhibited pH-responsive drug release behavior. The drug was more readily released under acidic conditions due to the instability of sp2-hybridized boronate ester bonds. The influence of shear forces on the release of metoclopramide was also investigated at shear rates of 1, 10, and 100 s-1, revealing their effect on matrix stiffening. Research shows that AlgBA/PVA hydrogels have unique properties, such as dynamic covalent bonding, that make them sensitive to external mechanical forces. This sensitivity makes them ideal for applications where physiological conditions trigger drug release.
Collapse
Affiliation(s)
- Yessenia Oyarzún
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - José Ulloa
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Ceballos
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| |
Collapse
|
7
|
Contardi C, Mavliutova L, Serra M, Rubes D, Dorati R, Vistoli G, Macorano A, Sellergren B, De Lorenzi E. Rational Design of Highly Selective Sialyllactose-Imprinted Nanogels. Chemistry 2024:e202401232. [PMID: 38848047 DOI: 10.1002/chem.202401232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Indexed: 07/26/2024]
Abstract
We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE), to rapidly assess an affinity ranking. Finally, the best monomer 2-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant≈106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.
Collapse
Affiliation(s)
- Cecilia Contardi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Liliia Mavliutova
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432, Malmö, Sweden
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Alessio Macorano
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432, Malmö, Sweden
| | - Ersilia De Lorenzi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
8
|
Aktas Eken G, Huang Y, Prucker O, Rühe J, Ober C. Advancing Glucose Sensing Through Auto-Fluorescent Polymer Brushes: From Surface Design to Nano-Arrays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309040. [PMID: 38334235 DOI: 10.1002/smll.202309040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/23/2023] [Indexed: 02/10/2024]
Abstract
Designing smart (bio)interfaces with the capability to sense and react to changes in local environments offers intriguing possibilities for new surface-based sensing devices and technologies. Polymer brushes make ideal materials to design such adaptive and responsive interfaces given their large variety of functional and structural possibilities as well as their outstanding abilities to respond to physical, chemical, and biological stimuli. Herein, a practical sensory interface for glucose detection based on auto-fluorescent polymer brushes decorated with phenylboronic acid (PBA) receptors is presented. The glucose-responsive luminescent surfaces, which are capable of translating conformational transitions triggered by pH variations and binding events into fluorescent readouts without the need for fluorescent dyes, are grown from both nanopatterned and non-patterned substrates. Two-photon laser scanning confocal microscopy and atomic force microscopy (AFM) analyses reveal the relationship between the brush conformation and glucose concentration and confirm that the phenylboronic acid functionalized brushes can bind glucose over a range of physiologically relevant concentrations in a reversible manner. The combination of auto-fluorescent polymer brushes with synthetic receptors presents a promising avenue for designing innovative and robust sensing systems, which are essential for various biomedical applications, among other uses.
Collapse
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Yuming Huang
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Oswald Prucker
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
- Cluster of Excellence livMatS @FIT, Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Goerges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Christopher Ober
- Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
9
|
Contardi C, Rubes D, Serra M, Dorati R, Dattilo M, Mavliutova L, Patrini M, Guglielmann R, Sellergren B, De Lorenzi E. Affinity Capillary Electrophoresis as a Tool To Characterize Molecularly Imprinted Nanogels in Solution. Anal Chem 2024. [PMID: 38284411 DOI: 10.1021/acs.analchem.3c04912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In this work, an innovative and accurate affinity capillary electrophoresis (ACE) method was set up to monitor the complexation of aqueous MIP nanogels (NGs) with model cancer-related antigens. Using α2,6'- and α2,3'-sialyllactose as oversimplified cancer biomarker-mimicking templates, NGs were synthesized and characterized in terms of size, polydispersity, and overall charge. A stability study was also carried out in order to select the best storage conditions and to ensure product quality. After optimization of capillary electrophoresis conditions, injection of MIP NGs resulted in a single, sharp, and efficient peak. The mobility shift approach was applied to quantitatively estimate binding affinity, in this case resulting in an association constant of K ≈ 106 M-1. The optimized polymers further displayed a pronounced discrimination between the two sialylated sugars. The newly developed ACE protocol has the potential to become a very effective method for nonconstrained affinity screening of NG in solution, especially during the NG development phase and/or for a final accurate quantitation of the observed binding.
Collapse
Affiliation(s)
- Cecilia Contardi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, PV, Italy
| | - Davide Rubes
- Department of Drug Sciences, University of Pavia, 27100 Pavia, PV, Italy
| | - Massimo Serra
- Department of Drug Sciences, University of Pavia, 27100 Pavia, PV, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, PV, Italy
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, CS, Italy
| | - Liliia Mavliutova
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 21432 Malmö, Sweden
| | | | | | - Börje Sellergren
- Biofilms Research Center for Biointerfaces, Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, 21432 Malmö, Sweden
| | - Ersilia De Lorenzi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, PV, Italy
| |
Collapse
|
10
|
Wang G, Lyu X, Wang L, Wang M, Yang R. Highly efficient production and simultaneous purification of d-tagatose through one-pot extraction-assisted isomerization of d-galactose. Food Chem X 2023; 20:100928. [PMID: 38144734 PMCID: PMC10739900 DOI: 10.1016/j.fochx.2023.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 12/26/2023] Open
Abstract
A one-pot extraction-assisted d-galactose-to-d-tagatose isomerization strategy was proposed based on the selective extraction of d-tagatose by phenylborate anions. 4-Vinylphenylboronic acid was selected with high extraction efficiency and selectivity towards d-tagatose. The extracted sugars could be desorbed through a two-staged stripping process with the purity of d-tagatose significantly increased. In-situ extraction-assisted d-galactose-to-d-tagatose isomerization was implemented for the first time ever reported, and the effect of boron-to-sugar ratio (boron: sugar) was investigated. The conversion yield of d-tagatose at 60 °C increased from ∼ 39 % (boron: sugar = 0.5) to ∼ 56 % (boron: sugar = 1) but then decreased to ∼ 44 % (boron: sugar = 1.5). With temperature increased to 70 °C, the conversion yield of d-tagatose was further improved to ∼ 61 % (boron: sugar = 1.5), with the minimized formation of byproducts. Moreover, high purity (∼83 %) and concentrated d-tagatose solution (∼40 g/L) was obtained after sequential desorption. The proposed extraction-assisted isomerization strategy achieved improving the yield and purity of d-tagatose, proving its feasibility in industrial applications.
Collapse
Affiliation(s)
- Guangzhen Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| | - Mingming Wang
- College of Food Science and Engineering, Ocean University of China, 266003 Qingdao, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
11
|
Wang M, Wang L, Hua X, Yang R. Production of high-purity lactulose via an integrated one-pot boronate affinity adsorbent based adsorption-assisted isomerization and simultaneous purification. Food Chem 2023; 429:136935. [PMID: 37499512 DOI: 10.1016/j.foodchem.2023.136935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
High-purity lactulose is mandatory for its medical uses and food applications. This work developed an efficient lab-scale strategy for the synthesis of high-purity lactulose by combining lactose-to-lactulose isomerization with simultaneous recovery of lactulose, which was conducted concurrently and semi-continuously in a boronate affinity adsorbent-packed column. The first step covers the boronate affinity adsorbent-based adsorption-assisted lactose-to-lactulose isomerization. Under optimized conditions, in situ selectively binding of the newly formed lactulose onto the boronate affinity adsorbent enables a much-enhanced lactulose yield up to 80.20% with the lowest byproducts yield of 6.30%. Afterward, over 90% of the adsorbed lactulose can be recovered through sequential desorption with purity >98%. The net outcome of the applied strategy was the yield of high-purity lactulose up to 72.31%, the highest value ever reported. Moreover, the packed column displayed excellent operational stability. The encouraging results validate the high potential of this approach in the sustainable production of high-purity lactulose.
Collapse
Affiliation(s)
- Mingming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shangdong Province 266003, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Lu Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiao Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
12
|
Jing R, Powell WC, Fisch KJ, Walczak MA. Desulfurative Borylation of Small Molecules, Peptides, and Proteins. J Am Chem Soc 2023; 145:22354-22360. [PMID: 37812507 PMCID: PMC10594600 DOI: 10.1021/jacs.3c09081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We introduce a direct conversion of alkyl thiols into boronic acids, facilitated by a water-soluble phosphine, 1,3,5-triaza-7-phosphaadamantane (PTA), in conjunction with tetrahydroxydiboron (B2(OH)4), acting as both a radical initiator and a boron source. This desulfurative borylation reaction has been successfully applied to various substrates, including cysteine residues in oligopeptides and small proteins, primary alkyl thiols found in pharmaceutical compounds, disulfides, and selenocysteine. Optimization of reaction conditions was undertaken to reduce the formation of unwanted reactions, such as the reduction of alanyl or other primary radicals, and to prevent deleterious reactions between the phosphine and N-terminal amine that lead to methylene adducts by utilizing a buffer containing glycine-glycine (GG) dipeptide. The developed method is characterized by its operational simplicity and robustness. Moreover, its compatibility with various functional groups present in peptides and proteins makes it a promising tool for late-stage functionalization, extending its potential application across a broad spectrum of chemical and biological targets.
Collapse
Affiliation(s)
- Ruiheng Jing
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Wyatt C Powell
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Kyle J Fisch
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
13
|
Liu JF, GhavamiNejad A, Lu B, Mirzaie S, Samarikhalaj M, Giacca A, Wu XY. "Smart" Matrix Microneedle Patch Made of Self-Crosslinkable and Multifunctional Polymers for Delivering Insulin On-Demand. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303665. [PMID: 37718654 PMCID: PMC10602565 DOI: 10.1002/advs.202303665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/21/2023] [Indexed: 09/19/2023]
Abstract
A transdermal patch that delivers insulin at high glucose concentrations can offer tremendous advantages to ease the concern of safety and improve the quality of life for people with diabetes. Herein, a novel self-crosslinkable and glucose-responsive polymer-based microneedle patch (MN) is designed to deliver insulin at hyperglycemia. The microneedle patch is made of hyaluronic acid polymers functionalized with dopamine and 4-amino-3-fluorophenylboronic acid (AFBA) that can be quickly crosslinked upon mixing of the polymer solutions in the absence of any chemicalcrosslinking agents or organic solvents. The catechol groups in the dopamine (DA) units form covalent crosslinkages among themselves by auto-oxidation and dynamic crosslink with phenylboronic acid (PBA) via complexation. The reversible crosslinkages between catechol and boronate decrease with increasing glucose concentration leading to higher swelling and faster insulin release at hyperglycemia as compared to euglycemia. Such superior glucose-responsive properties are demonstrated by in vitro analyses and in vivo efficacy studies. The hydrogel polymers also preserve native structure and bioactivity of insulin, attributable to the interaction of hyaluronic acid (HA) with insulin molecules, as revealed by experiments and molecular dynamics simulations. The simplicity in the design and fabrication process, and glucose-responsiveness in insulin delivery impart the matrix microneedle (mMN) patch great potential for clinical translation.
Collapse
Affiliation(s)
- Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| | - Melisa Samarikhalaj
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Adria Giacca
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, M5S 3M2, Canada
| |
Collapse
|
14
|
Vidal F, Smith S, Williams CK. Ring Opening Copolymerization of Boron-Containing Anhydride with Epoxides as a Controlled Platform to Functional Polyesters. J Am Chem Soc 2023. [PMID: 37311063 DOI: 10.1021/jacs.3c03261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Boron-functionalized polymers are used in opto-electronics, biology, and medicine. Methods to produce boron-functionalized and degradable polyesters remain exceedingly rare but relevant where (bio)dissipation is required, for example, in self-assembled nanostructures, dynamic polymer networks, and bio-imaging. Here, a boronic ester-phthalic anhydride and various epoxides (cyclohexene oxide, vinyl-cyclohexene oxide, propene oxide, allyl glycidyl ether) undergo controlled ring-opening copolymerization (ROCOP), catalyzed by organometallic complexes [Zn(II)Mg(II) or Al(III)K(I)] or a phosphazene organobase. The polymerizations are well controlled allowing for the modulation of the polyester structures (e.g., by epoxide selection, AB, or ABA blocks), molar masses (9.4 < Mn < 40 kg/mol), and uptake of boron functionalities (esters, acids, "ates", boroxines, and fluorescent groups) in the polymer. The boronic ester-functionalized polymers are amorphous, with high glass transition temperatures (81 < Tg < 224 °C) and good thermal stability (285 < Td < 322 °C). The boronic ester-polyesters are deprotected to yield boronic acid- and borate-polyesters; the ionic polymers are water soluble and degradable under alkaline conditions. Using a hydrophilic macro-initiator in alternating epoxide/anhydride ROCOP, and lactone ring opening polymerization, produces amphiphilic AB and ABC copolyesters. Alternatively, the boron-functionalities are subjected to Pd(II)-catalyzed cross-couplings to install fluorescent groups (BODIPY). The utility of this new monomer as a platform to construct specialized polyesters materials is exemplified here in the synthesis of fluorescent spherical nanoparticles that self-assemble in water (Dh = 40 nm). The selective copolymerization, variable structural composition, and adjustable boron loading represent a versatile technology for future explorations of degradable, well-defined, and functional polymers.
Collapse
Affiliation(s)
- Fernando Vidal
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Sevven Smith
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Charlotte K Williams
- Department of Chemistry, Chemical Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
15
|
Dyulgerov V, Sbirkova-Dimitrova H, Iliev K, Shivachev B. The Co-Crystallization of 4-Halophenylboronic Acid with Aciclovir, Caffeine, Nitrofurazone, Theophylline, and Proline in Function of Weak Interactions. CRYSTALS 2023; 13:468. [DOI: 10.3390/cryst13030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Co-crystallization experiments of 4-halophenylboronic acid with several pharmaceutical compounds (including aciclovir, caffeine, nitrofurazone, and proline) produced several new molecular complexes. The experiments involved varying the solvent and the molar ratio of boronic acid to a pharmaceutical compound (e.g., 1:1, 2:1, 1:2). The screening process for new crystal phases revealed that the formation of the different molecular complexes was strongly influenced by the molar ratio and the presence or absence of water in the solvent. The new molecular crystals were characterized through single crystal X-ray diffraction and differential scanning calorimetry (DSC) analyses. The single crystal analyses of the molecular complexes revealed an unexpected variety in the hydrogen bonding network interactions that can be produced by the –B(OH)2 motif.
Collapse
Affiliation(s)
- Ventsislav Dyulgerov
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Hristina Sbirkova-Dimitrova
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Kostadin Iliev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria
| |
Collapse
|
16
|
Kang H, Chao S, He Y, Liang Y, Xu J, Zhou W. Self‐supporting flexible poly(1‐naphaneneboronic acid) film as green light‐emitting material. J Appl Polym Sci 2023. [DOI: 10.1002/app.53808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Huan Kang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| | - Shixing Chao
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| | - Yao He
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| | - Yanmei Liang
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| | - Weiqiang Zhou
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University Nanchang People's Republic of China
| |
Collapse
|
17
|
Shu Z, Li HZ, Shi Y, Zuo DY, Yi Z, Gao CJ. Dual sugar and temperature responsive isoporous membranes for protein sieving with improved separation coefficient and decreased denaturation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
19
|
3-Thienylboronic Acid as a Receptor for Diol-Containing Compounds: A Study by Isothermal Titration Calorimetry. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The electrochemical activity of 3-thienylboronic acid and its feature to form polymer films makes it a perspective receptor material for sensor applications. The affinity properties of this compound were studied here by isothermal titration calorimetry. A number of different analytes were tested, and the highest binding enthalpy was observed for sorbitol and fructose. An increase of pH in the range of 5.5–10.6 results in the rise of the binding enthalpy with an increase of the binding constant to ~8400 L/mol for sorbitol or ~3400 L/mol for fructose. The dependence of the binding constant on pH has an inflection point at pH 7.6 with a slope that is a ten-fold binding constant per one pH unit. The binding properties of 3-thienylboronic acid were evaluated to be very close to that of the phenylboronic acid, but the electrochemical activity of 3-thienylboronic acid provides a possibility of external electrical control: dependence of the affinity of 3-thienylboronic acid on its redox state defined by the presence of ferro/ferricyanide in different ratios was demonstrated. The results show that 3-thienylboronic acid can be applied in smart chemical sensors with electrochemically controllable receptor affinity.
Collapse
|
20
|
Isoporous membrane with glucose mediated toughness and protein sieving prepared from novel block copolymers containing boronic acid moieties. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
|
22
|
Wang X, Wang G, Li J, Li X, Zhang K. A simple and straightforward polymer post-modification method for wearable difluoroboron β-diketonate luminescent sensors. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Hayes HLD, Wei R, Assante M, Geogheghan KJ, Jin N, Tomasi S, Noonan G, Leach AG, Lloyd-Jones GC. Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis. J Am Chem Soc 2021; 143:14814-14826. [PMID: 34460235 DOI: 10.1021/jacs.1c06863] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous-organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.
Collapse
Affiliation(s)
- Hannah L D Hayes
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Ran Wei
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Michele Assante
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K
| | - Katherine J Geogheghan
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Na Jin
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Simone Tomasi
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Gary Noonan
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Andrew G Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
24
|
Affiliation(s)
- Brian P. Jacobs
- Department of Chemistry, University of Tennessee—Knoxville, Knoxville, Tennessee 37996, United States
| | - Johnathan N. Brantley
- Department of Chemistry, University of Tennessee—Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|
25
|
Xing X, Zhang P, Zhao Y, Ma F, Zhang X, Xue F, Wang S, Jing X. Pyrolysis mechanism of phenylboronic acid modified phenolic resin. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Giraldi E, Scopelliti R, Fadaei-Tirani F, Severin K. Metal-Stabilized Boronate Ester Cages. Inorg Chem 2021; 60:10873-10879. [PMID: 34291934 DOI: 10.1021/acs.inorgchem.1c01719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular cages with arylboronate ester caps at the vertices are described. The cages were obtained by metal-templated polycondensation reactions of a tris(2-formylpyridine oxime) ligand with arylboronic acids. Suited templates are triflate or triflimide salts of ZnII, FeII, CoII, or MnII. In the products, the metal ions are coordinated internally to the pyridyl and oximato N atoms adjacent to the boronate ester, resulting in an improved hydrolytic stability of the latter. It is possible to decorate the cages with cyano or aldehyde groups using functionalized arylboronic acids. The aldehyde groups allow for a postsynthetic modification of the cages via an imine bond formation.
Collapse
Affiliation(s)
- Erica Giraldi
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Schoeller J, Itel F, Wuertz-Kozak K, Fortunato G, Rossi RM. pH-Responsive Electrospun Nanofibers and Their Applications. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1939372] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jean Schoeller
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| | - Fabian Itel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - Karin Wuertz-Kozak
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, New York, USA
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St.Gallen, Switzerland
- Department of Health Science and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
28
|
Seto H, Tono T, Nagaoka A, Yamamoto M, Hirohashi Y, Shinto H. Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction. Org Biomol Chem 2021; 19:4474-4477. [PMID: 33949595 DOI: 10.1039/d1ob00617g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(vinylbiphenyl)s bearing glycoside ligands at the side chains were prepared using the Suzuku coupling reaction. Effects of glycoside reactant concentration, halide species, glycoside species, and catalyst species on the incorporation of glycoside ligand into the polymer were investigated. The obtained glycopolymers exhibited specific binding to proteins corresponding to the glycoside ligands. In addition, the biphenyl spacers formed by the Suzuki coupling reaction in the glycopolymer were fluorescent, whereas the polymer precursor was not.
Collapse
Affiliation(s)
- Hirokazu Seto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Takumi Tono
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Akiko Nagaoka
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Mai Yamamoto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yumiko Hirohashi
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Hiroyuki Shinto
- Department of Chemical Engineering, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
29
|
|
30
|
Yang HS, Cho S, Eom Y, Park SA, Hwang SY, Jeon H, Oh DX, Park J. Preparation of Self-Healable and Spinnable Hydrogel by Dynamic Boronate Ester Bond from Hyperbranched Polyglycerol and Boronic Acid-Containing Polymer. Macromol Res 2021. [DOI: 10.1007/s13233-021-9016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Huang LCS, Le D, Hsiao IL, Fritsch-Decker S, Hald C, Huang SC, Chen JK, Hwu JR, Weiss C, Hsu MH, Delaittre G. Boron-rich, cytocompatible block copolymer nanoparticles by polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00710b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new methacrylic boronate ester is synthesized and exploited to produce biocompatible nanoparticles with a boron-rich core by PISA.
Collapse
|
32
|
Li X, Huang X, Mutlu H, Malik S, Theato P. Conductive hydrogel composites with autonomous self-healing properties. SOFT MATTER 2020; 16:10969-10976. [PMID: 33146639 DOI: 10.1039/d0sm01234c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conventional conductive hydrogels usually lack self-healing properties, but might be favorable for smart electronic applications. Therefore, we present the fabrication of conductive self-healing hydrogels that merge the merits of electrical conductivity and self-healing properties. The conductive self-healing hydrogel composite was prepared by using single-walled carbon nanotubes (SWCNTs), poly(vinyl alcohol) (PVA), and a poly(N,N-dimethyl acrylamide) copolymer derivative modified with pyrene and borate functional moieties. While the tethered pyrene groups of the copolymer facilitated an even dispersion of the conductive components, i.e., SWCNTs, in aqueous solution viaπ-π stacking, the hydrogel system was formed via covalent dynamic cross-linking through tetrahedral borate ion interaction with the -OH group of PVA. The hydrogel composites exhibited bulk conductivity (1.27 S m-1 with 8 mg mL-1 SWCNTs) with a fast and autonomous self-healing ability that restored 95% of the original conductivity within 10 s under ambient conditions. Accordingly, due to their outstanding properties, we postulate that these composites may have potential in biomedical applications, such as tissue engineering, wound healing or electronic skins.
Collapse
Affiliation(s)
- Xiaohui Li
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr. 18, D-76131 Karlsruhe, Germany.
| | | | | | | | | |
Collapse
|
33
|
Yolsal U, Horton TA, Wang M, Shaver MP. Polymer-supported Lewis acids and bases: Synthesis and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Karaagac Z, Onal I, Ildiz N, Ocsoy I. Simultaneous use of phenylboronic acid as a phase transfer agent and targeting ligand for gold nanoparticles. MATERIALS LETTERS 2020; 280:128561. [DOI: 10.1016/j.matlet.2020.128561] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
35
|
Chemoresponsive polymer systems for selective molecular recognition of organic molecules in biological systems. Acta Biomater 2020; 116:32-66. [PMID: 32877717 DOI: 10.1016/j.actbio.2020.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022]
Abstract
Smart polymer materials that respond to a chemical stimulus are applied for the construction of biomedical devices and purification/separation systems. Small organic molecules are a particular type of stimulus. Their abnormal concentration indisputably indicates certain diseases. They are also hazardous environment contaminants. Polymer materials, which structure is selectively changed in the presence of a defined organic compound are promising in view of regulation of certain biomedical functions, as well as in view of chemical detectors construction. This review summarizes the state of the art in the self-assemblies of amphiphilic copolymers and polymer networks sensitive toward organic species, with an emphasis on the reports from the last decade. We focus on the relationship between the selectivity of introduced receptor moieties responsible for the change of material structure, the overall structure of material and its functionality.
Collapse
|
36
|
Dehghani B, Salami Hosseini M, Salami-Kalajahi M. Neutral pH monosaccharide receptor based on boronic acid decorated poly(2-hydroxyethyl methacrylate): Spectral Methods for determination of glucose-binding and ionization constants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
He C, Pan X. MIDA Boronate Stabilized Polymers as a Versatile Platform for Organoboron and Functionalized Polymers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00665] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
38
|
Bora SJ, Paul R, Dutta A, Goswami S, Guha AK, Thakur AJ. Trinuclear Mn 2+/Zn 2+ based microporous coordination polymers as efficient catalysts for ipso-hydroxylation of boronic acids. Dalton Trans 2020; 49:5454-5462. [PMID: 32315018 DOI: 10.1039/d0dt00794c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two microporous coordination polymers based on hourglass trinuclear building units, [Mn3(bpdc)3(bpy)]·2DMF and [Zn3(bpdc)3(bpy)]·2DMF·4H2O (bpdc = 4,4'-biphenyl dicarboxylic acid, bpy = 4,4'-bipyridine), have been synthesized under solvothermal conditions employing DMF as the solvent. Each structure consists of two crystallographically distinct M2+ (M1 and M2) centers that are connected via carboxylate bridges from six bpdc ligands, generating a trinuclear metal cluster, [M3(bpdc)3(bpy)]. Cluster representation of the structure resulted in an interpenetrated net of rare hex topological type. Catalytic activities of the CPs have been assessed for the oxidative hydroxylation of phenylboronic acids (PBAs) using aqueous hydrogen peroxide (H2O2). Various substituted aryl/hetero-arylboronic acids RB(OH)2 [R = phenyl, 2,4-difluorophenyl, 4-aminophenyl, 2-thiophene etc.] underwent ipso-hydroxylation smoothly at room temperature to generate the corresponding phenols in excellent yields. The main advantages of this protocol are the aqueous medium reaction, heterogeneous catalytic system, and short reaction time with excellent yield.
Collapse
Affiliation(s)
- Sanchay J Bora
- Department of Chemistry, Pandu College, Guwahati-781012, Assam, India.
| | | | | | | | | | | |
Collapse
|
39
|
Yu J, Wang J, Zhang Y, Chen G, Mao W, Ye Y, Kahkoska AR, Buse JB, Langer R, Gu Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat Biomed Eng 2020; 4:499-506. [PMID: 32015407 PMCID: PMC7231631 DOI: 10.1038/s41551-019-0508-y] [Citation(s) in RCA: 346] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Glucose-responsive insulin delivery systems that mimic pancreatic endocrine function could enhance health and improve quality of life for people with type 1 and type 2 diabetes with reduced β-cell function. However, insulin delivery systems with rapid in vivo glucose-responsive behaviour typically have limited insulin-loading capacities and cannot be manufactured easily. Here, we show that a single removable transdermal patch, bearing microneedles loaded with insulin and a non-degradable glucose-responsive polymeric matrix, and fabricated via in situ photopolymerization, regulated blood glucose in insulin-deficient diabetic mice and minipigs (for minipigs >25 kg, glucose regulation lasted >20 h with patches of ~5 cm2). Under hyperglycaemic conditions, phenylboronic acid units within the polymeric matrix reversibly form glucose-boronate complexes that-owing to their increased negative charge-induce the swelling of the polymeric matrix and weaken the electrostatic interactions between the negatively charged insulin and polymers, promoting the rapid release of insulin. This proof-of-concept demonstration may aid the development of other translational stimuli-responsive microneedle patches for drug delivery.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Jinqiang Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuqi Zhang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Guojun Chen
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA
- Zenomics Inc., Los Angeles, CA, USA
| | - Anna R Kahkoska
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - John B Buse
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesiology, Boston Children's Hospital, Boston, MA, USA
- Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Garcia EA, Pessoa D, Herrera-Alonso M. Oxidative instability of boronic acid-installed polycarbonate nanoparticles. SOFT MATTER 2020; 16:2473-2479. [PMID: 32043107 DOI: 10.1039/c9sm02499a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress, caused by the overproduction of reactive oxygen species (ROS), is often observed in degenerative and/or metabolic diseases, tumors, and inflamed tissues. Boronic acids are emerging as a unique class of responsive biomaterials targeting ROS because of their reactivity toward H2O2. Herein, we examine the oxidative reactivity of nanoparticles from a boronic acid-installed polycarbonate. The extent of oxidation under different concentrations of H2O2 was tracked by the change in fluorescence intensity of an encapsulated solvatochromic reporter dye, demonstrating their sensitivity to biologically-relevant concentrations of hydrogen peroxide. Oxidation-triggered particle destabilization, however, was shown to be highly dependent on the concentration of the final oxidized polymer product, and was only achieved if it fell below polymer critical micelle concentration. Our results indicate that these nanocarriers serve as an excellent dual pH/H2O2 responsive vehicle for drug delivery.
Collapse
Affiliation(s)
- Elena Alexandra Garcia
- Department of Chemical and Biological Engineering, School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | |
Collapse
|
41
|
Li SS, Lv XH, Sun XL, Wan WM, Bao H. Well-controlled polymerization of tri-vinyl dynamic covalent boroxine monomer: one dynamic covalent boroxine moiety toward a tunable penta-responsive polymer. Polym Chem 2020. [DOI: 10.1039/d0py00401d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to dynamic characteristics of dynamic covalent boroxine, well-controlled polymerization of tri-vinyl monomer and molecular design of penta-responsive polymer with only one functional moiety are achieved.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xin-Hu Lv
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Xiao-Li Sun
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China)
- Qingdao 266580
- P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
42
|
Ito Y, Aoki D, Otsuka H. Functionalization of amine-cured epoxy resins by boronic acids based on dynamic dioxazaborocane formation. Polym Chem 2020. [DOI: 10.1039/d0py00048e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of epoxy resins after curing was performed based on dynamic dioxazaborocane formation between intrinsic diethanolamine units in amine-cured epoxy resins and boronic acid modifiers.
Collapse
Affiliation(s)
- Yumiko Ito
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
43
|
Crosstalk between responsivities to various stimuli in multiresponsive polymers: change in polymer chain and external environment polarity as the key factor. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04576-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Baraniak MK, Lalancette RA, Jäkle F. Electron‐Deficient Borinic Acid Polymers: Synthesis, Supramolecular Assembly, and Examination as Catalysts in Amide Bond Formation. Chemistry 2019; 25:13799-13810. [DOI: 10.1002/chem.201903196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Baraniak
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Roger A. Lalancette
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| | - Frieder Jäkle
- Department of ChemistryRutgers University-Newark 73 Warren Street Newark NJ 07102 USA
| |
Collapse
|
45
|
Li R, Gu X, Liang X, Hou S, Hu D. Aggregation of Gold Nanoparticles Caused in Two Different Ways Involved in 4-Mercaptophenylboronic Acidand Hydrogen Peroxide. MATERIALS 2019; 12:ma12111802. [PMID: 31163635 PMCID: PMC6600739 DOI: 10.3390/ma12111802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022]
Abstract
The difference in gold nanoparticle (AuNPs) aggregation caused by different mixing orders of AuNPs, 4-mercaptophenylboronic acid (4-MPBA), and hydrogen peroxide (H2O2) has been scarcely reported. We have found that the color change of a ((4-MPBA + AuNPs) + H2O2) mixture caused by H2O2 is more sensitive than that of a ((4-MPBA + H2O2) + AuNPs) mixture. For the former mixture, the color changes obviously with H2O2 concentrations in the range of 0~0.025%. However, for the latter mixture, the corresponding H2O2 concentration is in the range of 0~1.93%. The mechanisms on the color change originating from the aggregation of AuNPs occurring in the two mixtures were investigated in detail. For the ((4-MPBA + H2O2) + AuNPs) mixture, free 4-MPBA is oxidized by H2O2 to form bis(4-hydroxyphenyl) disulfide (BHPD) and peroxoboric acid. However, for the ((4-MPBA+AuNPs) + H2O2) mixture, immobilized 4-MPBA is oxidized by H2O2 to form 4-hydroxythiophenol (4-HTP) and boric acid. The decrease in charge on the surface of AuNPs caused by BHPD, which has alarger steric hindrance, is poorer than that caused by -4-HTP, and this is mainly responsible for the difference in the aggregation of AuNPs in the two mixtures. The formation of boric acid and peroxoboric acid in the reaction between 4-MPBA and H2O2 can alter the pH of the medium, and the effect of the pH change on the aggregation of AuNPs should not be ignored. These findings not only offer a new strategy in colorimetric assays to expand the detection range of hydrogen peroxide concentrations but also assist in deepening the understanding of the aggregation of citrate-capped AuNPs involved in 4-MPBA and H2O2, as well as in developing other probes.
Collapse
Affiliation(s)
- Runmei Li
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Xuefan Gu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Xingtang Liang
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Shi Hou
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Daodao Hu
- Engineering Research Center of Historical and Cultural Heritage Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
46
|
GhavamiNejad A, Lu B, Giacca A, Wu XY. Glucose regulation by modified boronic acid-sulfobetaine zwitterionic nanogels - a non-hormonal strategy for the potential treatment of hyperglycemia. NANOSCALE 2019; 11:10167-10171. [PMID: 31112182 DOI: 10.1039/c9nr01687b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have introduced a non-hormonal hyperglycemia treatment strategy by using an injectable glucose-responsive boronic acid- zwitterionic nanogel. The synthesized system, similar to an artificial liver, is capable of storing/releasing glucose at high/low blood glucose concentrations. In vivo performance revealed that the injection of the nanogels can effectively regulate blood glucose in type 1 diabetic rats for at least 6 hours.
Collapse
Affiliation(s)
- Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| | | | | | | |
Collapse
|
47
|
Kubo T, Scheutz GM, Latty TS, Sumerlin BS. Synthesis of functional and boronic acid-containing aliphatic polyesters via Suzuki coupling. Chem Commun (Camb) 2019; 55:5655-5658. [PMID: 31025997 DOI: 10.1039/c9cc01975h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Imparting additional functionalities along the side chains of polyesters remains a challenge due to the laborious nature of monomer synthesis and limited polymer functionalization methods for polyesters. To address this challenge, a carbon-carbon bond forming reaction was studied to introduce pendent functional groups in polylactides. This functionalization approach was applied for preparing boronic acid-containing polylactides, an unexplored class of polymers.
Collapse
Affiliation(s)
- Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
48
|
Gaballa H, Theato P. Glucose-Responsive Polymeric Micelles via Boronic Acid–Diol Complexation for Insulin Delivery at Neutral pH. Biomacromolecules 2019; 20:871-881. [DOI: 10.1021/acs.biomac.8b01508] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heba Gaballa
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Strasse. 18, D-76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces III, Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
49
|
Fernandez-Alvarez R, Hlavatovičová E, Rodzeń K, Strachota A, Kereïche S, Matějíček P, Cabrera-González J, Núñez R, Uchman M. Synthesis and self-assembly of a carborane-containing ABC triblock terpolymer: morphology control on a dual-stimuli responsive system. Polym Chem 2019. [DOI: 10.1039/c9py00518h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amphiphilic triblock terpolymers have attractive applications in the preparation of nanoparticles with controlled morphology.
Collapse
Affiliation(s)
| | - Eva Hlavatovičová
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| | - Krzysztof Rodzeń
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - Adam Strachota
- Institute of Macromolecular Chemistry AS CR
- 162 06 Prague 6
- Czech Republic
| | - Sami Kereïche
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
- Institute of Biology and Medical Genetics
| | - Pavel Matějíček
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| | - Justo Cabrera-González
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra, Barcelona
- Spain
| | - Rosario Núñez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)
- Campus de la UAB
- 08193 Bellaterra, Barcelona
- Spain
| | - Mariusz Uchman
- Department of Physical and Macromolecular Chemistry
- Charles University
- 12843 Prague 2
- Czech Republic
| |
Collapse
|
50
|
Bruen D, Delaney C, Diamond D, Florea L. Fluorescent Probes for Sugar Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38431-38437. [PMID: 30360068 DOI: 10.1021/acsami.8b13365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, a new class of polymerizable boronic acid (BA) monomers are presented, which are used to generate soft hydrogels capable of accurate determination of saccharide concentration. By exploiting the interaction of these cationic BAs with an anionic fluorophore, 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (pyranine), a two-component sugar-sensing system was realized. In the presence of such cationic BAs ( o-BA, m-BA, and p-BA), the fluorescence of pyranine becomes quenched because of the formation of a nonfluorescent BA-fluorophore complex. Upon addition of saccharides, formation of a cyclic boronate ester results in dissociation of the nonfluorescent complex and recovery of the pyranine fluorescence. The response of this system was examined in solution with common monosaccharides, such as glucose, fructose, and galactose. Subsequent polymerization of the BA monomers yielded cross-linked hydrogels which showed similar reversible recovery of fluorescence in the presence of glucose.
Collapse
Affiliation(s)
- Danielle Bruen
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Colm Delaney
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| | - Larisa Florea
- Insight Centre for Data Analytics, National Centre for Sensor Research, School of Chemical Sciences , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|