1
|
Senina A, Prudnikau A, Wrzesińska-Lashkova A, Vaynzof Y, Paulus F. Cation exchange synthesis of AgBiS 2 quantum dots for highly efficient solar cells. NANOSCALE 2024. [PMID: 38497100 DOI: 10.1039/d3nr06128k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Silver bismuth sulfide (AgBiS2) nanocrystals have emerged as a promising eco-friendly, low-cost solar cell absorber material. Their direct synthesis often relies on the hot-injection method, requiring the application of high temperatures and vacuum for prolonged times. Here, we demonstrate an alternative synthetic approach via a cation exchange reaction. In the first-step, bis(stearoyl)sulfide is used as an air-stable sulfur precursor for the synthesis of small, monodisperse Ag2S nanocrystals at room-temperature. In a second step, bismuth cations are incorporated into the nanocrystal lattice to form ternary AgBiS2 nanocrystals, without altering their size and shape. When implemented into photovoltaic devices, AgBiS2 nanocrystals obtained by cation exchange reach power conversion efficiencies of up to 7.35%, demonstrating the efficacy of the new synthetic approach for the formation of high-quality, ternary semiconducting nanocrystals.
Collapse
Affiliation(s)
- Alina Senina
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Anatol Prudnikau
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
| | - Angelika Wrzesińska-Lashkova
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Chair for Emerging Electronic Technologies, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
| | - Yana Vaynzof
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Chair for Emerging Electronic Technologies, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| | - Fabian Paulus
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtzstraße 18, 01069 Dresden, Germany
| |
Collapse
|
2
|
Younis MA. Clinical translation of silver nanoparticles into the market. SILVER NANOPARTICLES FOR DRUG DELIVERY 2024:395-432. [DOI: 10.1016/b978-0-443-15343-3.00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Loshchinina EA, Vetchinkina EP, Kupryashina MA. Diversity of Mycogenic Oxide and Chalcogenide Nanoparticles: A Review. Biomimetics (Basel) 2023; 8:224. [PMID: 37366819 DOI: 10.3390/biomimetics8020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Oxide and chalcogenide nanoparticles have great potential for use in biomedicine, engineering, agriculture, environmental protection, and other research fields. The myco-synthesis of nanoparticles with fungal cultures, their metabolites, culture liquids, and mycelial and fruit body extracts is simple, cheap and environmentally friendly. The characteristics of nanoparticles, including their size, shape, homogeneity, stability, physical properties and biological activity, can be tuned by changing the myco-synthesis conditions. This review summarizes the data on the diversity of oxide and chalcogenide nanoparticles produced by various fungal species under different experimental conditions.
Collapse
Affiliation(s)
- Ekaterina A Loshchinina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Elena P Vetchinkina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Maria A Kupryashina
- Laboratory of Microbiology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
4
|
Durante‐Rodríguez G, Carmona M, Díaz E. Novel approaches to energize microbial biocatalysts. Environ Microbiol 2023; 25:161-166. [PMID: 36263658 PMCID: PMC10100456 DOI: 10.1111/1462-2920.16254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 01/21/2023]
Abstract
An efficient and cheap energization of microbial biocatalysts is essential in current biotechnological processes. A promising alternative to the use of common organic or inorganic electron donors is the semiconductor nanoparticles (SNs) that absorb light and transfer electrons (photoelectrons) behaving as artificial photosynthetic systems (biohybrid systems). Excited photoelectrons generated by illuminated SNs are highly reductive and readily accepted by membrane-bound proteins and electron shuttles to drive specific cell reduction processes and energy generation in microbes. However, the operational mechanisms of these hybrid systems are still poorly understood, especially at the material-microbe interface, and therefore the design and production of efficient biohybrids are challenging. Some major limitations/challenges and future prospects of SNs as microbial energization systems are discussed.
Collapse
Affiliation(s)
- Gonzalo Durante‐Rodríguez
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Manuel Carmona
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| | - Eduardo Díaz
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas Margarita Salas‐CSICMadridSpain
| |
Collapse
|
5
|
Öcal N, Ceylan A, Duman F. Eco-Friendly Intracellular Biosynthesis of CdS Quantum Dots Using Pseudomonas aeruginosa: Evaluation of Antimicrobial Effects and DNA Cleavage Activities. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:59-67. [PMID: 34825647 DOI: 10.2174/1872210515666210719122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Intracellular biosynthesis of Quantum Dots (QDs) based on microorganisms offers a green alternative and eco-friendly for the production of nanocrystals with superior properties. This study focused on the production of intracellular CdS QDs by stimulating the detoxification metabolism of Pseudomonas aeruginosa. METHODS For this aim, Pseudomonas aeruginosa ATCC 27853 strain was incubated in a solution of 1mM cadmium sulphate (CdSO4) to manipulate the detoxification mechanism. The intracellularly formed Cd-based material was extracted, and its characterization was carried out by Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Energy Dispersive X-ray (EDX) and dynamic light scattering (DLS) analyses and absorption-emission spectra. RESULTS The obtained material showed absorption peaks at 385 nm and a luminescence peak at 411 nm, and the particle sizes were measured in the range 4.63-17.54 nm. It was determined that the material was sphere-shaped, with a cubic crystalline structure, including Cd and S elements. The antibacterial and antifungal activities of CdS QDs against patent eleven bacterial (four Grampositive and seven Gram-negative) and one fungal strains were investigated by the agar disk diffusion method. It was revealed that the obtained material has antibacterial effects on both Grampositive and Gram-negative bacteria. However, cleavage activity of CdS QDs on pBR322 DNA was not detected. CONCLUSION As a result, it has been proposed that the stimulation of the detoxification mechanism can be an easy and effective way of producing green and cheap luminescent QDs or nanomaterial.
Collapse
Affiliation(s)
- Necip Öcal
- Department of Biology, Faculty of Science, Erciyes University, 38280, Kayseri, Turkey
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Fatih Duman
- Department of Biology, Faculty of Science, Erciyes University, 38280, Kayseri, Turkey
| |
Collapse
|
6
|
Zeng T, Hu Q, Rene ER, Lens PNL. Microbial community and extracellular polymeric substances analysis of anaerobic granular sludge exposed to selenate, cadmium and zinc. Microb Biotechnol 2022; 16:463-473. [PMID: 36478398 PMCID: PMC9871511 DOI: 10.1111/1751-7915.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022] Open
Abstract
The microbial community and extracellular polymeric substances composition of anaerobic granular sludge exposed to selenate (~10 mg/L), cadmium (Cd) and zinc (Zn) (~2 and 5 mg/L) were investigated by high-throughput sequencing and fluorescence excitation emission matrix (FEEM) spectra, respectively. As a response to selenate, Cd and/or Zn exposure, significant fluorescence quenching of fulvic-like acids and humic-like substances was observed. With selenate, Cd and/or Zn in the influent with respective concentrations of 10, 5 and 5 mg/L, the abundance of the phyla Proteobacteria, Firmicutes, Spirochaetae, Cloacimonetes and Synergistetes increased significantly, and the dominant taxa in the anaerobic granular sludge exposed to Se, Cd and/or Zn were Halothiobacillaceae (10.2%), Pseudomonas (8.8%), Synergistaceae (7.7%), Spirochaetaceae (7.2%), Blvii28 wastewater sludge group (6.7%), Telmatospirillum (4.6%), Veillonellaceae (4.3%), Geobacter (4.0%) and Enterobacteriaceae (3.0%). Compared with the inoculum, the abundance of the archaea Methanobacterium and Methanosaeta decreased to below detection limit in the UASB reactor after 116 days exposure to Se, Cd and Zn.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse TechnologyUniversity of South ChinaHengyangChina
| | - Qing Hu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse TechnologyUniversity of South ChinaHengyangChina
| | - Eldon R. Rene
- UNESCO‐IHE Institute for Water EducationDelftThe Netherlands
| | - Piet N. L. Lens
- UNESCO‐IHE Institute for Water EducationDelftThe Netherlands
| |
Collapse
|
7
|
Stephanie R, Kim BB, Xu P, Choi Y, Park CY, Park TJ. In vitro biosynthesis of iron selenide nanoparticles for imageable drug delivery platform. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Sinharoy A, Lens PNL. Biological selenate and selenite reduction by waste activated sludge using hydrogen as electron donor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115745. [PMID: 35853309 DOI: 10.1016/j.jenvman.2022.115745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Biological reduction of selenium oxyanions is widely used for selenium removal from wastewater. The process is, however, limited by the availability of a suitable, efficient and low cost electron donor. In this study, selenite and selenate reduction by waste activated sludge using hydrogen as the electron donor was investigated. Both selenite and selenate (80 mg/L) were completely removed using H2 within 8 days of incubation. In the presence of sulfate in the medium, the Se removal efficiency decreased to 77.8-95.4% (for selenite) and 88.2-99.4% (for selenate) at different temperatures and initial sulfate concentrations. Thermophilic conditions (50 °C) were better suited for both selenite and selenate reduction using H2 as electron donor with a 0.8-13.5% increase in overall Se removal. Similarly, sulfate reduction also increased from 69.1- 88% at 30 °C to 72-94.6% at 50 °C. Most of the H2 utilized was diverted towards Se and sulfate reduction with minimal production of byproducts such as methane (<0.32 mM) or volatile fatty acids (<0.92 mg/L). The elemental Se produced from selenite and selenate reduction ranged between 33.9 and 52.1 mg/L. The elemental selenium nanoparticles produced as a result of selenite and selenate reduction were characterized using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and dynamic light scattering (DLS) spectroscopy. Furthermore, characterization of the biomass using Fourier-transform infrared spectroscopy (FTIR) and excitation emission matrix (EEM) spectra of the extracellular polymeric substances (EPS) produced by the waste activated sludge were performed to elucidate the mechanism of selenium oxyanion reduction to elemental selenium nanoparticles.
Collapse
Affiliation(s)
- Arindam Sinharoy
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland.
| | - Piet N L Lens
- National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
9
|
Emerging Roles of Green-Synthesized Chalcogen and Chalcogenide Nanoparticles in Cancer Theranostics. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6176610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The last few decades have seen an overwhelming increase in the amount of research carried out on the use of inorganic nanoparticles. More fascinating is the tremendous progress made in the use of chalcogen and chalcogenide nanoparticles in cancer theranostics. These nanomaterials, which were initially synthesized through chemical methods, have now been efficiently produced using different plant materials. The paradigm shift towards the biogenic route of nanoparticle synthesis stems from its superior advantages of biosafety, eco-friendliness, and simplicity, among others. Despite a large number of reviews available on inorganic nanoparticle synthesis through green chemistry, there is currently a dearth of information on the green synthesis of chalcogens and chalcogenides for cancer research. Nanoformulations involving chalcogens such as sulfur, selenium, and tellurium and their respective chalcogenides have recently emerged as promising tools in cancer therapeutics and diagnosis. Similar to other inorganic nanoparticles, chalcogens and chalcogenides have been synthesized using plant extracts and their purified biomolecules. In this review, we provide an up-to-date discussion of the recent progress that has been made in the plant-mediated synthesis of chalcogens and chalcogenides with a special focus on their application in cancer theranostics.
Collapse
|
10
|
Abdellatif AAH, Younis MA, Alsharidah M, Al Rugaie O, Tawfeek HM. Biomedical Applications of Quantum Dots: Overview, Challenges, and Clinical Potential. Int J Nanomedicine 2022; 17:1951-1970. [PMID: 35530976 PMCID: PMC9076002 DOI: 10.2147/ijn.s357980] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the massive advancements in the nanomedicines and their associated research, their translation into clinically-applicable products is still below promises. The latter fact necessitates an in-depth evaluation of the current nanomedicines from a clinical perspective to cope with the challenges hampering their clinical potential. Quantum dots (QDs) are semiconductors-based nanomaterials with numerous biomedical applications such as drug delivery, live imaging, and medical diagnosis, in addition to other applications beyond medicine such as in solar cells. Nevertheless, the power of QDs is still underestimated in clinics. In the current article, we review the status of QDs in literature, their preparation, characterization, and biomedical applications. In addition, the market status and the ongoing clinical trials recruiting QDs are highlighted, with a special focus on the challenges limiting the clinical translation of QDs. Moreover, QDs are technically compared to other commercially-available substitutes. Eventually, we inspire the technical aspects that should be considered to improve the clinical fate of QDs.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, Al Qassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
11
|
Srinivasan A, Gayathri G, Muthupandi M, Rajasekar K, Ameen KB, Pandaram P, Ramasubbu A. Eco-benign Synthesis, Characterization of CdS-QDs/Casein Bionanocomposite Towards Anti-microbial, Anti-hemolytic and Cytotoxicity in A549 & MCF-7 Cells. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yanchatuña Aguayo OP, Mouheb L, Villota Revelo K, Vásquez-Ucho PA, Pawar PP, Rahman A, Jeffryes C, Terencio T, Dahoumane SA. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022; 27:458. [PMID: 35056773 PMCID: PMC8779671 DOI: 10.3390/molecules27020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.
Collapse
Affiliation(s)
- Oscar P. Yanchatuña Aguayo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Katherine Villota Revelo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Paola A. Vásquez-Ucho
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Prasad P. Pawar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Si Amar Dahoumane
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
13
|
Bakhsh EM, Khan MI. Clove oil-mediated green synthesis of silver-doped cadmium sulfide and their photocatalytic degradation activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Abstract
Fungi are key organisms of the biosphere with major roles in organic-matter decomposition, element cycling, plant pathogenicity, and symbioses in aquatic and terrestrial habitats. The vast majority exhibit a filamentous, branching growth form and are aerobic chemoorganotrophs that derive carbon and energy from organic substances, and are particularly associated with soil, the plant-root zone, and rock surfaces. It is now known that some fungi are lithotrophs, deriving energy from the oxidation of inorganic materials, whereas others are photoheterotrophs, deriving additional energy from light for organic matter utilization when oxygen is limited. This means that fungi are of much wider environmental significance than previously thought and explains their ubiquity in locations previously thought to be inimical to fungal existence, such as the deep subsurface and other anaerobic locations. In addition to such free-living species, fungi associated with photosynthetic partners are also of profound biosphere importance. For example, lichens, which are composed of a symbiotic association between a fungus and a phototrophic alga and/or cyanobacterium, are pioneer colonizers and bioweathering agents of rocks and minerals. Mycorrhizas are symbiotic, plant-root-associated fungi found to colonize the majority of plant genera, where they improve plant nutrition through solubilization of essential metals and phosphate from soil minerals. Biomineralization in the soil can also immobilize toxic metals in the vicinity of plant roots, thereby benefiting plant colonization and facilitating revegetation of contaminated habitats. Wherever fungi are found, transformation of metals and minerals is a key aspect of their activity, with biomineralization an important feature. Fungal biomineralization is an important facet of geomycology - namely the roles of fungi in geochemical and geophysical processes. This article seeks to highlight the concept of biomineralization as applied to fungi, the occurrence and significance of important fungal biominerals in natural and synthetic environments, and the applied potential of fungal biomineralization in nanobiotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Changping District, Beijing 102249, China.
| |
Collapse
|
15
|
Zeng T, Hu Q, Zhang X, Nong H, Wang A. Biological Removal of Se and Cd from Acidic Selenite- and Cadmium-containing Wastewater with Limited Carbon Availability. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:1208-1219. [PMID: 34173010 DOI: 10.1007/s00128-021-03302-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
This study presents a successful treatment of biological acidic Se(IV)- and Cd(II)-containing wastewater via the SBR with limited carbon source (100 mg/L COD). Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS), high solution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrometer (XPS) results verified the formation of elemental Se and CdSe nanoparticles in the sludge. The abundance of genera in the microbial community gradually changed over the treatment phases depending on the Se(IV) and Cd(II) exposure with different influent COD concentrations. The taxa of Proteiniclasticum, Clostridium_sensu_stricto_12, Longilinea and Mycobacterium were dominant. Redundancy analysis (RDA) indicates that COD concentrations had the greatest impact on Zoogloea and Pseudomonas by promoting an increased abundance and decreased abundance, respectively. Overall, the results extended our understanding of the mechanisms and microbial community responding for the Se(IV) and Cd(II) removal under limited carbon availability in acidic wastewater.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
| | - Qing Hu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Xiaoling Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Haidu Nong
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China
| | - Aijie Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, China.
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
16
|
Rahman MM, Opo FADM, Asiri AM. Cytotoxicity Study of Cadmium-Selenium Quantum Dots (Cdse QDs) for Destroying the Human HepG2 Liver Cancer Cell. J Biomed Nanotechnol 2021; 17:2153-2164. [PMID: 34906276 DOI: 10.1166/jbn.2021.3181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this approach, Hepatocellular carcinoma (HCC) is originated from hepatocytes cell, which can spread several parts in the body. It increases the death rate of cancer patients and more common in men rather than female. Patients having large tumor are growing through expensive treatment such as chemotherapy, radiotherapy and surgery. Nano medicine such as nano-dimensional particles as well as quantum dots might be an alternative treatment with greater efficiency in cancer biology field. Modification of surface and chemical properties of cadmium groups quantum dots can easily penetrate into the cancer cell without harming normal tissues. Here, Cadmium-Selenium Quantum Dot nanomaterials (CdSe QDs) have been prepared in solution phase with 0.1 M concentration, which was potentially applied for the destroying of HepG2 cancer cell with 24 hour and 36 hour of incubation. Due to their size, surface properties, lower cost, QDs can easily attached to the cell and able to damage the cells more rapidly in vitro process. For cell death, gene expression and morphological changing analysis were completed MTT, Flow Cytometry, qRT-PCR assay. Finally, the cell deaths were observed by cell shrinkage, rupture of membrane and expression of apoptotic gene (Bcl2, Beta catenin, Bax) were positive comparing untreated HepG2 cell line.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Firoz A D M Opo
- Department of Biomedical Science, College of Natural Sciences, Chosun University, Chosun, 61452, South Korea
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
17
|
Olawale F, Ariatti M, Singh M. Biogenic Synthesis of Silver-Core Selenium-Shell Nanoparticles Using Ocimum tenuiflorum L.: Response Surface Methodology-Based Optimization and Biological Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2516. [PMID: 34684956 PMCID: PMC8539562 DOI: 10.3390/nano11102516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles (BNPs) have shown better biological potential compared to their monometallic counterparts owing to the synergistic effect produced by these alloys. In this study, selenium-capped silver nanoparticles (Ag@Se NPs) were synthesized using an Ocimum tenuiflorum extract. These BNPs were characterized using UV-visible, Fourier transform infrared spectroscopy, nanoparticle tracking analysis, electron microscopy and energy dispersive x-ray analysis. Response surface methodology was used to understand how extract volume and temperature influenced the zeta potential, hydrodynamic size and NP concentration. The phytoconstituents were identified using gas chromatography-mass spectrometry (GC-MS) and molecular docking studies were performed on B-DNA to determine possible genotoxicity. Antioxidant activities, in vitro cytotoxicity (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay), and genotoxicity (Allium cepa root cells) of these BNPs, were also evaluated. A surface plasmon resonance band around 420 nm confirmed BNP formation with significant quantities of silver and selenium. The Ag@Se NPs displayed good stability, dispersity, antioxidant activity, and compatibility at low concentrations but showed significant cytotoxicity and genotoxicity at high concentrations. Molecular docking analysis showed weak interactions between the plant constituents and B-DNA, suggesting no genotoxicity. These results provide an insight into the conditions required for optimal production of eco-friendly Ag@Se NPs with interesting biological properties.
Collapse
Affiliation(s)
| | | | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (F.O.); (M.A.)
| |
Collapse
|
18
|
Qi S, Chen J, Bai X, Miao Y, Yang S, Qian C, Wu B, Li Y, Xin B. Quick extracellular biosynthesis of low-cadmium Zn x Cd 1-x S quantum dots with full-visible-region tuneable high fluorescence and its application potential assessment in cell imaging. RSC Adv 2021; 11:21813-21823. [PMID: 35478832 PMCID: PMC9034088 DOI: 10.1039/d1ra04371d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
The biosynthesis of metal nanoparticles/QDs has been universally recognized as environmentally sound and energy-saving, generating less pollution and having good biocompatibility, which is most needed in biological and medical fields. In the arena of chemical routes, however, biosynthesis has long been criticized for its low productivity, time-consuming process, and poor control over size, shape and crystallinity, keeping the much-needed technology away from practical application. In this work, a rapid and extracellular biosynthesis of multi-colour ternary Zn x Cd1-x S QDs by a mixed sulfate-reducing bacteria (SRB)-derived supernatant was carried out for the first time to solve the problems plaguing this field of biosynthesis. The results showed that about 3.5 g L-1 of Zn x Cd1-x S QDs with size of 3.50-4.64 nm were achieved within 30 minutes. The PL emission wavelength of Zn x Cd1-x S QDs increased from 450 to 590 nm to yield multicolor QDs by altering the molar ratio of Cd2+ to Zn2+. The SRB-biogenic Zn x Cd1-x S QDs have high stability in gastric acid and at high temperature, as well as excellent biocompatibility and biosafety, successfully entering growing HeLa cells and labelling them without detectable harm to cells. The SRB-secreted peculiar extracellular proteins (EPs) play a decisive function in the time-saving, high-yield biosynthesis of PL-tuned multicolor QDs, which cover an abnormally high concentration of acidic amino acids to provide tremendous negatively charged sites for the absorption of Cd2+/Zn2+ for rapid nucleation and biosynthesis. The strongly electrostatic connection between the QDs and the EPs and the increasing amount of EPs attached to the QDs in response to the increase of Cd2+ concentration account for their high stability and excellent biocompatibility.
Collapse
Affiliation(s)
- Shiyue Qi
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ji Chen
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Xianwei Bai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Yahui Miao
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Shuhui Yang
- Everdisplay Optronics (Shanghai) Co., Ltd. Shanghai 201506 P. R. China
| | - Can Qian
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Borong Wu
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Yanjun Li
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| | - Baoping Xin
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 P. R. China
| |
Collapse
|
19
|
Moazampour M, Zare HR, Shekari Z. Femtomolar determination of an ovarian cancer biomarker (miR-200a) in blood plasma using a label free electrochemical biosensor based on L-cysteine functionalized ZnS quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2021-2029. [PMID: 33956002 DOI: 10.1039/d1ay00330e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, a label-free electrochemical genosensor was designed based on ZnS quantum dots functionalized with l-cysteine (Cys-ZnS-QDs) to detect miR-200a, as a special ovarian cancer biomarker. The Cys-ZnS-QD genosensor was characterized by transmission electron microscopy (TEM), UV-Vis absorption and fluorescence methods. Cys-ZnS-QDs are electrodeposited on the glassy carbon electrode surface and act as a suitable substrate for immobilization of the DNA probe. The effective parameters in the preparation of the genosensor are optimized to improve its analytical performance. The analytical performance of the genosensor has been investigated using electrochemical impedance spectroscopy. Under optimal conditions, the linear range and the detection limit of miR-200a were found to be 1.0 × 10-14 to 1.0 × 10-6 M and 8.4 fM. In addition, the genosensor is used to detect the target complementary miRNA strand from a single-base mismatch miRNA strand. Finally, this label-free electrochemical biosensor was used to detect miR-200a in human plasma without using any amplification method.
Collapse
Affiliation(s)
- Mahboobe Moazampour
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Hamid R Zare
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| | - Zahra Shekari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran.
| |
Collapse
|
20
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
21
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
22
|
Kargozar S, Hoseini SJ, Milan PB, Hooshmand S, Kim H, Mozafari M. Quantum Dots: A Review from Concept to Clinic. Biotechnol J 2020; 15:e2000117. [DOI: 10.1002/biot.202000117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre Iran University of Medical Sciences Tehran Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacology, Faculty of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN) Dankook University Cheonan Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Dankook University Cheonan Republic of Korea
- Department of Biomaterials Science, School of Dentistry Dankook University Cheonan Republic of Korea
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Intracellular biosynthesis of PbS quantum dots using Pseudomonas aeruginosa ATCC 27853: evaluation of antibacterial effects and DNA cleavage activities. World J Microbiol Biotechnol 2020; 36:147. [DOI: 10.1007/s11274-020-02917-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
|
24
|
Kuroda M, Suda S, Sato M, Ayano H, Ohishi Y, Nishikawa H, Soda S, Ike M. Biosynthesis of bismuth selenide nanoparticles using chalcogen-metabolizing bacteria. Appl Microbiol Biotechnol 2019; 103:8853-8861. [PMID: 31642950 DOI: 10.1007/s00253-019-10160-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
Abstract
Cost and energy reductions in the production process of bismuth chalcogenide (BC) semiconductor materials are essential to make thermoelectric generators comprised of BCs profitable and CO2 neutral over their life cycle. In this study, as an eco-friendly production method, bismuth selenide (Bi2Se3) nanoparticles were synthesized using the following five strains of chalcogen-metabolizing bacteria: Pseudomonas stutzeri NT-I, Pseudomonas sp. RB, Stenotrophomonas maltophilia TI-1, Ochrobactrum anthropi TI-2, and O. anthropi TI-3 under aerobic conditions. All strains actively volatilized selenium (Se) by reducing selenite, possibly to organoselenides. In the growth media containing bismuth (Bi) and Se, all strains removed Bi and Se concomitantly and synthesized nanoparticles containing Bi and Se as their main components. Particles synthesized by strain NT-I had a theoretical elemental composition of Bi2Se3, whereas those synthesized by other strains contained a small amount of sulfur in addition to Bi and Se, making strain NT-I the best Bi2Se3 synthesizer among the strains used in this study. The particle sizes were 50-100 nm in diameter, which is sufficiently small for nanostructured semiconductor materials that exhibit quantum size effect. Successful synthesis of Bi2Se3 nanoparticles could be attributed to the high Se-volatilizing activities of the bacterial strains. Selenol-containing compounds as intermediates of Se-volatilizing metabolic pathways, such as methane selenol and selenocysteine, may play an important role in biosynthesis of Bi2Se3.
Collapse
Affiliation(s)
- Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Soshi Suda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Sato
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Ayano
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Kurita Water Industries Ltd, 1-1 Kawada, Nogi-machi, Shimotsuga-Gun, Tochigi, 329-0105, Japan
| | - Yuji Ohishi
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroshi Nishikawa
- Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Osaka, Ibaraki, 567-0047, Japan
| | - Satoshi Soda
- Department of Civil and Environmental Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
Gallardo-Benavente C, Carrión O, Todd JD, Pieretti JC, Seabra AB, Durán N, Rubilar O, Pérez-Donoso JM, Quiroz A. Biosynthesis of CdS Quantum Dots Mediated by Volatile Sulfur Compounds Released by Antarctic Pseudomonas fragi. Front Microbiol 2019; 10:1866. [PMID: 31456780 PMCID: PMC6700389 DOI: 10.3389/fmicb.2019.01866] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022] Open
Abstract
Previously we reported the biosynthesis of intracellular cadmium sulfide quantum dots (CdS QDs) at low temperatures by the Antarctic strain Pseudomonas fragi GC01. Here we studied the role of volatile sulfur compounds (VSCs) in the biosynthesis of CdS QDs by P. fragi GC01. The biosynthesis of nanoparticles was evaluated in the presence of sulfate, sulfite, thiosulfate, sulfide, cysteine and methionine as sole sulfur sources. Intracellular biosynthesis occurred with all sulfur sources tested. However, extracellular biosynthesis was observed only in cultures amended with cysteine (Cys) and methionine (Met). Extracellular nanoparticles were characterized by dynamic light scattering, absorption and emission spectra, energy dispersive X-ray, atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Purified QDs correspond to cubic nanocrystals of CdS with sizes between 2 and 16 nm. The analysis of VSCs revealed that P. fragi GC01 produced hydrogen sulfide (H2S), methanethiol (MeSH) and dimethyl sulfide (DMS) in the presence of sulfate, Met or Cys. Dimethyl disulfide (DMDS) was only detected in the presence of Met. Interestingly, MeSH was the main VSC produced in this condition. In addition, MeSH was the only VSC for which the concentration decreased in the presence of cadmium (Cd) of all the sulfur sources tested, suggesting that this gas interacts with Cd to form nanoparticles. The role of MeSH and DMS on Cds QDs biosynthesis was evaluated in two mutants of the Antarctic strain Pseudomonas deceptionensis M1T: megL - (unable to produce MeSH from Met) and mddA - (unable to generate DMS from MeSH). No biosynthesis of QDs was observed in the megL - strain, confirming the importance of MeSH in QD biosynthesis. In addition, the production of QDs in the mddA - strain was not affected, indicating that DMS is not a substrate for the biosynthesis of nanoparticles. Here, we confirm a link between MeSH production and CdS QDs biosynthesis when Met is used as sole sulfur source. This work represents the first report that directly associates the production of MeSH with the bacterial synthesis of QDs, thus revealing the importance of different VSCs in the biological generation of metal sulfide nanostructures.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Ornella Carrión
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Jonathan D. Todd
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Joana C. Pieretti
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Amedea B. Seabra
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Nelson Durán
- Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
- Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
26
|
Bonačić-Koutecký V, Antoine R. Enhanced two-photon absorption of ligated silver and gold nanoclusters: theoretical and experimental assessments. NANOSCALE 2019; 11:12436-12448. [PMID: 31162509 DOI: 10.1039/c9nr01826c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ligated silver and gold nanoclusters belonging to a non-scalable size regime with molecular-like discrete electronic states represent an emerging class of extremely interesting optical materials. Nonlinear optical (NLO) characteristics of such quantum clusters have revealed remarkable features. The two-photon absorption (TPA) cross section of ligated noble metal nanoclusters is several orders of magnitude larger than that of commercially-available dyes. Several such case studies on NLO properties of ligated silver and gold nanoclusters have been reported, making them promising candidates for various bio-imaging techniques such as multiphoton-excited fluorescence microscopy. However, the structure-property relationship is of great importance and needs to be properly addressed in order to design new nonlinear optical materials. Using small ligated silver nanoclusters as test systems, we illustrate how theoretical approaches together with experimental findings can contribute to the understanding of structure-property relationships that might ultimately guide nanocluster synthesis.
Collapse
Affiliation(s)
- Vlasta Bonačić-Koutecký
- Centre of excellence for Science and Technology-Integration of Mediterranean region (STIM) at the Interdisciplinary Centre for Advanced Sciences and Technology (ICAST), University of Split, Poljička cesta 35, HR-21000 Split, Republic of Croatia and Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| | - Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Lyon, France.
| |
Collapse
|
27
|
Qi S, Yang S, Chen J, Niu T, Yang Y, Xin B. High-Yield Extracellular Biosynthesis of ZnS Quantum Dots through a Unique Molecular Mediation Mechanism by the Peculiar Extracellular Proteins Secreted by a Mixed Sulfate Reducing Bacteria. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10442-10451. [PMID: 30785253 DOI: 10.1021/acsami.8b18574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work describes a high-yield extracellular biosynthesis of ZnS QDs via a unique molecular mediation mechanism driven by the mixed sulfate reducing bacteria (SRB). The mixed SRB have obtained the highest ever ZnS QD biosynthesis rate of 35.0-45.0 g/(L·month). The biogenic ZnS QDs with an average crystallite size (ACS) of 6.5 nm have greater PL activity and better uniformity than that of a chemical route. Peculiar extracellular proteins (EPs) with molecular weights of approximately 65 and 14 kDa specially adhere to the ZnS QDs, which cover extraordinarily high contents of acidic amino acids (14.0 mol % Glu and 13.0 mol % Asp) and of nonpolar amino acids (12.0 mol % Ala, 11.0 mol % Gly, and 7.0 mol % Phe), for novel molecular mediation. The vast amount of negative charges in Glu and Asp guides the strong absorption between the EPs and Zn2+ via electrostatic attraction to reach a maximum absorption capacity of 745.9 mg/g within 2.0 h, motivating large and rapid nucleation as the first step of biosynthesis. Meanwhile, bridging and interlinkage occur inside the EPs or between the EPs via hydrophobic interactions dominated by the nonpolar amino acids, resulting in the formation of massive microcavities to control and restrict the growth of ZnS QDs as a template. The novel molecular mediation mechanism triggered by the peculiar EPs with an extraordinary amino acid composition and structure accounts for the high-yield biosynthesis of ZnS QDs. The mixed SRB have also successfully fabricated other metal sulfide QDs, including PbS, CuS, and CdS, through the novel molecular mediation.
Collapse
Affiliation(s)
- Shiyue Qi
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Shuhui Yang
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Ji Chen
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Tianqi Niu
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , P. R. China
| | - Baoping Xin
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| |
Collapse
|
28
|
Jamwal D, Mehta SK. Metal Telluride Nanomaterials: Facile Synthesis, Properties and Applications for Third Generation Devices. ChemistrySelect 2019. [DOI: 10.1002/slct.201803680] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Deepika Jamwal
- Department of Chemistry and Centre of Advanced Studies in Chemistry; Panjab University; Chandigarh 160014 India
- School of Chemistry, Faculty of Basic Sciences; Shoolini University, Solan, H.P.; 173212 India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry; Panjab University; Chandigarh 160014 India
| |
Collapse
|
29
|
Phase transfer reaction for the preparation of stable polymer-quantum dot conjugates. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Ali I, Peng C, Khan ZM, Naz I, Sultan M, Ali M, Abbasi IA, Islam T, Ye T. Overview of microbes based fabricated biogenic nanoparticles for water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 230:128-150. [PMID: 30286344 DOI: 10.1016/j.jenvman.2018.09.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/14/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Treatment of toxic and emerging pollutants (T&EPs) is increasing the threats to the survival of conventional wastewater treatment (WWTs) technologies. The high installation and operational costs of advanced treatment technologies have shifted the research interest to the development of economical and reliable technology for management of T&EPs. Thus, recently biogenic nanoparticles (BNPs) fabricated using microbes/microorganisms are getting tremendous research interest due to their unique properties (i.e. high specific surface area, desired morphology, catalytic reactivity) for the biodegradation and biosorption of T&EPs. In addition, BNPs can be manufactured using metal contaminated water which indicates a hidden potential for resource recovery and utilization. Therefore, the present study discusses the adsorptive and catalytic performance of BNPs in the removal of T&EPs from water (W) and wastewater (WW). In addition, inspired by the superior performance of BNPs in advance WWT, a model of BNPs based WWT resource recovery and utilization process is also proposed. Finally, main issues i.e. mass production, leaching, poisoning/toxicity, regeneration, reusability and fabrication costs and process optimization are discussed which are main hinders in the transfer of BNPs based WWT technologies from laboratory to commercial scale.
Collapse
Affiliation(s)
- Imran Ali
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Changsheng Peng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; The Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China.
| | - Zahid M Khan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan
| | - Iffat Naz
- Department of Biology, Qassim University, Buraidah 51452, Saudi Arabia
| | - Muhammad Sultan
- Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan.
| | - Mohsin Ali
- Department of Environmental Engineering, Middle East Technical University, Ankara 0600, Turkey
| | - Irfan A Abbasi
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tariqul Islam
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tong Ye
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
31
|
Continuous biological removal of selenate in the presence of cadmium and zinc in UASB reactors at psychrophilic and mesophilic conditions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Singh SC, Li H, Yao C, Zhan Z, Yu W, Yu Z, Guo C. Structural and compositional control in copper selenide nanocrystals for light-induced self-repairable electrodes. NANO ENERGY 2018; 51:774-785. [PMID: 30177955 PMCID: PMC6100260 DOI: 10.1016/j.nanoen.2018.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In nature, self-healing can be induced by sunlight for damage and wound repair, and this phenomenon is very important to living species for prolonging their lives. This self-repairing feature is obviously highly desirable for non-biological materials and manmade systems. In this paper, we demonstrate, for the first time, that battery electrodes can be self-repaired when exposed to sunlight. Here, we show that the optical, and photoelectrochemical (PEC) properties can be controlled by varying structural and compositional parameters of copper selenide nanocrystals (NCs). Cation to anion ratio in copper selenide (Cu2±xSe) NCs can be controlled over a wide range of 1.3-2.7 by simply changing the reaction temperature and impurity. Light-induced self-repairable behavior is demonstrated with electrochemical (EC) and PEC performances of electrodes made with stoichiometric copper selenide NCs. This nature-inspired, self-repairing behavior can be applied to batteries, supercapacitors, and photo-electrochemical fuel generators.
Collapse
Affiliation(s)
- Subhash C. Singh
- The Institute of Optics, University of Rochester, New York 14627, United States
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Changchun, China
| | - Huiyan Li
- The Institute of Optics, University of Rochester, New York 14627, United States
| | - Chaonan Yao
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Changchun, China
| | - Z. Zhan
- The Institute of Optics, University of Rochester, New York 14627, United States
| | - Weili Yu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Changchun, China
| | - Zhi Yu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Changchun, China
| | - Chunlei Guo
- The Institute of Optics, University of Rochester, New York 14627, United States
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP), Changchun, China
- Corresponding author at: The Institute of Optics, University of Rochester, New York 14627, United States.
| |
Collapse
|
33
|
Stavitskaya AV, Novikov AA, Kotelev MS, Kopitsyn DS, Rozhina EV, Ishmukhametov IR, Fakhrullin RF, Ivanov EV, Lvov YM, Vinokurov VA. Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E391. [PMID: 29857546 PMCID: PMC6026934 DOI: 10.3390/nano8060391] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Quantum dots (QD) are widely used for cellular labeling due to enhanced brightness, resistance to photobleaching, and multicolor light emissions. CdS and CdxZn₁-xS nanoparticles with sizes of 6⁻8 nm were synthesized via a ligand assisted technique inside and outside of 50 nm diameter halloysite clay nanotubes (QD were immobilized on the tube's surface). The halloysite⁻QD composites were tested by labeling human skin fibroblasts and prostate cancer cells. In human cell cultures, halloysite⁻QD systems were internalized by living cells, and demonstrated intense and stable fluorescence combined with pronounced nanotube light scattering. The best signal stability was observed for QD that were synthesized externally on the amino-grafted halloysite. The best cell viability was observed for CdxZn₁-xS QD immobilized onto the azine-grafted halloysite. The possibility to use QD clay nanotube core-shell nanoarchitectures for the intracellular labeling was demonstrated. A pronounced scattering and fluorescence by halloysite⁻QD systems allows for their promising usage as markers for biomedical applications.
Collapse
Affiliation(s)
- Anna V Stavitskaya
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Andrei A Novikov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Mikhail S Kotelev
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Dmitry S Kopitsyn
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Elvira V Rozhina
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Ilnur R Ishmukhametov
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Rawil F Fakhrullin
- Bionanotechnology Lab, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia.
| | - Evgenii V Ivanov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| | - Yuri M Lvov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA.
| | - Vladimir A Vinokurov
- Functional Aluminosilicate Nanomaterials Lab, Gubkin University, Moscow 119991, Russia.
| |
Collapse
|
34
|
Comparative studies of biological activity of cadmium-based quantum dots with different surface modifications. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0787-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Formation of Se(0), Te(0), and Se(0)-Te(0) nanostructures during simultaneous bioreduction of selenite and tellurite in a UASB reactor. Appl Microbiol Biotechnol 2018; 102:2899-2911. [PMID: 29399711 DOI: 10.1007/s00253-018-8781-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Simultaneous removal of selenite and tellurite from synthetic wastewater was achieved through microbial reduction in a lab-scale upflow anaerobic sludge blanket reactor operated with 12 h hydraulic retention time at 30 °C and pH 7 for 120 days. Lactate was supplied as electron donor at an organic loading rate of 528 or 880 mg COD L-1 day-1. The reactor was initially fed with a synthetic influent containing 0.05 mM selenite and tellurite each (phase I, day 1-60) and subsequently with 0.1 mM selenite and tellurite each (phase II, day 61-120). At the end of phase I, selenite and tellurite removal efficiencies were 93 and 96%, respectively. The removal percentage dropped to 87 and 81% for selenite and tellurite, respectively, at the beginning of phase II because of the increased influent concentrations. The removal efficiencies of both selenite and tellurite were gradually restored within 20 days and stabilized at ≥ 97% towards the end of the experiment. Powder X-ray diffraction and Raman spectroscopy confirmed the formation of biogenic Se(0), Te(0), and Se(0)-Te(0) nanostructures. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed aggregates comprising of Se(0), Te(0), and Se-Te nanostructures embedded in a layer of extracellular polymeric substances (EPS). Infrared spectroscopy confirmed the presence of chemical signatures of the EPS which capped the nanoparticle aggregates that had been formed and immobilized in the granular sludge. This study suggests a model for technologies for remediation of effluents containing Se and Te oxyanions coupled with biorecovery of bimetal(loid) nanostructures.
Collapse
|
36
|
Wadgaonkar SL, Nancharaiah YV, Esposito G, Lens PNL. Environmental impact and bioremediation of seleniferous soils and sediments. Crit Rev Biotechnol 2018; 38:941-956. [DOI: 10.1080/07388551.2017.1420623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Yarlagadda V. Nancharaiah
- Biofouling and Biofilm Processes Section of Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, Maharashtra, India
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Piet N. L. Lens
- UNESCO IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
37
|
Sheng J, Wang L, Han Y, Chen W, Liu H, Zhang M, Deng L, Liu YN. Dual Roles of Protein as a Template and a Sulfur Provider: A General Approach to Metal Sulfides for Efficient Photothermal Therapy of Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702529. [PMID: 29148623 DOI: 10.1002/smll.201702529] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Fabrication of clinically translatable nanoparticles (NPs) as photothermal therapy (PTT) agents against cancer is becoming increasingly desirable, but still challenging, especially in facile and controllable synthesis of biocompatible NPs with high photothermal efficiency. A new strategy which uses protein as both a template and a sulfur provider is proposed for facile, cost-effective, and large-scale construction of biocompatible metal sulfide NPs with controlled structure and high photothermal efficiency. Upon mixing proteins and metal ions under alkaline conditions, the metal ions can be rapidly coordinated via a biuret-reaction like process. In the presence of alkali, the inert disulfide bonds of S-rich proteins can be activated to react with metal ions and generate metal sulfide NPs under gentle conditions. As a template, the protein can confine and regulate the nucleation and growth of the metal sulfide NPs within the protein formed cavities. Thus, the obtained metal sulfides such as Ag2 S, Bi2 S3 , CdS, and CuS NPs are all with small size and coated with proteins, affording them biocompatible surfaces. As a model material, CuS NPs are evaluated as a PTT agent for cancer treatment. They exhibit high photothermal efficiency, high stability, water solubility, and good biocompatibility, making them an excellent PTT agent against tumors. This work paves a new avenue toward the synthesis of structure-controlled and biocompatible metal sulfide NPs, which can find wide applications in biomedical fields.
Collapse
Affiliation(s)
- Jianping Sheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Liqiang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yajing Han
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hong Liu
- Aier Ophthalmic College, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Zhang
- School of Materials Science and Energy Engineering, Foshan University, Foshan, Guangdong, 528000, P. R. China
| | - Liu Deng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
38
|
Hennessey S, Farràs P. The Quest for Sulfur-Containing Photoactive Materials: Molecular Precursors, Structures and Applications. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seán Hennessey
- School of Chemistry; National University of Ireland, Galway; H91 CF50 Galway Ireland
| | - Pau Farràs
- School of Chemistry; National University of Ireland, Galway; H91 CF50 Galway Ireland
| |
Collapse
|
39
|
Cormode DP, Gao L, Koo H. Emerging Biomedical Applications of Enzyme-Like Catalytic Nanomaterials. Trends Biotechnol 2017; 36:15-29. [PMID: 29102240 DOI: 10.1016/j.tibtech.2017.09.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
Nanomaterials have been developed for many biomedical applications, including medical imaging, drug delivery, and antimicrobial coatings. Intriguingly, nanoparticles can display 'enzyme-like' activity and have been explored as alternatives to natural enzymes in several industrial and energy-related applications. Recently, these catalytic nanomaterials with enzyme-mimetic properties have found new biomedical applications, from biofilm disruption to protection against neurodegeneration and tumor prevention. In this review we focus on recent in vivo studies demonstrating potential therapeutic uses of catalytic nanomaterials. We also provide insights about the relationships between catalytic activity, therapeutic efficacy, and biocompatibility that are critical for clinical translatability. Finally, we discuss current challenges and future directions for the use of these nanomaterials as novel platforms for the development of sustainable, affordable, and safe therapeutics.
Collapse
Affiliation(s)
- David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Cardiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Lizeng Gao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, USA; Divisions of Pediatric Dentistry and Community Oral Health, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Fernández-Lodeiro J, Rodríguez-Gónzalez B, Novio F, Fernández-Lodeiro A, Ruiz-Molina D, Capelo JL, Santos AAD, Lodeiro C. Synthesis and Characterization of PtTe 2 Multi-Crystallite Nanoparticles using Organotellurium Nanocomposites. Sci Rep 2017; 7:9889. [PMID: 28852090 PMCID: PMC5575282 DOI: 10.1038/s41598-017-10239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/24/2022] Open
Abstract
Herein, we report the synthesis of new PtTe2 multi-crystallite nanoparticles (NPs) in different sizes through an annealing process using new nanostructured Pt-Te organometallic NPs as a single source precursor. This precursor was obtained in a single reaction step using Ph2Te2 and H2PtCl6 and could be successfully size controlled in the nanoscale range. The resulting organometallic composite precursor could be thermally decomposed in 1,5 pentanediol to yield the new PtTe2 multi-crystallite NPs. The final size of the multi-crystallite spheres was successfully controlled by selecting the nanoprecursor size. The sizes of the PtTe2 crystallites formed using the large spheres were estimated to be in the range of 2.5-6.5 nm. The results provide information relevant to understanding specific mechanistic aspects related to the synthesis of organometallic nanomaterials and nanocrystals based on platinum and tellurium.
Collapse
Affiliation(s)
- Javier Fernández-Lodeiro
- BIOSCOPE Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, 2829-516, Portugal.
- ProteoMass Scientific Society, Madan Parque, Building VI, Office 23, Faculty of Sciences and Technology, Campus de Caparica, 2829-516, Caparica, Portugal.
- Scientific and Technological Research Assistance Centre (CACTI), University of Vigo, Lagoas-Marcosende, Vigo, Spain.
| | - Benito Rodríguez-Gónzalez
- Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, CxP.26077, São Paulo, 05508-000, Brazil
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, 2829-516, Portugal
- ProteoMass Scientific Society, Madan Parque, Building VI, Office 23, Faculty of Sciences and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - José Luis Capelo
- BIOSCOPE Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, 2829-516, Portugal
- ProteoMass Scientific Society, Madan Parque, Building VI, Office 23, Faculty of Sciences and Technology, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Alcindo A Dos Santos
- Scientific and Technological Research Assistance Centre (CACTI), University of Vigo, Lagoas-Marcosende, Vigo, Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica, 2829-516, Portugal.
- ProteoMass Scientific Society, Madan Parque, Building VI, Office 23, Faculty of Sciences and Technology, Campus de Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
41
|
Functionalisation of Colloidal Transition Metal Sulphides Nanocrystals: A Fascinating and Challenging Playground for the Chemist. CRYSTALS 2017. [DOI: 10.3390/cryst7040110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Mal J, Nancharaiah YV, van Hullebusch ED, Lens PNL. Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2017; 229:11-19. [PMID: 28092731 DOI: 10.1016/j.biortech.2016.12.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/26/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
Wastewaters contaminated by both selenium and ammonium need to be treated prior to discharge into natural water bodies, but there are no studies on the simultaneous removal of selenium and ammonium. A sequencing batch reactor (SBR) was inoculated with activated sludge and operated for 90days. The highest ammonium removal efficiency achieved was 98%, while the total nitrogen removal was 75%. Nearly a complete chemical oxygen demand removal efficiency was attained after 16days of operation, whereas complete selenate removal was achieved only after 66days. The highest total Se removal efficiency was 97%. Batch experiments showed that the total Se in the aqueous phase decreased by 21% with increasing initial ammonium concentration from 50 to 100mgL-1. This study showed that SBR can remove both selenate and ammonium via, respectively, bioreduction and partial nitrification-denitrification and thus offer possibilities for treating selenium and ammonium contaminated effluents.
Collapse
Affiliation(s)
- J Mal
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France.
| | - Y V Nancharaiah
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - E D van Hullebusch
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM, 77454 Marne-la-Vallée, France
| | - P N L Lens
- UNESCO-IHE, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, Tampere, Finland
| |
Collapse
|
43
|
Martynenko IV, Litvin AP, Purcell-Milton F, Baranov AV, Fedorov AV, Gun'ko YK. Application of semiconductor quantum dots in bioimaging and biosensing. J Mater Chem B 2017; 5:6701-6727. [DOI: 10.1039/c7tb01425b] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review we present new concepts and recent progress in the application of semiconductor quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing.
Collapse
Affiliation(s)
- I. V. Martynenko
- BAM Federal Institute for Materials Research and Testing
- 12489 Berlin
- Germany
- ITMO University
- St. Petersburg
| | | | | | | | | | - Y. K. Gun'ko
- ITMO University
- St. Petersburg
- Russia
- School of Chemistry and CRANN
- Trinity College Dublin
| |
Collapse
|
44
|
Kominkova M, Milosavljevic V, Vitek P, Polanska H, Cihalova K, Dostalova S, Hynstova V, Guran R, Kopel P, Richtera L, Masarik M, Brtnicky M, Kynicky J, Zitka O, Adam V. Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots. J Biotechnol 2016; 241:193-200. [PMID: 27984119 DOI: 10.1016/j.jbiotec.2016.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/25/2022]
Abstract
Nanobiosynthesis belongs to the most recent methods for synthesis of nanoparticles. This type of synthesis provides many advantages including the uniformity in particle shape and size. The biosynthesis has also a significant advantage regarding chemical properties of the obtained particles. In this study, we characterized the basic properties and composition of quantum dots (QDs), obtained by the extracellular biosynthesis by Escherichia coli. Furthermore, the toxicity of the biosynthesized QDs was compared to QDs prepared by microwave synthesis. The obtained results revealed the presence of cyan CdTe QDs after removal of substantial amounts of organic compounds, which stabilized the nanoparticle surface. QDs toxicity was evaluated using three cell lines Human Foreskin Fibroblast (HFF), Human Prostate Cancer cells (PC-3) and Breast Cancer cells (MCF-7) and the MTT assay. The test revealed differences in the toxicity between variants of QDs, varying about 10% in the HFF and 30% in the MCF-7 cell lines. The toxicity of the biosynthesized QDs to the PC-3 cell lines was about 35% lower in comparison with the QDs prepared by microwave synthesis.
Collapse
Affiliation(s)
- Marketa Kominkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Petr Vitek
- Global Change Research Institute, The Czech Academy of Sciences, v.v.i., Belidla 4a, CZ-603 00 Brno, Czech Republic.
| | - Hana Polanska
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Physiology and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Kristyna Cihalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Simona Dostalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Veronika Hynstova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Michal Masarik
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Physiology and Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic.
| | - Martin Brtnicky
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Geology and Pedology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Jindrich Kynicky
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic; Department of Geology and Pedology, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic.
| |
Collapse
|
45
|
Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 2016; 34:886-907. [PMID: 27235190 DOI: 10.1016/j.biotechadv.2016.05.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters.
Collapse
Affiliation(s)
- Lea Chua Tan
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Kalpakkam, 603102 Tamil Nadu, India.
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere, Finland.
| |
Collapse
|
46
|
Hu L, Zhang C, Zeng G, Chen G, Wan J, Guo Z, Wu H, Yu Z, Zhou Y, Liu J. Metal-based quantum dots: synthesis, surface modification, transport and fate in aquatic environments and toxicity to microorganisms. RSC Adv 2016. [DOI: 10.1039/c6ra13016j] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The intense interest in metal-based QDs is diluted by the fact that they cause risks to aquatic environments.
Collapse
|