1
|
Palenzuela M, Mula E, Blanco C, Sessini V, Shakaroun RM, Li H, Guillaume SM, Mosquera MEG. Copolymerization of β-Butyrolactones into Functionalized Polyhydroxyalkanoates Using Aluminum Catalysts: Influence of the Initiator in the Ring-Opening Polymerization Mechanism. Macromol Rapid Commun 2024; 45:e2400091. [PMID: 38690992 DOI: 10.1002/marc.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Within bioplastics, natural poly(3-hydroxybutyrate) (PHB) stands out as fully biocompatible and biodegradable, even in marine environments; however, its high isotacticity and crystallinity limits its mechanical properties and hence its applications. PHB can also be synthesized with different tacticities via a catalytic ring-opening polymerization (ROP) of rac-β-butyrolactone (BBL), paving the way to PHB with better thermomechanical and processability properties. In this work, the catalyst family is extended based on aluminum phenoxy-imine methyl catalyst [AlMeL2], that reveals efficient in the ROP of BBL, to the halogeno analogous complex [AlClL2]. As well, the impact on the ROP mechanism of different initiators is further explored with a particular focus in dimethylaminopyridine (DMAP), a hardly studied initiator for the ROP of BBL. A thorough mechanistic study is performed that evidences the presence of two concomitant DMAP-mediated mechanisms, that lead to either a DMAP or a crotonate end-capping group. Besides, in order to increase the possibilities of PHB post-polymerization functionalization, the introduction of a side-chain functionality is explored, establishing the copolymerization of BBL with β-allyloxymethylene propiolactone (BPLOAll), resulting in well-defined P(BBL-co-BPLOAll) copolymers.
Collapse
Affiliation(s)
- Miguel Palenzuela
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Esther Mula
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Carlos Blanco
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Valentina Sessini
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| | - Rama M Shakaroun
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Hui Li
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Sophie M Guillaume
- Univ. Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Rennes, F-35042, France
| | - Marta E G Mosquera
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación en Química "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, 28871, Spain
| |
Collapse
|
2
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
3
|
Yang J, Yang JC, Lu XB, Liu Y. Preparation of Poly(β-malic acid) via Direct Carbonylative Polymerization of Benzyl Glycidate. Macromol Rapid Commun 2023; 44:e2200694. [PMID: 36412066 DOI: 10.1002/marc.202200694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/13/2022] [Indexed: 11/23/2022]
Abstract
Poly(malic acid) (PMLA) is a water-soluble, biodegradable, biocompatible, and nontoxic polyester in the poly(hydroxyalkanoate) (PHA) family. it features various applications in pharmaceutical field. Herein, NaCo(CO)4 and pyridine derivatives are employed for direct carbonylative polymerization of benzyl glycidate (BG) for poly(β-malic acid) production. Further investigation on reaction mechanism reveals that this polymerization undergoes a direct chain growth, rather than a sequential process involving β-lactone intermediate. The low cost and facile preparation of epoxide substrate render this methodology extremely appealing that avoids the rather tedious procedures for β-malolactonate synthesis required toward ring opening polymerization. This study also represents an alternative strategy over traditional methods for poly(β-malic acid) production using step growth polycondensation of malic acid.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jin-Chuang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ye Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
4
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
5
|
Haloarchaea as Cell Factories to Produce Bioplastics. Mar Drugs 2021; 19:md19030159. [PMID: 33803653 PMCID: PMC8003077 DOI: 10.3390/md19030159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.
Collapse
|
6
|
Bossu J, Angellier-Coussy H, Totee C, Matos M, Reis M, Guillard V. Effect of the Molecular Structure of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-3HV)) Produced from Mixed Bacterial Cultures on Its Crystallization and Mechanical Properties. Biomacromolecules 2020; 21:4709-4723. [DOI: 10.1021/acs.biomac.0c00826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Bossu
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Hélène Angellier-Coussy
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| | - Cedric Totee
- ICGM, CNRS, ENSCM, University of Montpellier, Montpellier F-34095, France
| | - Mariana Matos
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Maria Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT-UNL), Caparica 2829-516, Portugal
| | - Valérie Guillard
- JRU IATE 1208—CIRAD/INRA/Montpellier Supagro, University of Montpellier, Montpellier F-34060, France
| |
Collapse
|
7
|
Rizzarelli P, Rapisarda M, Valenti G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8697. [PMID: 31834664 DOI: 10.1002/rcm.8697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
A detailed characterization of polymeric matrices and appropriate degradation monitoring techniques are required to sustain the development of new materials as well as to enlarge the applications of the old ones. In fact, polymer analysis is essential for the clarification of the intrinsic relationship between structure and properties that ascertains the industrial applications in diverse fields. In bioresorbable and biodegradable polymers, the role of analytical methods is dual since it is pointed both at the polymeric matrices and at degradation tracking. The structural architectures, the mechanical and morphological properties, and the degradation rate, are of outstanding importance for a specific application. In some cases, the complexity of the polymer structure, the processes of decomposition or the low concentration of the degradation products need the concurrent use of different complementary analytical techniques to give detailed information of the reactions taking place. Several analytical methods are used in bioresorbable polymer development and degradation tracking. Among them, mass spectrometry (MS) plays an essential role and it is used to refine polymer syntheses, for its high sensitivity, to highlight degradation mechanism by detecting compounds present in trace amounts, or to track the degradation product profile and to study drug release. In fact, elucidation of reaction mechanisms and polymer structure, attesting to the purity and detecting defects as well as residual catalysts, in biodegradable and bioresorbable polymers, requires sensitive analytical characterization methods that are essential in providing an assurance of safety, efficacy and quality. This review aims to provide an overview of the MS strategies used to support research and development of resorbable polymers as well as to investigate their degradation mechanisms. It is focused on the most significant studies concerning synthetic bioresorbable matrices (polylactide, polyglycolide and their copolymers, polyhydroxybutyrate, etc.), published in the last ten years.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Marco Rapisarda
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| | - Graziella Valenti
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, Catania, 95126, Italy
| |
Collapse
|
8
|
Kiriratnikom J, Robert C, Guérineau V, Venditto V, Thomas CM. Stereoselective Ring-Opening (Co)polymerization of β-Butyrolactone and ε-Decalactone Using an Yttrium Bis(phenolate) Catalytic System. Front Chem 2019; 7:301. [PMID: 31192185 PMCID: PMC6541034 DOI: 10.3389/fchem.2019.00301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
An effective route for ring-opening copolymerization of β-butyrolactone (BBL) with ε-decalactone (ε-DL) is reported. Microstructures of the block copolymers characterized by 13C NMR spectroscopy revealed syndiotactic-enriched poly(3-hydroxybutyrate) (PHB) blocks. Several di- and triblock copolymers (PDL-b-PHB and PDL-b-PHB-b-PDL, respectively) were successfully synthesized by sequential addition of the monomers using (salan)Y(III) complexes as catalysts. The results from MALDI-ToF mass spectrometry confirmed the presence of the copolymers. Moreover, thermal properties of the block copolymers were also investigated and showed that the microphase separation of PDL-b-PHB copolymers into PHB- and PDL-rich domains has an impact on the glass transition temperatures of both blocks.
Collapse
Affiliation(s)
- Jiraya Kiriratnikom
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Carine Robert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| | - Vincent Guérineau
- CNRS UPR2301, Institut de Chimie des Substances Naturelles, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Vincenzo Venditto
- INSTM Research Unit, Department of Chemistry and Biology A. Zambelli, University of Salerno, Fisciano, Italy
| | - Christophe M. Thomas
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, Paris, France
| |
Collapse
|
9
|
Shaik M, Peterson J, Du G. Cyclic and Linear Polyhydroxylbutyrates from Ring-Opening Polymerization of β-Butyrolactone with Amido-Oxazolinate Zinc Catalysts. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muneer Shaik
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Jhaiquashia Peterson
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| | - Guodong Du
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Studies on the alcoholysis of poly(3-hydroxybutyrate) and the synthesis of PHB-b-PLA block copolymer for the preparation of PLA/PHB-b-PLA blends. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-017-1432-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Barouti G, Jaffredo CG, Guillaume SM. Advances in drug delivery systems based on synthetic poly(hydroxybutyrate) (co)polymers. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Xu YC, Ren WM, Zhou H, Gu GG, Lu XB. Functionalized Polyesters with Tunable Degradability Prepared by Controlled Ring-Opening (Co)polymerization of Lactones. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yue-Chao Xu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Wei-Min Ren
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Zhou
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Ge-Ge Gu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiao-Bing Lu
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
13
|
Vene E, Barouti G, Jarnouen K, Gicquel T, Rauch C, Ribault C, Guillaume SM, Cammas-Marion S, Loyer P. Opsonisation of nanoparticles prepared from poly(β-hydroxybutyrate) and poly(trimethylene carbonate)-b-poly(malic acid) amphiphilic diblock copolymers: Impact on the in vitro cell uptake by primary human macrophages and HepaRG hepatoma cells. Int J Pharm 2016; 513:438-452. [PMID: 27640247 DOI: 10.1016/j.ijpharm.2016.09.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022]
Abstract
The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(β-malic acid)-b-poly(β-hydroxybutyrate) (PMLA-b-PHB) and poly(β-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.
Collapse
Affiliation(s)
- Elise Vene
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Ghislaine Barouti
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kathleen Jarnouen
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Thomas Gicquel
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Claudine Rauch
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Catherine Ribault
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France
| | - Sophie M Guillaume
- Institut des Sciences Chimiques de Rennes; UMR 6226 CNRS; Université de Rennes 1, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Sandrine Cammas-Marion
- Ecole Nationale Supérieure de Chimie de Rennes, Institute des Sciences Chimiques de Rennes, Université de Rennes 1, 11 allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France
| | - Pascal Loyer
- INSERM UMR S-991, Foie, Métabolismes et Cancer; Université de Rennes 1; CHU Pontchaillou Rennes, 35033 Rennes, France.
| |
Collapse
|