1
|
Osella MI, Salazar MO, Solís CM, Furlan RLE. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:4. [PMID: 39755857 DOI: 10.1007/s13659-024-00488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared. For the most bioactive mixture, a chemically modified propolis extract, enzyme inhibition increased 22 times due to the reaction sequence. Bio-guided fractionation led to the isolation of a new fluorinated pyrazole produced within the extract by chemical transformation of the flavonoid chrysin. The inhibitor results from the action of the two reagents used on four common functional groups present in natural products (carbonyl, phenol, aromatic carbon, and a double bond). The reactions led to the opening of a 6-member oxygenated heterocycle to produce a 5-member nitrogenated one, as well as the dehydroxylation and fluorination in two different positions of one of the aromatic rings of the natural starting material, all within a complex mixture of natural products. Overall, these transformations led to an approximately 20-fold increase in the α-glucosidase inhibition by the isolated inhibitor compared to its natural precursor.
Collapse
Affiliation(s)
- María I Osella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Mario O Salazar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Carlos M Solís
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Ricardo L E Furlan
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
2
|
Micheloni OB, Ramallo IA, Farroni AE, Furlan RLE. A simple thin-layer chromatography autography for the detection of peroxidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1722-1732. [PMID: 39049920 PMCID: PMC11263322 DOI: 10.1007/s13197-024-05946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 07/27/2024]
Abstract
Thin layer chromatography bioautographic assays facilitate the acquisition of activity-profile chromatograms and assist in pinpointing active constituents within complex mixtures by observing the inhibition halos they produce. Peroxidase is an enzyme implicated in the browning of different fresh cut vegetables and in several diseases. A peroxidase bioautographic assay was developed, based on enzyme agarose immobilization and the 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/radical cation (ABTS/ABTS·+) reporter system. Peroxidase was purified from potatoes with the aim to detect specific inhibitors. To reduce false positives, a non-enzymatic assay was also employed. The best results are obtained when a solution containing agarose, ABTS, hydrogen peroxide, and peroxidase in phosphate buffer is poured over the TLC plate (final concentrations: 0.031 mmoles/cm2, 0.239 µmoles/cm2, and 84.04 U/cm2) and incubated for 70 min. Limit of detection and quantification for quercetin is 0.16 µg and 0.54 µg, respectively. The developed system is able to detect quercetin in a Solidago chilensis Meyen extract and a peroxidase inhibitor in a Cichorium intybus L. extract. Therefore, the assay can detect inhibitory constituents in complex mixtures and differentiate between peroxidase inhibitors and ABTS·+ radical scavengers before any preparative fractionation, helping to take early operational decisions that can save time and resources. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-05946-w.
Collapse
Affiliation(s)
- Oscar Bernardo Micheloni
- Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires Argentina
| | - Ivana Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Abel Eduardo Farroni
- Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Buenos Aires Argentina
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria Pergamino, Instituto Nacional de Tecnología Agropecuaria, Pergamino, Buenos Aires Argentina
| | - Ricardo Luis Eugenio Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
3
|
Lescano LE, Salazar MO, Furlan RLE. Chemically engineered essential oils prepared through thiocyanation under solvent-free conditions: chemical and bioactivity alteration. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:35. [PMID: 38822174 PMCID: PMC11143095 DOI: 10.1007/s13659-024-00456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
The generation of chemically engineered essential oils (CEEOs) prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described. The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS, utilizing univariate and multivariate analysis. The reaction transformed most of the components in the natural mixtures, thereby expanding the chemical diversity of the mixtures. Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography, resulting in a threefold increase in the number of positive events due to the modification process. The chemically engineered Origanum vulgare L. essential oil was subjected to bioguided fractionation, leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme. The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase (AChE) inhibitors.
Collapse
Affiliation(s)
- Liz E Lescano
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
4
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
5
|
Cabezudo I, Salazar MO, Ramallo IA, Furlan RLE. Effect-directed analysis in food by thin-layer chromatography assays. Food Chem 2022; 390:132937. [PMID: 35569399 DOI: 10.1016/j.foodchem.2022.132937] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
Thin-layer chromatography (TLC) is widely used for food analysis and quality control. As an open chromatographic system, TLC is compatible with microbial-, biochemical-, and chemical-based derivatization methods. This compatibility makes it possible to run in situ bioassays directly on the plate to obtain activity-profile chromatograms, i.e., the effect-directed analysis of the sample. Many of the properties that can be currently measured using this assay format are related to either desired or undesired features for food related products. The TLC assays can detect compounds related to the stability of foods (antioxidant, antimicrobial, antibrowning, etc.), contaminants (antibiotics, pesticides, estrogenic compounds, etc.), and compounds that affect the absorption, metabolism or excretion of nutrients and metabolites or could improve the consumers health (enzyme inhibitors). In this article, different food related TLC-assays are reviewed. The different detection systems used, the way in which they are applied as well as selected examples are discussed.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
6
|
Cabezudo I, Ayelen Ramallo I, Alonso VL, Furlan RLE. Effect directed synthesis of a new tyrosinase inhibitor with anti-browning activity. Food Chem 2020; 341:128232. [PMID: 33039744 DOI: 10.1016/j.foodchem.2020.128232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
The inhibition of enzymatic browning is an attractive target to elevate the quality of foods. The objective of this work is to describe a novel platform for the discovery of tyrosinase inhibitors, based on (a) one-pot preparation of a library of thiosemicarbazide compounds, (b) biological evaluation using tyrosinase TLC bioautography, (c) inhibitor identification via mass spectrometry coupled to bioautography. During these proof-of-concept experiments, the approach led to the straightforward identification of a new thiosemicarbazone with improved tyrosinase inhibition properties and fresh-cut apple slices antibrowning effect when compared to kojic acid. In conclusion, the platform represents an interesting strategy for the discovery of this type of inhibitors.
Collapse
Affiliation(s)
- Ignacio Cabezudo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| | - I Ayelen Ramallo
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| | - Victoria L Alonso
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
7
|
Abstract
Enzymatic bioautography enables the detection of enzyme inhibitors absorbed on a thin-layer chromatography plate. Therefore, it is an assay format that is particularly useful for the detection of inhibitors present in complex mixtures. The inhibition properties of compounds separated by thin-layer chromatography can be directly analyzed to produce an inhibition profile. Here, we describe the conditions to detect inhibitor of the enzymes xanthine oxidase and β-glucosidase immobilized on agar gel.
Collapse
Affiliation(s)
- I Ayelen Ramallo
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Mario O Salazar
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina.
| |
Collapse
|
8
|
Solís CM, Salazar MO, Ramallo IA, García P, Furlan RLE. A Tyrosinase Inhibitor from a Nitrogen-Enriched Chemically Engineered Extract. ACS COMBINATORIAL SCIENCE 2019; 21:622-627. [PMID: 31361945 DOI: 10.1021/acscombsci.9b00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme tyrosinase is involved in the biosynthesis of melanin and the enzymatic browning of fruits and vegetables, and therefore, its inhibitors have potential to treat hyperpigmentary disorders or to function as food antibrowning agents. The use of hydrazine monohydrate as a reagent to prepare chemically engineered extracts can lead to semisynthetic compounds that contain the portion N-N, a fragment rarely found in natural products and present in some tyrosinase inhibitors. Here, we report the tyrosinase inhibition screening of a series of chemically engineered extracts that are diversified by reaction with hydrazine. LC-MS was used to evaluate the change in composition produced by the reaction. Bioguided fractionation of the most active chemically engineered extract, prepared from Matricaria recutita L., led to the discovery of a pyrazole that inhibits tyrosinase with an IC50 value of 28.20 ± 1.13 μM. This compound was produced by a one-pot double chemical transformation of its natural precursor, which includes an unexpected selective removal of one -OH group.
Collapse
Affiliation(s)
- Carlos M. Solís
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Mario O. Salazar
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - I. Ayelen Ramallo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Paula García
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
9
|
Andriana Y, Xuan TD, Quy TN, Tran HD, Le QT. Biological Activities and Chemical Constituents of Essential Oils from Piper cubeba Bojer and Piper nigrum L. Molecules 2019; 24:E1876. [PMID: 31096694 PMCID: PMC6571889 DOI: 10.3390/molecules24101876] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
In this study, we evaluated antioxidant, antihyperuricemic, and herbicidal activities of essential oils (EOs) from Piper cubeba Bojer and Piper nigrum L.; two pepper species widely distributed in tropics, and examined their chemical compositions. Dried berries of P. cubeba and P. nigrum were hydro-distilled to yield essential oil (EO) of 1.23 and 1.11% dry weight, respectively. In the antioxidant assay, the radical scavenging capacities of P. cubeba EO against DPPH and ABTS free radicals were 28.69 and 24.13% greater than P. nigrum, respectively. In the antihyperuricemic activity, P. cubeba EO also exhibited stronger inhibitory effects on xanthine oxidase (IC50 = 54.87 µg/mL) than P. nigrum EO (IC50 = 77.11 µg/mL). In the herbicidal activity, P. cubeba EO showed greater inhibition on germination and growth of Bidens pilosa and Echinochloa crus-galli than P. nigrum EO. Besides, P. cubeba EO decreased 15.98-73.00% of photosynthesis pigments of B. pilosa and E. crus-galli, while electrolyte leakages, lipid peroxidations, prolines, phenolics, and flavonoids contents were increased 10.82-80.82% at 1.93 mg/mL dose. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analyses revealed that P. nigrum and P. cubeba EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. Terpinen-4-ol (42.41%), α-copaene (20.04%), and γ-elemene (17.68%) were the major components of P. cubeba EO, whereas β-caryophyllene (51.12%) and β-thujene (20.58%) were the dominant components of P. nigrum EO. Findings of this study suggest both P. cubeba and P. nigrum EOs were potential to treat antioxidative stress and antihyperuricemic related diseases. In addition, the EOs of the two plants may be useful to control B. pilosa and E. crus-galli, the two invasive and problematic weeds in agriculture practice.
Collapse
Affiliation(s)
- Yusuf Andriana
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
- Research Center for Appropriate Technology, Indonesian Institute of Sciences, Jl. KS. Tubun No. 5, Subang 41213, Indonesia.
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Ngoc Quy
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 72820, Vietnam.
| | - Quang-Tri Le
- Department of Orthopedic, 7A Military Hospital, 466 Nguyen Trai Street, Ward 8, District 5, Ho Chi Minh City 72706, Vietnam.
| |
Collapse
|
10
|
Kikuchi H, Kawai K, Nakashiro Y, Yonezawa T, Kawaji K, Kodama EN, Oshima Y. Construction of a Meroterpenoid-Like Compounds Library Based on Diversity-Enhanced Extracts. Chemistry 2018; 25:1106-1112. [PMID: 30379362 DOI: 10.1002/chem.201805417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/11/2022]
Abstract
The structural diversity of natural products and their derivatives have long contributed to the development of new drugs. However, the difficulty in obtaining compounds bearing skeletally novel structures has recently led to a decline of pharmaceutical research into natural products. This paper reports the construction of a meroterpenoid-like library containing 25 compounds with diverse molecular scaffolds obtained from diversity-enhanced extracts. This method constitutes an approach for increasing the chemical diversity of natural-product-like compounds by combining natural product chemistry and diversity-oriented synthesis. Extensive pharmacological screening of the library revealed promising compounds for anti-osteoporotic and anti-lymphoma/leukemia drugs. This result indicates that the use of diversity-enhanced extracts is an effective methodology for producing chemical libraries for the purpose of drug discovery.
Collapse
Affiliation(s)
- Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Kosuke Kawai
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Yota Nakashiro
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Takayuki Yonezawa
- Reseach Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | - Kumi Kawaji
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University and Tohoku Medical Megabank Organization, Sendai, 980-8575, Japan
| | - Eiichi N Kodama
- Division of Infectious Diseases, International Research Institute of Disaster Science, Tohoku University and Tohoku Medical Megabank Organization, Sendai, 980-8575, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
11
|
eicCluster software, an open-source in silico tool, and on-surface syntheses, an in situ concept, both exploited for signal highlighting in high-resolution mass spectrometry to ease structure elucidation in planar chromatography. J Chromatogr A 2018; 1577:101-108. [DOI: 10.1016/j.chroma.2018.09.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 11/20/2022]
|
12
|
A Bioactive Trypanosoma cruzi Bromodomain Inhibitor from Chemically Engineered Extracts. ACS COMBINATORIAL SCIENCE 2018; 20:220-228. [PMID: 29481050 DOI: 10.1021/acscombsci.7b00172] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A set of chemically engineered extracts enriched in compounds including N-N and N-O fragments in their structures was prepared. Bromodomain binding screening and bioguided fractionation led to the identification of one oxime hit that interacts with TcBDF3 with affinity in the submicromolar range and that shows interesting antiparasitic properties against the different life cycle stages of T. cruzi.
Collapse
|
13
|
Salazar MO, Osella MI, Ramallo IA, Furlan RLE. Nα-arylsulfonyl histamines as selective β-glucosidase inhibitors. RSC Adv 2018; 8:36209-36218. [PMID: 35558478 PMCID: PMC9088825 DOI: 10.1039/c8ra06625f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/19/2018] [Indexed: 12/23/2022] Open
Abstract
Nα-benzenesulfonylhistamine, a new semi-synthetic β-glucosidase inhibitor, was obtained by bioactivity-guided isolation from a chemically engineered extract of Urtica urens L. prepared by reaction with benzenesulfonyl chloride. In order to identify better β-glucosidase inhibitors, a new series of Nα,Nτ-di-arylsulfonyl and Nα-arylsulfonyl histamine derivatives was prepared. Biological studies revealed that the β-glucosidase inhibition was in a micromolar range for several Nα-arylsulfonyl histamine compounds of the series, Nα-4-fluorobenzenesulfonyl histamine being the most powerful compound. Besides, this reversible and competitive inhibitor presented a good selectivity for β-glucosidase with respect to other target enzymes including α-glucosidase. A selective β-glucosidase inhibitor was discovered using the chemically engineered extracts approach.![]()
Collapse
Affiliation(s)
- M. O. Salazar
- Farmacognosia
- Departamento de Química Orgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario S2002LRK
| | - M. I. Osella
- Farmacognosia
- Departamento de Química Orgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario S2002LRK
| | - I. A. Ramallo
- Farmacognosia
- Departamento de Química Orgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario S2002LRK
| | - R. L. E. Furlan
- Farmacognosia
- Departamento de Química Orgánica
- Facultad de Ciencias Bioquímicas y Farmacéuticas
- Universidad Nacional de Rosario
- Rosario S2002LRK
| |
Collapse
|
14
|
Oshima Y, Kikuchi H. Developments toward the Production of Diverse Natural-Product-Like Compounds: Diversity-Oriented Synthesis and Diversity-Enhanced Extracts. HETEROCYCLES 2018. [DOI: 10.3987/rev-18-885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Bräm S, Wolfram E. Recent Advances in Effect-directed Enzyme Assays based on Thin-layer Chromatography. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:74-86. [PMID: 28146298 DOI: 10.1002/pca.2669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Thin-layer chromatography (TLC) together with its more modern form high-performance thin-layer chromatography (HPTLC) is a rapid and cost effective analytical tool with a long tradition in quality control of medicinal plants, extracts and natural products. Separated compounds are fixed on the solid silica phase to form a compound library. Through direct coupling of visualisable enzyme reactions on the TLC plate, this compound library can also be used for activity screening. Such TLC-based bioautographic enzyme and enzyme inhibition assays complement first stage development activity screening assays. They provide not only phytochemical results by chromatographic separation, but also additional information about the activity of constituents or fractions in multi-compound mixtures, and thus can reveal and distinguish artefacts generated by certain compound classes. This review summarises recently introduced TLC bioautographic enzyme assays as well as advances in already existing procedures. Bioautographic enzyme and enzyme inhibitory assays offer a rapid, high-throughput method for screening of secondary metabolite profiles for potential enzyme and enzyme inhibitory activities. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sarah Bräm
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Phytopharmacy and Natural Products Research Group, CH, -8820, Wädenswil, Switzerland
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Phytopharmacy and Natural Products Research Group, CH, -8820, Wädenswil, Switzerland
| |
Collapse
|
16
|
Kikuchi H, Oshima Y. Development of Natural Product-Like Compound Library for Drug Discovery Based on Diversity-Enhanced Extracts. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|