1
|
Shi X, Wei B, Han Y, Du X, He G. Epoxy/melamine polyphosphate modified silicon carbide composites: Thermal conductivity and flame retardancy analyses. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Silicon carbide (SiC) was modified by melamine polyphosphate (MPP)-modified silicone to form SiC-MPP, then incorporated into epoxy resin (EP) for developing thermally resistant composites, which showed thermal conductivity and flame retardancy performance. The EP/SiC-MPP composites were prepared by blending and cured under 60°C for 2 h and 150°C for 8 h. The grafting degree of SiC-MPP was analyzed using Fourier transform Infrared, scanning electron microscope, and thermogravimetric measurements. The flame retardancy of the EP/SiC-MPP composites was studied by UL-94 vertical combustion and cone calorimetry test. The results showed that for EP/SiC-MPP containing 20 wt%, the UL-94 was case V1. Also compared to pure epoxy, the peak heat release rate (PHRR) of composites was reduced from 800 to 304 kW·m−2. The thermal conductivity of EP/SiC-M20 composites was 0.53 W·m−1·K−1, almost 2.5-fold higher than pure epoxy (0.21 W·m−1·K−1). The as-prepared EP/SiC-MPP composites exhibited enhanced flame retardancy and thermal conductivity. Based on analyses performed, these composites took credit-related applications.
Collapse
Affiliation(s)
- Xuejun Shi
- School of Chemistry and Chemical Engineering, Pingdingshan University , Pingdingshan , 467099 , China
| | - Baoting Wei
- School of Experimental Technology, Henan Chemical Technician College , Kaifeng , 475000 , China
| | - Yongjun Han
- School of Chemistry and Chemical Engineering, Pingdingshan University , Pingdingshan , 467099 , China
| | - Xiangxiang Du
- School of Chemistry and Chemical Engineering, Pingdingshan University , Pingdingshan , 467099 , China
| | - Guoxu He
- School of Chemistry and Chemical Engineering, Pingdingshan University , Pingdingshan , 467099 , China
| |
Collapse
|
2
|
Chen Q, Zhang J, Li J, Sun J, Xu B, Li H, Gu X, Zhang S. Synthesis of a novel triazine-based intumescent flame retardant and its effects on the fire performance of expanded polystyrene foams. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Shi X, Luo S, Du X, Li Q, Cheng S. Improvement the Flame Retardancy and Thermal Conductivity of Epoxy Composites via Melamine Polyphosphate-Modified Carbon Nanotubes. Polymers (Basel) 2022; 14:polym14153091. [PMID: 35956608 PMCID: PMC9370361 DOI: 10.3390/polym14153091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 01/27/2023] Open
Abstract
Surface chemical modification of carbon nanotubes can enhance the compatibility with polymers and improve flame retardancy performances. In this work, the double bond active sites were constructed on the surface of carbon nanotubes modified by the γ-methacryloyloxypropyl trimethoxysilane (KH570). Glycidyl methacrylate (GMA) was further grafted onto the surface of carbon nanotubes via free radical polymerization. Finally, the flame retardant melamine polyphosphate (MPP) was bonded to the surface of carbon nanotubes by the ring-opening reaction. This modification process was proved to be achieved by infrared spectroscopy and thermogravimetric test. The carbon nanotubes modified by flame retardant were added into the epoxy matrix and cured to prepare flame retardant and thermal conductive composites. The flame retardancy of composites were studied by cone calorimetry, UL94 vertical combustion test and limiting oxygen index. The thermal conductivity of composites was characterized by laser thermal conductivity instrument. The results showed that when the addition amount of flame retardant MPP-modified carbon nanotubes in composites was 10 wt%, the flame retardant level of UL94 reached to V2, the limiting oxygen index increased from 25.1 of pure epoxy resin to 28.3, the PHRR of pure epoxy resin was reduced from 800 kW/m2 to 645 kW/m2 of composites and thermal conductivity of composites was enhanced from 0.21 W/m·K−1 of pure epoxy resin to 0.42 W/m·K−1 of the composites.
Collapse
Affiliation(s)
- Xuejun Shi
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China; (X.S.); (S.L.); (X.D.)
| | - Shiying Luo
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China; (X.S.); (S.L.); (X.D.)
| | - Xiangxiang Du
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China; (X.S.); (S.L.); (X.D.)
| | - Qingbin Li
- School of Chemistry and Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China; (X.S.); (S.L.); (X.D.)
- Correspondence: (Q.L.); (S.C.)
| | - Shiping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
- Correspondence: (Q.L.); (S.C.)
| |
Collapse
|
4
|
Li Y, Qi L, Liu Y, Qiao J, Wang M, Liu X, Li S. Recent Advances in Halogen-Free Flame Retardants for Polyolefin Cable Sheath Materials. Polymers (Basel) 2022; 14:polym14142876. [PMID: 35890652 PMCID: PMC9322620 DOI: 10.3390/polym14142876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
With the continuous advancements of urbanization, the demand for power cables is increasing to replace overhead lines for energy transmission and distribution. Due to undesirable scenarios, e.g., the short circuit or poor contact, the cables can cause fire. The cable sheath has a significant effect on fire expansion. Thus, it is of great significance to carry out research on flame-retardant modification for cable sheath material to prevent fire accidents. With the continuous environmental concern, polyolefin (PO) is expected to gradually replace polyvinyl chloride (PVC) for cable sheath material. Moreover, the halogen-free flame retardants (FRs), which are the focus of this paper, will replace the ones with halogen gradually. The halogen-free FRs used in PO cable sheath material can be divided into inorganic flame retardant, organic flame retardant, and intumescent flame retardant (IFR). However, most FRs will cause severe damage to the mechanical properties of the PO cable sheath material, mainly reflected in the elongation at break and tensile strength. Therefore, the cooperative modification of PO materials for flame retardancy and mechanical properties has become a research hotspot. For this review, about 240 works from the literature related to FRs used in PO materials were investigated. It is shown that the simultaneous improvement for flame retardancy and mechanical properties mainly focuses on surface treatment technology, nanotechnology, and the cooperative effect of multiple FRs. The principle is mainly to improve the compatibility of FRs with PO polymers and/or increase the efficiency of FRs.
Collapse
Affiliation(s)
- Yan Li
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
- Correspondence:
| | - Leijie Qi
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Yifan Liu
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Junjie Qiao
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Maotao Wang
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Xinyue Liu
- School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China; (L.Q.); (Y.L.); (J.Q.); (M.W.); (X.L.)
| | - Shasha Li
- State Grid Hebei Baoding Electric Power Company Limited, Baoding 071051, China;
| |
Collapse
|
5
|
Han LX, Zhao ZY, Deng C, Wang YZ. Piperazine/Alkene-Containing Phosphoramide Oligomer for the Intumescent Flame Retardation of EPDM Rubber. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Kedir CN, Salinas-Torres D, Quintero-Jaime A, Benyoucef A, Morallon E. Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their application in hybrid supercapacitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Fabrication of phytic acid embellished kaolinite and its effect on the flame retardancy and thermal stability of ethylene vinyl acetate composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.51364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Moradkhani G, Fasihi M, Brison L, Laoutid F, Vahabi H, Saeb MR. Flame retardancy effect of phosphorus graphite nanoplatelets on ethylene‐vinyl acetate copolymer: Physical blending versus chemical modification. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ghane Moradkhani
- School of Chemical Engineering Iran University of Science and Technology Tehran Iran
| | - Mohammad Fasihi
- School of Chemical Engineering Iran University of Science and Technology Tehran Iran
| | - Loic Brison
- Polymeric and Composite Materials Unit Materia Nova Research Center Mons Belgium
| | - Fouad Laoutid
- Polymeric and Composite Materials Unit Materia Nova Research Center Mons Belgium
| | - Henri Vahabi
- CentraleSupélec, LMOPS Université de Lorraine Metz France
| | | |
Collapse
|
9
|
Abstract
We successfully prepared a highly effective flame-retardant additive called hsalbenzoguanamine phosphaphenanthrene (HDPD) through salicylaldehyde and nitrogen-rich benzoguanamine. The introduction of HDPD into epoxy resin (EP) sharply enhanced the flame retardancy of EP/HDPD thermosets. The introduction of 6 wt% HDPD into EP succeeded in reaching the V-0 rating. Limited oxygen index results revealed the high flame-retarding performance of HDPD. Cone calorimeter test data revealed that heat and smoke released from EP/6 wt% HDPD thermoset were significantly restrained. In addition, EP/6 wt% HDPD thermoset demonstrated excellent transmittance and mechanical strength. The transmittance of EP/6 wt% HDPD was assessed from 520 to 800 nm. The results showed that transmittance of EP/6 wt% HDPD were nearly 90% of the control group.
Collapse
|
10
|
Liang H, Liu R, Hu C, An X, Zhang X, Liu H, Qu J. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124692. [PMID: 33310323 DOI: 10.1016/j.jhazmat.2020.124692] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Active site engineering is of significant importance for developing high activity metal-organic frameworks (MOFs) for catalytic applications. Herein, we develop a one-pot strategy to construct bimetal organic frameworks with Fe-Co dual sites for Fenton-like catalysis. Density functional theory (DFT) demonstrated that the introducing Co heteroatoms into MIL-101(Fe) (MIL represents Matérial Institute Lavoisier) was favorable for the formation of electron-deficient centers around benzene rings and electron-rich centers around Fe/Co. This synergistic effect could effectively decrease the energy barrier of H2O2 activation. Due to the facilitated charge transfer in the coordinated structures, MIL-101(Fe,Co) with engineered dual sites exhibited exceptionally high efficiency for the degradation of ciprofloxacin (CIP). The reaction rate of MIL-101(Fe,Co)/H2O2 system was 0.12 min-1, which was nearly 7.5 times higher than that of pristine MIL-101(Fe). The reaction mechanism of heterogeneous Fenton-like catalysis was fundamentally investigated by series of in-situ techniques, such as DRIFTS and Raman. ·OH radicals generated by H2O2 activation endowed the inspiring ability of MIL-101(Fe,Co) for water decontamination. This work offers a facile principle of exploring MOFs-based Fenton-like catalysts with a wide working pH range for environmental applications.
Collapse
Affiliation(s)
- He Liang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
11
|
Promotion of the flame retardancy of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide grafted natural rubber using expandable graphite. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Synergistic effect between a novel silane-containing hyperbranched polyphosphamide and ammonium polyphosphate on the flame retardancy and smoke suppression of polypropylene composites. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Phosphorus-containing organic-inorganic hybrid nanoparticles for the smoke suppression and flame retardancy of thermoplastic polyurethane. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109179] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Preparation and Mechanism of Flame-Retardant Cotton Fabric with Phosphoramidate Siloxane Polymer through Multistep Coating. Polymers (Basel) 2020; 12:polym12071538. [PMID: 32664623 PMCID: PMC7408352 DOI: 10.3390/polym12071538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023] Open
Abstract
To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep coating process. A vertical flammability test, limited oxygen index (LOI), thermogravimetric analysis, and cone calorimetry were performed to investigate the thermal behavior and flame retardancy of PDTSP-coated fabrics. The coated cotton fabrics and their char residues after combustion were studied by attenuated total reflection infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results presented that PDTSP-coated cotton fabrics had good flame retardancy and char-forming properties. PDTSP coating was demonstrated to posess gas-phase flame-retardant mechanism as well as a condensed phase flame-retardant mechanism, which can be confirmed by thermogravimetric analysis-Fourier transform infrared spectroscopy (TG-IR) and cone calorimetry test. Also, the preparation process had little effect on the tensile strength of cotton fabrics, although the air permeability and whiteness had a slight decrease. After different washing cycles, the coated samples still maintained good char-forming properties.
Collapse
|
15
|
Wu Q, Guo J, Fei B, Li X, Sun J, Gu X, Li H, Zhang S. Synthesis of a novel polyhydroxy triazine-based charring agent and its effects on improving the flame retardancy of polypropylene with ammonium polyphosphate and zinc borate. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Ammonium Polyphosphate with High Specific Surface Area by Assembling Zeolite Imidazole Framework in EVA Resin: Significant Mechanical Properties, Migration Resistance, and Flame Retardancy. Polymers (Basel) 2020; 12:polym12030534. [PMID: 32131420 PMCID: PMC7182838 DOI: 10.3390/polym12030534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022] Open
Abstract
A zeolite imidazole framework (ZIF-67) was assembled onto the surface of ammonium polyphosphate (APP) for preparing a series multifunctional flame-retardant APP-ZIFs. The assembly mechanism, chemical structure, chemical compositions, morphology, and specific surface area of APP-ZIFs were characterized. The typical APPZ1 and APPZ4 were selected as intumescent flame retardants with dipentaerythritol (DPER) because of their superior unit catalytic efficiency of cobalt by thermogravimetric analysis. APPZ1 and APPZ4 possessed 6.8 and 92.1 times the specific surface area of untreated APP, which could significantly enhance the interfacial interaction, mechanical properties, and migration resistance when using in ethylene-vinyl acetate (EVA). With 25% loading, 25% APPZ4/DPER achieved a limiting oxygen index value of 29.4% and a UL 94 V-0 rating, whereas 25% APP/DPER achieved a limiting oxygen index value of only 26.2% and a V-2 rating, respectively. The peak of the heat release rate, smoke production rate, and CO production rate respectively decreased by 34.7%, 39.0%, and 40.1%, while the char residue increased by 91.7%. These significant improvements were attributed to the catalytic graphitization by nano cobalt phosphate and the formation of a more protective char barrier comprised of graphite-like carbon.
Collapse
|
17
|
Wan L, Deng C, Zhao ZY, Chen H, Wang YZ. Flame Retardation of Natural Rubber: Strategy and Recent Progress. Polymers (Basel) 2020; 12:E429. [PMID: 32059374 PMCID: PMC7077728 DOI: 10.3390/polym12020429] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
Natural rubber (NR) as a kind of commercial polymer or engineering elastomer is widely used in tires, dampers, suspension elements, etc., because of its unique overall performance. For some NR products, their work environment is extremely harsh, facing a serious fire safety challenge. Accordingly, it is important and necessary to endow NR with flame retardancy via different strategies. Until now, different methods have been used to improve the flame retardancy of NR, mainly including intrinsic flame retardation through the incorporation of some flame-retarding units into polymer chains and additive-type flame retardation via adding some halogen or halogen-free flame retardants into NR matrix. For them, the synergistic flame-retarding action is usually applied to simultaneously enhance flame retardancy and mechanical properties, in which some synergistic flame retardants such as organo-montmorillonite (OMMT), carbon materials, halloysite nanotube (HNT), etc., are utilized to achieve the above-mentioned aim. The used flame-retarding units in polymer chains for intrinsic flame retardation mainly include phosphorus-containing small molecules, an unsaturated chemical bonds-containing structure, a cross-linking structure, etc.; flame retardants in additive-type flame retardation contain organic and inorganic flame retardants, such as magnesium hydroxide, aluminum hydroxide, ammonium polyphosphate, and so on. Concerning the flame retardation of NR, great progress has been made in the past work. To achieve the comprehensive understanding for the strategy and recent progress in the flame retardation of NR, we thoroughly analyze and discuss the past and current flame-retardant strategies and the obtained progress in the flame-retarding NR field in this review, and a brief prospect for the flame retardation of NR is also presented.
Collapse
Affiliation(s)
| | - Cong Deng
- Analytical & Testing Center, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China; (L.W.); (Z.-Y.Z.); (H.C.); (Y.-Z.W.)
| | | | | | | |
Collapse
|
18
|
Wang J, Guo Y, Zhao S, Huang R, Kong X. A novel intumescent flame retardant imparts high flame retardancy to epoxy resin. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jie Wang
- Anhui Key Laboratory of Photoelectric‐Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes and School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Yu Guo
- School of Physics and Electrical EngineeringAnqing Normal University Anqing China
| | - ShunPing Zhao
- Anhui Key Laboratory of Photoelectric‐Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes and School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Rong‐Yi Huang
- Anhui Key Laboratory of Photoelectric‐Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes and School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| | - Xue‐Jun Kong
- Anhui Key Laboratory of Photoelectric‐Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes and School of Chemistry and Chemical EngineeringAnqing Normal University Anqing China
| |
Collapse
|
19
|
Mehta R, Brahmbhatt H, Bhojani G, Mukherjee M, Bhattacharya A. Poly(piperizinamide) with copper ion composite membranes: Application for mitigation of Hexaconazole from water and combat microbial contamination. JOURNAL OF HAZARDOUS MATERIALS 2019; 376:102-111. [PMID: 31125940 DOI: 10.1016/j.jhazmat.2019.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Thin film Poly(piperazine-amide) composite membranes using sequential interfacial polymerization with tuning by Cu2+ have brought significant findings in it. The hydrophobicity is relatively enhanced for the copper containing membranes. The membrane in which copper solution is applied prior to piperizine (Memb-III) exhibits higher hydrophobicity where as membrane (Memb-II) in which copper solution is applied following piperizine, possesses higher roughness compared to other two. Filtration experiments in terms of salts, mono/disaccharides and hexaconazole indicate that modified membranes are of different behaviours according to their sequence of preparative methods. Memb-III has shown lower SO4=/Cl- selectivity compared to Memb-II (i.e. 3.92), though they are in different range. The unmodified membrane (Memb-I) exhibits SO4=/Cl- selectivity 3.23 is in the same scale of Memb-III (2.27). Memb-III exhibits higher hexaconazole separation (91.5%) compared to Memb-II (i.e. 53.9%). The flux decline follows the order: field water > tap water > deionized water. The copper incorporated membrane (Memb-II) has shown a low flux decline compared to Memb-III as well as Memb-I. The antibacterial properties towards E. Coli and Bacillus subtilis are well reflected. The copper containing membranes have promising antibacterial properties and follows the order Memb-II > Memb-III > Memb-I.
Collapse
Affiliation(s)
- Romil Mehta
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India
| | - H Brahmbhatt
- Analytical and Environmental Science Division and Centralized Instrument Facility, Council of Scientific & Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, 364002 Gujarat, India
| | - Gopal Bhojani
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India
| | - M Mukherjee
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, W. Bengal, India
| | - A Bhattacharya
- Membrane Science and Separation Technology Division, Bhavnagar, 364002 Gujarat, India.
| |
Collapse
|
20
|
Chen R, Dai S, Guo T, Tang H, Fan Y, Zhou H. Transparent low‐flammability epoxy resins with improved mechanical properties using tryptamine‐based DOPO derivative. POLYM ENG SCI 2019. [DOI: 10.1002/pen.25199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Chen
- Wuhan Institute of Technology Wuhan 430073 China
| | - Shensong Dai
- Wuhan Institute of Technology Wuhan 430073 China
| | - Tong Guo
- Wuhan Institute of Technology Wuhan 430073 China
| | - Hao Tang
- Wuhan Institute of Technology Wuhan 430073 China
| | - Yuqi Fan
- Wuhan Institute of Technology Wuhan 430073 China
| | - Hong Zhou
- Wuhan Institute of Technology Wuhan 430073 China
| |
Collapse
|
21
|
A novel flame retardant derived from DOPO and piperazine and its application in epoxy resin: Flame retardance, thermal stability and pyrolysis behavior. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Zhu ZM, Wang LX, Dong LP. Influence of a novel P/N-containing oligomer on flame retardancy and thermal degradation of intumescent flame-retardant epoxy resin. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Hu Z, Xu S, Zhao H, Wang Y. Metal‐phenolic networks: A biobased synergist for EVA/APP composites toward enhanced thermal stability and flame retardancy. J Appl Polym Sci 2019. [DOI: 10.1002/app.47243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zai‐Yin Hu
- School of Chemical Engineering Sichuan University Chengdu 610065 China
| | - Shimei Xu
- Center for Degradable and Flame‐Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan) Sichuan University Chengdu 610065 China
| | - Hai‐Bo Zhao
- Center for Degradable and Flame‐Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan) Sichuan University Chengdu 610065 China
| | - Yu‐Zhong Wang
- Center for Degradable and Flame‐Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering National Engineering Laboratory of Eco‐Friendly Polymeric Materials (Sichuan) Sichuan University Chengdu 610065 China
| |
Collapse
|
24
|
|
25
|
Li YM, Deng C, Shi XH, Xu BR, Chen H, Wang YZ. Simultaneously Improved Flame Retardance and Ceramifiable Properties of Polymer-Based Composites via the Formed Crystalline Phase at High Temperature. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7459-7471. [PMID: 30676017 DOI: 10.1021/acsami.8b21664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ceramifiable polyolefin materials have an excellent application prospect in high-temperature-resistant wires and cables because of their excellent fire safety performance via a ceramization process under fire conditions. During the ceramization process, the control of the crystalline phase plays a vital role in determining the final fire resistance and ceramifiable properties. In this work, ammonium polyphosphate/zinc borate (APP/ZB) was developed to achieve the highly efficient flame retardance and ceramization of the ethylene-vinyl acetate/mica powder/organo-modified montmorillonite (EVA/MP/OMMT) composite. In the combustion test, the EVA/MP/OMMT/APP/ZB system displayed obvious flame retardance feature, showing much lower total heat release and total smoke production than neat EVA. After treating at high temperatures, rigid ceramic products were formed for EVA/MP/OMMT/APP/ZB. The ceramic that was formed at 900 °C had a flexural strength of 10.3 MPa for EVA/MP/OMMT/APP/ZB containing 23 wt % of APP/ZB (9.9:13.1), increased by 2475.0, 635.7, and 586.7% compared to the corresponding values of EVA/MP/OMMT, EVA/MP/OMMT/ZB, and EVA/MP/OMMT/APP. For the latter two systems, the content of ZB or APP was 23 wt %. APP/ZB showed a remarkable fluxing effect on the ceramization of the MP-based EVA composite. The fluxing mechanism of APP/ZB was revealed by different measurements. Both APP and ZB led to the formation of a glass melt containing α-Zn3(PO4)2 and orthophosphate by increasing the temperature. Successively, the melt crystalline structure cohered the OMMT and MP together, accompanied by the gradual disappearance of the mica phase and the generation of eutectic phenomenon. Finally, a ceramic with high flexural strength was formed, leading to the improved flame retardance and ceramifiable properties of EVA-based composites.
Collapse
Affiliation(s)
- Ying-Ming Li
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| | - Cong Deng
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| | - Xiao-Hui Shi
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| | - Bo-Ren Xu
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| | - Hong Chen
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| | - Yu-Zhong Wang
- College of Light Industry, Textile and Food Engineering, The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Analytical and Testing Center , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
26
|
Tan Y, Wachtendorf V, Klack P, Kukofka T, Ruder J, Schartel B. Durability of the flame retardance of ethylene‐vinyl acetate copolymer cables: Comparing different flame retardants exposed to different weathering conditions. J Appl Polym Sci 2019. [DOI: 10.1002/app.47548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Tan
- Bundesanstalt für Materialforschung und ‐prüfung Unter den Eichen 87, 12205 Berlin Germany
| | - Volker Wachtendorf
- Bundesanstalt für Materialforschung und ‐prüfung Unter den Eichen 87, 12205 Berlin Germany
| | - Patrick Klack
- Bundesanstalt für Materialforschung und ‐prüfung Unter den Eichen 87, 12205 Berlin Germany
| | - Tobias Kukofka
- Bundesanstalt für Materialforschung und ‐prüfung Unter den Eichen 87, 12205 Berlin Germany
| | - Jörg Ruder
- LEONI Kabel GmbH Stieberstraße 5, 91154 Roth Germany
| | - Bernhard Schartel
- Bundesanstalt für Materialforschung und ‐prüfung Unter den Eichen 87, 12205 Berlin Germany
| |
Collapse
|
27
|
Todea M, Muresan-Pop M, Simon S, Moisescu-Goia C, Simon V, Eniu D. XPS investigation of new solid forms of 5-fluorouracil with piperazine. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Hou S, Zhang YJ, Jiang P. Synergistic effects of synthetic phosphonium sulfonates with expandable graphite on flame retardancy for EVA rubber blends. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.04.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Li YM, Deng C, Long JW, Huang SC, Zhao ZY, Wang YZ. Improving fire retardancy of ceramifiable polyolefin system via a hybrid of zinc borate@melamine cyanurate. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Zhu C, He M, Liu Y, Cui J, Tai Q, Song L, Hu Y. Synthesis and application of a mono-component intumescent flame retardant for polypropylene. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2018.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Zhou F, Tien HN, Xu WL, Chen JT, Liu Q, Hicks E, Fathizadeh M, Li S, Yu M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO 2-philic agent for highly efficient CO 2 capture. Nat Commun 2017; 8:2107. [PMID: 29235466 PMCID: PMC5727382 DOI: 10.1038/s41467-017-02318-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/17/2017] [Indexed: 11/24/2022] Open
Abstract
Among the current CO2 capture technologies, membrane gas separation has many inherent advantages over other conventional techniques. However, fabricating gas separation membranes with both high CO2 permeance and high CO2/N2 selectivity, especially under wet conditions, is a challenge. In this study, sub-20-nm thick, layered graphene oxide (GO)-based hollow fiber membranes with grafted, brush-like CO2-philic agent alternating between GO layers are prepared by a facile coating process for highly efficient CO2/N2 separation under wet conditions. Piperazine, as an effective CO2-philic agent, is introduced as a carrier-brush into the GO nanochannels with chemical bonding. The membrane exhibits excellent separation performance under simulated flue gas conditions with CO2 permeance of 1,020 GPU and CO2/N2 selectivity as high as 680, demonstrating its potential for CO2 capture from flue gas. We expect this GO-based membrane structure combined with the facile coating process to facilitate the development of ultrathin GO-based membranes for CO2 capture. Membrane separation technologies show promise for CO2 capture, but typically suffer from a trade-off between permeance and selectivity. Here, the authors produce hollow fiber membranes coated with graphene oxide and a CO2-philic agent that can efficiently separate CO2 from flue gas under wet conditions.
Collapse
Affiliation(s)
- Fanglei Zhou
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Huynh Ngoc Tien
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Weiwei L Xu
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Jung-Tsai Chen
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Qiuli Liu
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Ethan Hicks
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Mahdi Fathizadeh
- Department of Chemical Engineering and Catalysis for Renewable Fuels Center, University of South Carolina, Columbia, SC, 29208, USA
| | - Shiguang Li
- Gas Technology Institute, 1700 S Mount Prospect Road, Des Plaines, IL, 60018, USA.
| | - Miao Yu
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
32
|
Capitalizing on the molybdenum disulfide/graphene synergy to produce mechanical enhanced flame retardant ethylene-vinyl acetate composites with low aluminum hydroxide loading. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Zheng T, Ni X. Loading the polyol carbonization agent into clay nanotubes for the preparation of environmentally stable UV-cured epoxy materials. J Appl Polym Sci 2017. [DOI: 10.1002/app.45045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tiancheng Zheng
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymer; Fudan University; Shanghai 200433 People's Republic of China
| | - Xiuyuan Ni
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymer; Fudan University; Shanghai 200433 People's Republic of China
| |
Collapse
|
34
|
Chen X, Chen Y. Synthesis of a hydrogen-bonded complex intumescent flame retardant through supramolecular complexation and its application in LDPE foam. RSC Adv 2017. [DOI: 10.1039/c7ra02790g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A supramolecular complexation method was used to synthesize a nitrogen–phosphorus hydrogen-bonded complex intumescent flame retardant, which can impart a good flame retardancy to LDPE foam.
Collapse
Affiliation(s)
- Xingyou Chen
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Yinghong Chen
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Shao ZB, Zhang MX, Han Y, Yang XD, Jin J, Jian RK. A highly efficient gas-dominated and water-resistant flame retardant for non-charring polypropylene. RSC Adv 2017. [DOI: 10.1039/c7ra09868e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, a novel mono-component and gas-dominated flame retardant, named DPPIP, was prepared through an amidation reaction of diphenylphosphinyl chloride and piperazine, and used to flame retard PP.
Collapse
Affiliation(s)
- Zhu-Bao Shao
- Institute of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- China
| | - Ming-Xin Zhang
- Institute of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- China
| | - Ye Han
- Institute of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- China
| | - Xu-Dong Yang
- Institute of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- China
| | - Jing Jin
- Institute of Chemical Engineering
- Changchun University of Technology
- Changchun 130012
- China
| | - Rong-Kun Jian
- Fujian Key Laboratory of Polymer Materials
- College of Materials Science and Engineering
- Fujian Normal University
- Fuzhou 350007
- China
| |
Collapse
|
36
|
Dong LP, Huang SC, Li YM, Deng C, Wang YZ. A Novel Linear-Chain Polyamide Charring Agent for the Fire Safety of Noncharring Polyolefin. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang-Ping Dong
- Center for Degradable and
Flame-Retardant Polymeric Materials, College of Chemistry, State Key
Laboratory of Polymer Materials Engineering, National Engineering
Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical
and Testing Center, Sichuan University, Chengdu 610064, China
| | - Sheng-Chao Huang
- Center for Degradable and
Flame-Retardant Polymeric Materials, College of Chemistry, State Key
Laboratory of Polymer Materials Engineering, National Engineering
Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical
and Testing Center, Sichuan University, Chengdu 610064, China
| | - Ying-Ming Li
- Center for Degradable and
Flame-Retardant Polymeric Materials, College of Chemistry, State Key
Laboratory of Polymer Materials Engineering, National Engineering
Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical
and Testing Center, Sichuan University, Chengdu 610064, China
| | - Cong Deng
- Center for Degradable and
Flame-Retardant Polymeric Materials, College of Chemistry, State Key
Laboratory of Polymer Materials Engineering, National Engineering
Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical
and Testing Center, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Center for Degradable and
Flame-Retardant Polymeric Materials, College of Chemistry, State Key
Laboratory of Polymer Materials Engineering, National Engineering
Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Analytical
and Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|