1
|
Simultaneous Removal of Cr(VI) and Phenol from Water Using Silica-di-Block Polymer Hybrids: Adsorption Kinetics and Thermodynamics. Polymers (Basel) 2022; 14:polym14142894. [PMID: 35890671 PMCID: PMC9324752 DOI: 10.3390/polym14142894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Heavy metal ions and organic pollutants often coexist in industrial effluents. In this work, silica-di-block polymer hybrids (SiO2-g-PBA-b-PDMAEMA) with two ratios (SiO2/BA/DMAEMA = 1/50/250 and 1/60/240) were designed and prepared for the simultaneous removal of Cr(VI) and phenol via a surface-initiated atom-transfer radical polymerization process using butyl methacrylate (BA) as a hydrophobic monomer and 2-(Dimethylamino)ethylmethacrylate (DMAEMA) as a hydrophilic monomer. The removal efficiency of Cr(VI) and phenol by the hybrids reached 88.25% and 88.17%, respectively. The sample with a larger proportion of hydrophilic PDMAEMA showed better adsorption of Cr(VI), and the sample with a larger proportion of hydrophobic PBA showed better adsorption of phenol. In binary systems, the presence of Cr(VI) inhibited the adsorption of phenol, yet the presence of phenol had a negligible effect on the adsorption of Cr(VI). Kinetics studies showed that the adsorption of Cr(VI) and phenol fitted the pseudo-second-order model well. Thermodynamic studies showed that the adsorption behavior of Cr(VI) and phenol were better described by the Langmuir adsorption isotherm equation, and the adsorption of Cr(VI) and phenol were all spontaneous adsorptions driven by enthalpy. The adsorbent still possessed good adsorption capacity for Cr(VI) and phenol after six adsorption–desorption cycles. These findings show that SiO2-g-PBA-b-PDMAEMA hybrids represent a satisfying adsorption material for the simultaneous removal of heavy metal ions and organic pollutants.
Collapse
|
2
|
Wen W, Guo C, Guo J. Acid-Responsive Adamantane-Cored Amphiphilic Block Polymers as Platforms for Drug Delivery. NANOMATERIALS 2021; 11:nano11010188. [PMID: 33451051 PMCID: PMC7828523 DOI: 10.3390/nano11010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
Four-arm star-shaped (denoted as ‘S’) polymer adamantane-[poly(lactic-co-glycolic acid)-b-poly(N,N’-diethylaminoethyl methacrylate) poly(ethylene glycol) monomethyl ether]4 (S-PLGA-D-P) and its linear (denoted as ‘L’) counterpart (L-PLGA-D-P) were synthesized, then their self-assembled micelles were further developed to be platforms for anticancer drug delivery. Two types of polymeric micelles exhibited strong pH-responsiveness and good drug loading capacity (21.6% for S-PLGA-D-P and 22.9% for L-PLGA-D-P). Using doxorubicin (DOX) as the model drug, their DOX-loaded micelles displayed well controlled drug release behavior (18.5–19.0% of DOX release at pH 7.4 and 77.6–78.8% of DOX release at pH 5.0 within 80 h), good cytocompatibility against NIH-3T3 cells and effective anticancer efficacy against MCF-7 cells. However, the star-shaped polymeric micelles exhibited preferable stability, which was confirmed by the lower critical micelle concentration (CMC 0.0034 mg/mL) and decrease rate of particle sizes after 7 days incubation (3.5%), compared with the linear polymeric micelle L-PLGA-D-P (CMC 0.0070 mg/mL, decrease rate of particle sizes was 9.6%). Overall, these developed polymeric micelles have promising application as drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Chong Guo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence:
| |
Collapse
|
3
|
Kou Z, Dou D, Mo H, Ji J, Lan L, Lan X, Zhang J, Lan P. Preparation and application of a polymer with pH/temperature-responsive targeting. Int J Biol Macromol 2020; 165:995-1001. [PMID: 33022350 DOI: 10.1016/j.ijbiomac.2020.09.248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
Targeted drug carrier systems not only prolong the long-term circulation of drugs, but also improve their bioavailability. To obtain a pH/temperature synergistically responsive polymer carrier, temperature and pH-sensitive groups were chemically grafted onto a cassava starch backbone. Secondly, the structure of the polymer micelle carrier was characterized, and finally the drug loading performance and capacity of the drug carrier were explored. It was observed that cumulative drug release was low when the temperature and pH values met one of two conditions. Only at a high temperature and low pH (T = 38 °C, pH = 5.5, as in tumor tissue) did cumulative drug release reach its maximum value. The design of the polymer carrier described in the present study represents a novel paradigm in precision release drug carriers.
Collapse
Affiliation(s)
- Zongliang Kou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Detian Dou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Huiqun Mo
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Jianyan Ji
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Lihong Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Xiongdiao Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Jinyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China
| | - Ping Lan
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Key Laboratory of Chemical and Biological Transformation Process of Guangxi Higher Education Institutes, School of Chemistry and Chemical Engineering of Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
4
|
pH and temperature-responsive POSS-based poly(2-(dimethylamino)ethyl methacrylate) for highly efficient Cr(VI) adsorption. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04737-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Rozga-Wijas K, Sierant M. Daunorubicin-silsesquioxane conjugates (POSS-DAU) for theranostic drug delivery system: Characterization, biocompatibility and drug release study. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Jiang W, Guo J, Wen W, Jia YG, Liu S. Nano-Carriers Based on pH-Sensitive Star-Shaped Copolymers for Drug-Controlled Release. MATERIALS 2019; 12:ma12101610. [PMID: 31100826 PMCID: PMC6566147 DOI: 10.3390/ma12101610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Polymeric nano-carriers are considered as promising tools in biomedical applications due to multiple attractive characteristics including their low toxicity, high loading capacity, controlled drug release capabilities, and highly tunable chemical properties. Here, a series of pH-sensitive star-shaped copolymers, Ad-P[(EMA-co-MAA)-b-PPEGMA]4, was prepared via electron transfer atom radical polymerization (ARGETE ATRP) and selective hydrolysis. These star-shaped copolymers can be self-assembled into micelles (Dh = 150–160 nm) and their critical micelle concentrations (CMC) were estimated to be 3.9–5.0 mg/L. The pH-sensitiveness of the micelles was evidenced by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The maximal paclitaxel (PTX) loading efficiency (DLC) and entrapment efficiency (EE) were 18.9% and 36%, respectively. In vitro release studies revealed that about 19% of the PTX released at an acidic condition of pH 1.2 over 70 h, whereas more than 70% was released within the same time interval at pH 6.8. In vitro cytotoxicity suggested that the low cytotoxicity of the blank micelles, while the PTX-loaded micelles providing the cytotoxicity close to that of free PTX. These results indicated that this novel pH-sensitive nano-carriers have great potential applications for oral drug-controlled release.
Collapse
Affiliation(s)
- Wenzhao Jiang
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Mendrek B, Fus A, Klarzyńska K, Sieroń AL, Smet M, Kowalczuk A, Dworak A. Synthesis, Characterization and Cytotoxicity of Novel Thermoresponsive Star Copolymers of N, N'-Dimethylaminoethyl Methacrylate and Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate. Polymers (Basel) 2018; 10:E1255. [PMID: 30961179 PMCID: PMC6401879 DOI: 10.3390/polym10111255] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Novel, nontoxic star copolymers of N,N-dimethylaminoethyl methacrylate (DMAEMA) and hydroxyl-bearing oligo(ethylene glycol) methacrylate (OEGMA-OH) were synthesized via atom transfer radical polymerization (ATRP) using hyperbranched poly(arylene oxindole) as the macroinitiator. Stars with molar masses from 100,000 g/mol to 257,000 g/mol and with various amounts of OEGMA-OH in the arms were prepared. As these polymers can find applications, e.g., as carriers of nucleic acids, drugs or antibacterial or antifouling agents, in this work, much attention has been devoted to exploring their solution behavior and their stimuli-responsive properties. The behavior of the stars was studied in aqueous solutions under various pH and temperature conditions, as well as in PBS buffer, in Dulbecco's modified Eagle's medium (DMEM) and in organic solvents for comparison. The results indicated that increasing the content of hydrophilic OEGMA-OH units in the arms up to 10 mol% increased the cloud point temperature. For the stars with an OEGMA-OH content of 10 mol%, the thermo- and pH-responsivity was switched off. Since cytotoxicity experiments have shown that the obtained stars are less toxic than homopolymer DMAEMA stars, the presented studies confirmed that the prepared polymers are great candidates for the design of various nanosystems for biomedical applications.
Collapse
Affiliation(s)
- Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Agnieszka Fus
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Katarzyna Klarzyńska
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland.
| | - Mario Smet
- Department of Chemistry, University of Leuven, Celestijnenlaan, 200F, B-3001 Leuven (Heverlee), Belgium.
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland.
| |
Collapse
|
8
|
Chi H, Wang M, Xiao Y, Wang F, K S J. Self-Assembly and Applications of Amphiphilic Hybrid POSS Copolymers. Molecules 2018; 23:E2481. [PMID: 30262758 PMCID: PMC6222655 DOI: 10.3390/molecules23102481] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
Understanding the mechanism of molecular self-assembly to form well-organized nanostructures is essential in the field of supramolecular chemistry. Particularly, amphiphilic copolymers incorporated with polyhedral oligomeric silsesquioxanes (POSSs) have been one of the most promising materials in material science, engineering, and biomedical fields. In this review, new ideas and research works which have been carried out over the last several years in this relatively new area with a main focus on their mechanism in self-assembly and applications are discussed. In addition, insights into the unique role of POSSs in synthesis, microphase separation, and confined size were encompassed. Finally, perspectives and challenges related to the further advancement of POSS-based amphiphilics are discussed, followed by the proposed design considerations to address the challenges that we may face in the future.
Collapse
Affiliation(s)
- Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingyue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yiting Xiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry of Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Fuke Wang
- Polymeric Materials Department, Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore.
| | - Joshy K S
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India.
| |
Collapse
|
9
|
Yan X, Li J, Ren T. Synthesis of well-defined star, star-block, and miktoarm star biodegradable polymers based on PLLA and PCL by one-pot azide-alkyne click reaction. RSC Adv 2018; 8:29464-29475. [PMID: 35547998 PMCID: PMC9084564 DOI: 10.1039/c8ra06262e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022] Open
Abstract
Based on the "arm-first" strategy, ring-opening polymerization (ROP) and one-pot azide-alkyne click reaction, well-defined star-shaped polymers with different architectures have been successfully synthesized, including the star homopolymers four-arm star-shaped polycaprolactone (4sPCL) and four-arm star-shaped poly(l-lactic acid) (4sPLLA), star-block copolymer 4sPCL-b-PLLA and miktoarm star-shaped copolymer PCL2PLLA2. The star homopolymers 4sPCL and 4sPLLA were synthesized by a click reaction of an azide small molecule initiator and HC[triple bond, length as m-dash]C-PCL or HC[triple bond, length as m-dash]C-PLLA. The star-block copolymer 4sPCL-b-PLLA was synthesized by a click reaction of an azide small molecule initiator and the block copolymer HC[triple bond, length as m-dash]C-PCL-b-PLLA. The miktoarm star polymer PCL2PLLA2 was synthesized by a one-pot azide-alkyne click reaction of simultaneous addition of equal proportions of HC[triple bond, length as m-dash]C-PCL and HC[triple bond, length as m-dash]C-PLLA. The structures of these star-shaped polymers have been confirmed by NMR, FT-IR and GPC. Furthermore, the melting and crystallization behaviors investigated using DSC and WXRD also confirm the formation of star-shaped polymers with different architectures.
Collapse
Affiliation(s)
- Xiaoqi Yan
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| | - Tianbin Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University 4800 Caoan Road Shanghai 201804 China +86-21-33515906 +86-21-33515906
| |
Collapse
|
10
|
Self-association behavior of amphiphilic molecules based on incompletely condensed cage silsesquioxanes and poly(ethylene glycol)s. Polym J 2018. [DOI: 10.1038/s41428-017-0021-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Uner A, Doganci E, Tasdelen MA, Yilmaz F, Gürek AG. Synthesis, characterization and surface properties of star-shaped polymeric surfactants with polyhedral oligomeric silsesquioxane core. POLYM INT 2017. [DOI: 10.1002/pi.5420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ahmet Uner
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| | - Erdinc Doganci
- Department of Chemistry and Chemical Processing Technology; Kocaeli University; Kocaeli Turkey
| | | | | | - Ayşe Gül Gürek
- Department of Chemistry; Gebze Technical University, Gebze; Kocaeli Turkey
| |
Collapse
|
12
|
Sobierajska E, Konopka M, Janaszewska A, Piorecka K, Blauz A, Klajnert-Maculewicz B, Stanczyk M, Stanczyk WA. Unusual Enhancement of Doxorubicin Activity on Co-Delivery with Polyhedral Oligomeric Silsesquioxane (POSS). MATERIALS (BASEL, SWITZERLAND) 2017; 10:E559. [PMID: 28772919 PMCID: PMC5459003 DOI: 10.3390/ma10050559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022]
Abstract
Polyhedral oligomeric silsesquioxane (POSS), bearing eight 3-chloroammoniumpropyl substituents, was studied as a potential nanocarrier in co-delivery systems with doxorubicin (DOX). The toxicity of doxorubicin and POSS:DOX complexes at four different molar ratios (1:1; 1:2, 1:4, 1:8) towards microvascular endothelial cells (HMEC-1), breast cancer cells (MCF-7), and human cervical cancer endothelial cells (HeLa) was determined. The rate of penetration of the components into the cells, their cellular localization and the hydrodynamic diameter of the complexes was also determined. A cytotoxicity profile of POSS:DOX complexes indicated that the POSS:DOX system at the molar ratio of 1:8 was more effective than free DOX. Confocal images showed that DOX co-delivery with POSS allowed for more effective penetration of doxorubicin through the cell membrane. Taking all the results into account, it can be claimed that the polyhedral oligomeric silsesquioxane (T₈-POSS) is a promising, complex nanocarrier for doxorubicin delivery.
Collapse
Affiliation(s)
- Ewelina Sobierajska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Malgorzata Konopka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Anna Janaszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Andrzej Blauz
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany.
| | - Maciej Stanczyk
- Copernicus Memorial Hospital, Pabianicka 62, 93-513 Lodz, Poland.
| | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|