1
|
Liu J, Lei Z, Wang Z, Wang H, Sun J, Guo D, Luan F, Zou J, Shi Y. Ethnobotanical usages, phytochemistry, pharmacology, and quality control of chuanxiong rhizoma: A review. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118902. [PMID: 39395765 DOI: 10.1016/j.jep.2024.118902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Chuanxiong Rhizoma (CX) is the dried root rhizomes of the plant Ligusticum chuanxiong Hort. of the family Umbelliferae. CX is listed as a superior herb in the book "Shennong Bencao Jing". It has a pungent and warm nature and belongs to the liver, gallbladder, and pericardium meridians. CX is documented in the Chinese Pharmacopoeia from 1963 to 2020 editions. CX as a well-known traditional Chinese medicine for promoting blood circulation, regulating qi, dispelling wind, and relieving pain, has been proven to contain a variety of bioactive compounds with diverse pharmacological activities and medicinal value. AIM OF THE STUDY The current review aims to provide a comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity, quality control and pharmacokinetics of CX. MATERIALS AND METHODS The relevant information of CX was obtained from several databases including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, CNKI, Ph.D, MSc dissertations, as well as The Catalogue of Life, Flora of China database, and The Global Biodiversity Information Facility. RESULTS CX is widely used in traditional medicine for treating various diseases related to the cardiovascular system, liver and kidney system, nervous system, respiratory system, and more. Over 400 compounds have been identified in CX, including phthalides, alkaloids, organic acids and its esters, polyphenols, terpenes and their derivatives, polysaccharides, hydrocarbons and their derivatives, coumarins, lignans and others. The plant extracts, compounds and Chinese patent medicines possess various pharmacological activities, including cardiovascular system protection, nervous system protection, cerebrovascular system protection, anti-inflammatory, liver and lung protection, anti-diabetes, anti-osteoporosis, anti-bacterial, anti-aging, anti-oxidant, immune regulation, prevention of DNA damage, prevention of postoperative peritoneal adhesion. CONCLUSION Considering its traditional and modern applications, phytochemical composition, and pharmacological properties, CX can be regarded as a traditional Chinese medicine resource for treating various diseases related to the cardiovascular, hepatorenal, nervous, and respiratory systems. Current research mainly focuses on cell and animal experiments, where some active ingredients exhibit diverse pharmacological activities. However, further studies are needed to fully understand its specific mechanisms of action. In addition, there are multiple active ingredients in CX, but current research mainly focuses on the pharmacological effects of individual components, with little research on the interactions and synergistic effects between different components. It is recommended to strengthen the research on the interactions of CX compounds and their components to reveal the overall pharmacological mechanisms. This will contribute to quality control, new drug development, commercialization, and promote its continuous development in the field of medicine.
Collapse
Affiliation(s)
- Jing Liu
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Zhichao Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - He Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
2
|
Kong Q, Niu Y, Feng H, Yu X, Wang B, Liu X, Chen Y, Wang F, Tian J, Zhou H. Ligusticum chuanxiong Hort.: a review of its phytochemistry, pharmacology, and toxicology. J Pharm Pharmacol 2024; 76:1404-1430. [PMID: 39180449 DOI: 10.1093/jpp/rgae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Conioselinum anthriscoides (H. Boissieu) Pimenov & Kljuykov, also known as Ligusticum chuanxiong Hort. is a perennial Umbelliferae herb, whose dried rhizome commonly called Chuanxiong Rhizoma. Chuanxiong Rhizoma is widely used in TCM, especially for cardiocerebrovascular and gynecological diseases. However, these studies are scattered and there is no review that can centralize the results of these studies. The authors summarized this review by collecting research results on the chemical, pharmacological, and toxicological of Chuanxiong Rhizoma published in various publications over the past 20 years. AIMS The purpose of this review is to summarize the current experimental studies on Chuanxiong Rhizoma and explore its mechanism of action. METHODS Web of Science, PubMed, CBM, CNKI, Medline, Embase, Elsevier, Springer, Wiley Online Library, Scholar, and other databases were searched, and nearly one hundred experimental studies were collected to summarize this review. RESULTS AND DISCUSSION Chuanxiong Rhizoma is composed of essential oil, terpenes, alkaloids, polysaccharide, organic acids, ceramides, and cerebrosides. It has the functions of promoting blood circulation, removing blood stasis, antibacterial, antiviral, and calming the mind to sleep. Now it can be used to treat cardiocerebrovascular and gynecological diseases, neurodegenerative disease, psoriasis, rectal cancer, osteoporosis, and osteoarthritis. CONCLUSIONS In the past 20 years, a large number of research data have confirmed that Chuanxiong Rhizoma contains rich effective metabolites, has huge medicinal potential, and has a wide range of effective treatments.
Collapse
Affiliation(s)
- Qinghe Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yingshuo Niu
- Cardiovascular Department of Guang'anmen Hospital Jinan, China Academy of Chinese Medical Sciences, Jinan 250012, China
| | - Hao Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaofei Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Bingkang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xue Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yueru Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Fulin Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Honglei Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| |
Collapse
|
3
|
Tan YZ, Yan HL, Liu YY, Yan YM, Wang L, Qiao JX, Wu J, Tian Y, Peng C. Structurally diverse phthalides from fibrous roots of Ligusticum chuanxiong Hort. and their biological activities. Fitoterapia 2024; 175:105882. [PMID: 38452906 DOI: 10.1016/j.fitote.2024.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Falonolide A (1) and B (2), two novel polyyne hybrid phthalides resulting from unprecedented carbon skeleton polymerized by Z-ligustilide and falcarindiol, along with six new related phthalides (3-8), were isolated from Ligusticum chuanxiong Hort. Their structures were elucidated by spectroscopic analysis, computer-assisted structure elucidation (CASE) analysis, DP4+ probability analysis and electronic circular dichroism (ECD) calculations. A plausible biosynthetic pathway for 1-8 was proposed, and the production mechanism of 2 was revealed by density functional theory (DFT) method. Compounds 4 and 6 exhibited significant vasodilatory activity with EC50 of 8.00 ± 0.86 and 6.92 ± 1.02 μM, respectively. Compound 4 also displayed significant inhibitory effect of NO production with EC50 value of 8.82 ± 0.30 μM. Based on the established compounds library, structure-activity relationship analysis of phthalides was explored to provide insights into the drug development of vasodilators and anti-flammatory.
Collapse
Affiliation(s)
- Yu-Zhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Hong-Ling Yan
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yun-Yun Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, PR China
| | - Ji-Xu Qiao
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yin Tian
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
4
|
Liu Y, Ren F, Li S, Li X, Shi D, Zhang Z. N-Butylphthalide Potentiates the Effect of Fluconazole Against Drug-Resistant Candida glabrata and Candida tropicalis. Evidence for Its Mechanism of Action. Infect Drug Resist 2024; 17:2017-2029. [PMID: 38800581 PMCID: PMC11127662 DOI: 10.2147/idr.s459378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Objective To define the antifungal activity of n-butylphthalide alone or in combination with fluconazole in Candida glabrata and Candida tropicalis. Methods The antifungal activity of n-butylphthalide alone and in combination with fluconazole was investigated by the classical broth microdilution method and the time-killing curve method. The QRT-PCR method was used to determine gene expressions changes of mitochondrial respiratory chain enzymes, drug efflux pumps and drug target enzymes in Candida glabrata and Candida tropicalis after n-butylphthalide treatment. Results The MIC values of n-butylphthalide against Candida glabrata and Candida tropicalis ranged from 16 to 64 μg·mL-1. The FICI value of the combination of n-butylphthalide and fluconazole against drug-resistant Candida glabrata and Candida tropicalis ranged from 0.5001 to 0.5315 with partial synergism. Time-killing curves showed that 256 μg·mL-1 n-butylphthalide significantly inhibited the growth of drug-resistant colonies of Candida glabrata and Candida tropicalis, and 128 μg·mL-1 n-butylphthalide combined with 1 μg·mL-1 fluconazole had an additive effect. N-butylphthalide could alter the expression of mitochondrial respiratory chain enzymes COX1, COX2, COX3, and CYTB genes in Candida glabrata and Candida tropicalis (P< 0.05) and downregulate the expression of the drug efflux pump genes CDR1 and CDR2 in drug-resistant Candida glabrata to 3.36% and 3.65%, respectively (P<0.001), but did not affect the drug target enzyme ERG11 in drug-resistant Candida tropicalis. Conclusion N-butylphthalide had antifungal activity against Candida glabrata and Candida tropicalis. N-butylphthalide improved the activity of fluconazole against drug-resistant Candida glabrata by affecting the expression of mitochondrial respiratory chain enzyme genes and reversing the high expression of drug efflux pump genes CDR1 and CDR2.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Feifei Ren
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Shan Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Xiangchen Li
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Dongyan Shi
- Department of Clinical Laboratory, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Zhiqing Zhang
- Department of Pharmacy, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| |
Collapse
|
5
|
Zhang Z, Li X, Song Q, Li Y, Tian X, Ali S, Yao Y, Li P, Wang Z, Zheng H. Asymmetric Total Synthesis of (+)-Chuanxiongnolide L1 via a Stereoselective Oxidative Dearomatization/Diels-Alder Strategy. Org Lett 2024; 26:2928-2933. [PMID: 38551465 DOI: 10.1021/acs.orglett.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The first asymmetric total synthesis of chuanxiongnolide L1 was achieved in 16 steps and 1.9% overall yield by employing a bioinspired chiral auxiliary strategy. The key steps involving asymmetric oxidative dearomatization of chiral amino ether and subsequent asymmetric Diels-Alder reaction of the resulting masked chiral ortho-benzoquinone were adopted.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiuhuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Qingyan Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuerong Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Xiqing Tian
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Sajjad Ali
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Yuan Yao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Pengfei Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengshen Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| | - Huaiji Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture & Forestry University, 3 Taicheng Road, Yangling 712100, China
| |
Collapse
|
6
|
Huang L, Peng C, Guo L, Feng R, Shu HZ, Tian YC, Zhou QM, Xiong L. Six pairs of enantiomeric phthalide dimers from the rhizomes of Ligusticum chuanxiong and their absolute configurations and anti-inflammatory activities. Bioorg Chem 2022; 127:105970. [PMID: 35749854 DOI: 10.1016/j.bioorg.2022.105970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Six pairs of enantiomeric phthalide dimers (1-6) were isolated from the rhizomes of Ligusticum chuanxiong. Their structures and absolute configurations were elucidated by NMR spectroscopy, X-ray diffraction analyses, and electronic circular dichroism calculations. Compounds (+)-1 and (-)-1 are new phthalide dimers, featuring two classes of monomeric units (a phthalide and an unusual 2,3-seco-phthalide) with an uncommon linkage (3,6'/8,3'a). Compounds (+)-2 and (-)-3 are also novel phthalide dimers that had not been reported previously. Although (-)-2 and (+)-3 have been successfully isolated in previous studies, their absolute configurations were not unambiguously determined. As for compound 4, it was reported as a racemate in one study, and one of its enantiomers was identified in a subsequent study. Herein, all enantiomeric phthalide dimers were successfully separated, and their absolute configurations were determined. The inhibitory effects of all isolates against lipopolysaccharide-induced nitric oxide production were tested using RAW264.7 cells. The results show that compounds (+)-2, (-)-2, (+)-3, (-)-3, (+)-4, (-)-4, (+)-5, (+)-6, and (-)-6 have inhibitory activities, with compound (+)-5 being the most active (IC50 value of 4.3 ± 1.3 μM).
Collapse
Affiliation(s)
- Lu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong-Zhen Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun-Cai Tian
- Shanghai Zhizhenzhichen Technologies Co. Ltd., Shanghai 201415, China
| | - Qin-Mei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Liu J, Feng R, Dai O, Ni H, Liu LS, Shu HZ, Lu Y, Peng C, Xiong L. Isoindolines and phthalides from the rhizomes of Ligusticum chuanxiong and their relaxant effects on the uterine smooth muscle. PHYTOCHEMISTRY 2022; 198:113159. [PMID: 35283167 DOI: 10.1016/j.phytochem.2022.113159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Three undescribed isoindoline alkaloids, (+)-(R)-3-butyl-3-ethoxyisoindolin-1-one, (+)-(3S,6S,7R)-3-butyl-6,7-dihydroxy-3-methoxy-4,5,6,7-tetrahydroisoindolin-1-one, and (-)-(3R,6S,7R)-3-butyl-6,7-dihydroxy-3-methoxy-4,5,6,7-tetrahydroisoindolin-1-one, along with nine known phthalides were isolated from a water decoction of the rhizomes of Ligusticum chuanxiong using chromatographic methods. Their structures and absolute configurations were determined by extensive spectroscopic analyses and ECD data calculations. The relaxant effects of the isolated compounds on uterine contractions induced by oxytocin were investigated using a rat uterine smooth muscle contraction model. Furthermore, the effects of riligustilide on extracellular Ca2+ influx and intracellular Ca2+ release were assessed using high-KCl solution-induced and oxytocin-induced uterine smooth muscle contraction in a Ca2+-free balanced salt solution. The results showed that all the tested phthalides had inhibitory effects on oxytocin-induced uterine smooth muscle contraction. Riligustilide, a phthalide dimer, was the most active. Further examinations indicated that riligustilide reduced uterine smooth muscle contraction by inhibiting extracellular Ca2+ influx and intracellular Ca2+ release.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ni
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu-Si Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Zhen Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yan Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Wei X, Zeng Y, Sun C, Meng F, Wang Y. Recent advances in natural phthalides: Distribution, chemistry, and biological activities. Fitoterapia 2022; 160:105223. [PMID: 35654379 DOI: 10.1016/j.fitote.2022.105223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Phthalides, an important class of bioactive natural products, are widely distributed in plants, fungi, lichens, and liverworts. Amon them, n-butylphthalide, a phthalide monomer, has been approved to cure ischemic stroke. Owing to their good bioactivities in anti-microbial, anti-inflammatory, anti-tumor, anti-diabetic, and other aspects, a large number of researches have been conducted on phthalides from nature materials. In recent years, hundreds of novel natural phthalides were obtained. This review provides profiles of the advances in the distribution, chemistry, and biological activities of natural phthalides in 2016-2022.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China.
| | - Yanping Zeng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Chao Sun
- Shandong Academy of Pharmaceutical Sciences, Ji'nan 250101, PR China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Yibo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China
| |
Collapse
|
9
|
Novitskiy IM, Kutateladze AG. DU8+ Computations Reveal a Common Challenge in the Structure Assignment of Natural Products Containing a Carboxylic Anhydride Moiety. J Org Chem 2021; 86:17511-17515. [PMID: 34743508 DOI: 10.1021/acs.joc.1c02291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DU8+ computations of NMR spectra revealed a relatively common error in the structure assignment of carboxylic anhydride-containing natural products. Computationally driven revisions of ten of these structures are reported in this Note. The majority of the misassigned structures featured a hydroxy group that is proximal to the proposed anhydride moiety and capable of lactone formation.
Collapse
Affiliation(s)
- Ivan M Novitskiy
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| |
Collapse
|
10
|
Zhang X, Yan HW, Feng ZM, Yang YN, Jiang JS, Zhang PC. Neophathalides A and B, two pairs of unusual phthalide analog enantiomers from Ligusticum chuanxiong. Org Biomol Chem 2020; 18:5453-5457. [PMID: 32638801 DOI: 10.1039/d0ob01014f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pairs of unusual phthalide analog enantiomers, (+)- and (-)-neophathalides A and B [(+)- and (-)-1 and 2], were isolated from the rhizome of Ligusticum chuanxiong Hort. Notably, neophathalide A presented a novel spiro-[4.5]dec-6-ene skeleton that originated from an aldol condensation process from sedanonic acid. Neophathalide B is an unprecedented 3-substituted phthalide analog that possesses a four-membered lactone ring system. The structures of the compounds were established using UV, IR, HRESIMS, NMR and ECD methods. All of the compounds were evaluated for their hepatoprotective activity against N-acetyl-p-aminophenol-induced HepG2 cell injury. Compounds 1a, 1b, and 2a exhibited moderate hepatoprotective activity compared with the positive control drug bicyclol at a concentration of 10 μM (p < 0.01).
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Hai-Wei Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China.
| |
Collapse
|
11
|
Sheng B, Vo Y, Lan P, Gardiner MG, Banwell MG, Sun P. Direct and Metal-Catalyzed Photochemical Dimerization of the Phthalide (Z)-Ligustilide Leading to Both [2 + 2] and [4 + 2] Cycloadducts: Application to Total Syntheses of Tokinolides A–C and Riligustilide. Org Lett 2019; 21:6295-6299. [DOI: 10.1021/acs.orglett.9b02172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bingbing Sheng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, China
| | - Yen Vo
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, China
| | - Michael G. Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, China
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Pinghua Sun
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, China
| |
Collapse
|
12
|
Bioactive butylphthalide derivatives from Ligusticum chuanxiong. Bioorg Chem 2019; 84:505-510. [PMID: 30602133 DOI: 10.1016/j.bioorg.2018.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 01/28/2023]
Abstract
Seven new butylphthalide derivatives, ligusticumolide A-G (1-7), together with two known butylphthalide derivatives (8-9) were isolated from an ethanol extract of Ligusticum chuanxiong Hort. The structures of these derivatives were elucidated from analysis of 1D/2D NMR, UV, IR and HRESIMS data. The absolute configurations of these derivatives were determined by electronic circular dichroism (ECD) calculations and Mosher's method. Ligusticumolide A (1) and ligusticumolide B (2) are enantiomers that were obtained by chiral separation. Ligusticumolide C (3) and ligusticumolide D (4) are diastereomers. All of the compounds were evaluated for their hepatoprotective activity against N-acetyl-p-aminophenol-induced HepG2 cell injury. Compounds 4, 5, and 7-9 showed more significant hepatoprotective activity than that of the positive control drug (bicyclol) at a concentration of 10 μM (p < 0.01).
Collapse
|
13
|
Zhang X, Han B, Feng Z, Jiang J, Yang Y, Zhang P. Bioactive thionic compounds and aromatic glycosides from Ligusticum chuanxiong. Acta Pharm Sin B 2018; 8:818-824. [PMID: 30245968 PMCID: PMC6147803 DOI: 10.1016/j.apsb.2018.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 11/09/2022] Open
Abstract
Three new thionic compounds, (S)-2-(2-carboxyl-2-hydroxyethylthio)-ferulic acid (1), (E)-2-methoxy-4-(3-(methylsulfonyl)prop-1-en-1-yl)phenol (2), and thiosenkyunolide C (3), together with two new aromatic glycosides (4 and 5) were isolated from the rhizome of Ligusticum chuanxiong Hort. Two known compounds (6 and 7) were also obtained. Their structures were elucidated based on extensive spectroscopic data (UV, IR, 1D and 2D NMR, and HR-ESI-MS). Furthermore the absolute configurations were established by comparison of their calculated and experimental circular dichroism spectra and by a dimolybdenum tetraacetate [Mo2(AcO)4]-induced circular dichroism procedure. All compounds were evaluated against lipopolysaccharide (LPS)-induced NO production in BV2 cells, and compounds 4 and 5 showed strong inhibitory activities with IC50 values of 2.03 and 3.09 µmol/L, respectively (positive control curcumin, IC50 = 6.17 µmol/L). In addition, compound 1 showed weak proteintyrosine phosphatase-1B (PTP1B) inhibitory activity.
Collapse
|
14
|
A systematic review on the rhizome of Ligusticum chuanxiong Hort. (Chuanxiong). Food Chem Toxicol 2018; 119:309-325. [PMID: 29486278 DOI: 10.1016/j.fct.2018.02.050] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/17/2018] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Chuanxiong Rhizome (called Chuanxiong, CX in Chinese), the dried rhizome of Ligusticum chuanxiong Hort, is an extremely common traditional edible-medicinal herb. As a widely used ethnomedicine in Asia including China, Japan and Korea, CX possesses ideal therapeutic effect on cardiovascular and cerebrovascular diseases, and is also used as a major ingredient in soups for regular consumption to benefit health. Based on the traditional perception, amounts of investigations on different aspects have been done for CX in the past decades. However, no literature systematic review about these achievements have been compiled. Herein, the aim of this review is to present the up-to-date information on the ethnobotany, ethnopharmacological uses, phytochemicals, pharmacological activities, toxicology of this plant to identify their therapeutic potential and directs future research opportunities. So far, about 174 compounds has been isolated and identified from CX, in which phthalides and alkaloids would be the main bioactive ingredients for its pharmacological properties, such as anti-cerebral ischemia, anti-myocardial ischemia, blood vessel protection, anti-thrombotic, anti-hypertensive, anti-atherosclerosis, anti-spasmodic, anti-inflammatory, anti-cancer, anti-oxidant, and anti-asthma effects. Even so, due to the incomplete standardized planting, unstable herbal quality, and outdated preparation techniques, the industrial progress of CX is still less developed.
Collapse
|
15
|
Wei W, Xu W, Yang XW. Two new phthalide dimers from the rhizomes of Ligusticum chuanxiong. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:704-711. [PMID: 28276766 DOI: 10.1080/10286020.2016.1275584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Two pairs of diastereoisomers, namely (3'Z)-(3S,8S,3a'S,6'R)-4,5-dehydro-3.3a',8.6'-diligustilide (1) and (3'Z)-(3S,8R,3a'S,6'R)-4,5-dehydro-3.3a',8.6'-diligustilide (3), chuanxiongdiolide R3 (2), and chuanxiongdiolide R1 (4), were isolated from the 95% ethanolic aqueous extract of the rhizomes of Ligusticum chuanxiong. Among these Phthalide dimers, compounds 1 and 2 were new ones. The structures of the new isolates were elucidated based on spectroscopic data analyses, and their absolute configurations were determined by comparison of experimental and calculated electronic circular dichroism spectra.
Collapse
Affiliation(s)
- Wei Wei
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Wei Xu
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Peking University , Beijing 100191 , China
| | - Xiu-Wei Yang
- a State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center , Peking University , Beijing 100191 , China
| |
Collapse
|
16
|
Affiliation(s)
- Gennaro Pescitelli
- Dipartimento Di Chimica E Chimica Industriale; Università Di Pisa; Pisa Italy
| | - Lorenzo Di Bari
- Dipartimento Di Chimica E Chimica Industriale; Università Di Pisa; Pisa Italy
| |
Collapse
|
17
|
Zhang Q, Wang M, Wang Q, Zhao H, Zhang Z, Yu H, Liu Y, Fu S, Lu Z, Huang Z, Xie Z, Gao X, Qiao Y. Characterization of the potential new phthalides in Ligusticum chuanxiong
Hort. using ultra-performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry. J Sep Sci 2017; 40:2123-2130. [DOI: 10.1002/jssc.201601443] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Qingqing Zhang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Meiling Wang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Qing Wang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Huizhen Zhao
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Zhixin Zhang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Honghong Yu
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Yuehong Liu
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Shuang Fu
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Zhiwei Lu
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Zhenghai Huang
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Ziye Xie
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Xiaoyan Gao
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| | - Yanjiang Qiao
- School of Chinese Pharmacy; Beijing University of Chinese Medicine; Beijing China
| |
Collapse
|
18
|
Zhang X, Han B, Feng ZM, Yang YN, Jiang JS, Zhang PC. Phthalide derivatives from Ligusticum chuanxiong. RSC Adv 2017. [DOI: 10.1039/c7ra06813a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eleven new phthalide derivatives (1–11) have been isolated from the rhizome of Ligusticum chuanxiong.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Bing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Zi-Ming Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|