1
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
2
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2024:01515467-990000000-00569. [PMID: 37725757 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Song L, Liu H, Li M, Yang Y, Dong H, Li J, Shao J, Zhi L, Sun H, Li Z, Sui H, Zhang Y, Wu C, Yin Y. Ribosomal Incorporation of Lithocholic Acid into Peptides for the De Novo Discovery Of Peptide-Lithocholic Acid Hybrid Macrocyclic Peptides. ACS Chem Biol 2024; 19:1440-1446. [PMID: 38901034 DOI: 10.1021/acschembio.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Peptide-bile acid hybrids offer promising drug candidates due to enhanced pharmacological properties, such as improved protease resistance and oral bioavailability. However, it remains unknown whether bile acids can be incorporated into peptide chains by the ribosome to produce a peptide-bile acid hybrid macrocyclic peptide library for target-based de novo screening. In this study, we achieved the ribosomal incorporation of lithocholic acid (LCA)-d-tyrosine into peptide chains. This led to the construction of a peptide-LCA hybrid macrocyclic peptide library, which enabled the identification of peptides TP-2C-4L3 (targeting Trop2) and EP-2C-4L5 (targeting EphA2) with strong binding affinities. Notably, LCA was found to directly participate in binding to EphA2 and confer on the peptides improved stability and resistance to proteases. Cell staining experiments confirmed the high specificity of the peptides for targeting Trop2 and EphA2. This study highlights the benefits of LCA in peptides and paves the way for de novo discovery of stable peptide-LCA hybrid drugs.
Collapse
Affiliation(s)
- Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Maolin Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yawen Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huilei Dong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jiaqi Shao
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lixu Zhi
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Sun
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhifeng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Haiyan Sui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
- Shandong Research Institute of Industrial Technology, Jinan 250101, China
| |
Collapse
|
4
|
Agboluaje EO, Cui S, Grimsey NJ, Xiong MP. Bile Acid-Targeted Hyaluronic Acid Nanoparticles for Enhanced Oral Absorption of Deferoxamine. AAPS J 2024; 26:46. [PMID: 38609650 DOI: 10.1208/s12248-024-00911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with β-thalassemia and sickle cell disease often rely on blood transfusions which can lead to hemochromatosis and chronic oxidative stress in cells and tissues. Deferoxamine (DFO) is clinically approved to treat hemochromatosis but is suboptimal to patients due to its poor pharmacokinetics which requires long-term infusion regimens. Although the oral route is preferable, DFO has limited oral bioavailability. Studies have shown that hyaluronic acid (HA) and bile acid (BA) can enhance the oral absorption of poorly absorbed drugs. To improve upon the oral delivery of DFO, we report on the synthesis and characterization of HA (MW 15 kD) conjugated to two types of BA, deoxycholic acid (DOCA) and taurocholic acid (TCA), and DFO. The resulting seven polymeric conjugates all formed self-assembled nanoparticles. The degree of BA and DFO conjugation to the HA polymer was confirmed at each step through nuclear magnetic resonance, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The best formulations for further in vitro testing were determined based on physicochemical characterizations and included HA-DFO, TCA9-HA-DFO, and DOCA9-HA-DFO. Results from in vitro assays revealed that TCA9-HA-DFO enhanced the permeation of DFO the most and was also less cytotoxic to cells compared to the free drug DFO. In addition, ferritin reduction studies indicated that the conjugation of DFO to TCA9-HA did not compromise its chelation efficiency at equivalent free DFO concentrations. This research provides supportive data for the idea that TCA conjugated to HA may enhance the oral absorption of DFO, improve its cytocompatibility, and maintain its iron chelation efficiency.
Collapse
Affiliation(s)
- Elizabeth Oladoyin Agboluaje
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Shuolin Cui
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Neil J Grimsey
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - May P Xiong
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA.
| |
Collapse
|
5
|
Soliman MO, El-Kamel AH, Shehat MG, Bakr BA, El-Moslemany RM. Lactoferrin decorated bilosomes for the oral delivery of quercetin in type 2 diabetes: In vitro and in vivo appraisal. Int J Pharm 2023; 647:123551. [PMID: 37884217 DOI: 10.1016/j.ijpharm.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Despite its tremendous potential for type 2 diabetes management, quercetin (QRC) suffers poor gastric stability, poor bioavailability, and extensive first pass metabolism. Drug encapsulation into bilosomes (BSL) has proven enhanced properties in-vitro and in-vivo. Herein, this work endeavoured to evaluate efficacy of QRC-encapsulated bilosomes capped with lactoferrin (LF); a milk protein with antidiabetic potential, for type 2 diabetes oral treatment. The optimized formulation (LF-QRC-BSL) was evaluated in-vitro on α-amylase enzyme inhibition and insulin resistant HepG2 cell model and in vivo on streptozocin/high fat diet induced diabetes in rats. LF-QRC-BSL showed a small size (68.1 nm), a narrow PDI (0.18) and a -25.5 mV zeta potential. A high entrapment efficiency (94 %) with sustained release were also observed. LF-QRC-BSL displayed 100 % permeation through excised diabetic rat intestines after 6 h, 70.2 % inhibition of α-amylase enzyme in-vitro and an augmented recovery of glucose uptake in insulin resistant cells. In diabetic rats, LF-QRC-BSL resulted in significant decrease in blood glucose level, improved lipid profile and tissue injury markers with reduced oxidative stress and inflammatory markers. Further, histopathological examination of the kidneys, liver and pancreas revealed an almost restored normal condition comparable to the negative control. Overall, LF-QRC-BSL have proven to be a promising therapy for type 2 diabetes.
Collapse
Affiliation(s)
- Mai O Soliman
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Jörgensen AM, Wibel R, Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206968. [PMID: 36610004 DOI: 10.1002/smll.202206968] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cationic and ionizable cationic lipids are broadly applied as auxiliary agents, but their use is associated with adverse effects. If these excipients are rapidly degraded to endogenously occurring metabolites such as amino acids and fatty acids, their toxic potential can be minimized. So far, synthesized and evaluated biodegradable cationic and ionizable cationic lipids already showed promising results in terms of functionality and safety. Within this review, an overview about the different types of such biodegradable lipids, the available building blocks, their synthesis and cleavage by endogenous enzymes is provided. Moreover, the relationship between the structure of the lipids and their toxicity is described. Their application in drug delivery systems is critically discussed and placed in context with the lead compounds used in mRNA vaccines. Moreover, their use as preservatives is reviewed, guidance for their design is provided, and an outlook on future developments is given.
Collapse
Affiliation(s)
- Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, Innsbruck, 6020, Austria
| |
Collapse
|
7
|
Lewkowicz M, Jones M, Kovacevic B, Ionescu CM, Wagle SR, Foster T, Mikov M, Mooranian A, Al-Salami H. Potentials and limitations of pharmaceutical and pharmacological applications of bile acids in hearing loss treatment. Ther Deliv 2023; 13:477-488. [PMID: 36803017 DOI: 10.4155/tde-2022-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Hearing loss is a worldwide epidemic, with approximately 1.5 billion people currently struggling with hearing-related conditions. Currently, the most wildly used and effective treatments for hearing loss are primarily focus on the use of hearing aids and cochlear implants. However, these have many limitations, highlighting the importance of developing a pharmacological solution that may be used to overcome barriers associated with such devices. Due to the challenges of delivering therapeutic agents to the inner ear, bile acids are being explored as potential drug excipients and permeation enhancers. This review, therefore, aims to explore the pathophysiology of hearing loss, the challenges in treatment and the manners in which bile acids could potentially aid in overcoming these challenges.
Collapse
Affiliation(s)
- Michael Lewkowicz
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Melissa Jones
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology & Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, 21101, Serbia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA, 6009, Australia
| |
Collapse
|
8
|
Determination of β-blocking receptor drugs in silica gel TLC systems with the mobile phase containing surfactant. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2022. [DOI: 10.2478/cipms-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Eight drugs blocking beta-adrenergic receptors activity (acebutolol, alprenolol, atenolol, oxprenolol, labetalol, metoprolol, propranolol and sotalol) were investigated through the use of the thin-layer technique with its mobile phase containing surfactant. Assessment of the effect of surfactant presence and 1-propanol concentration in the mobile phase on the retention and separation of investigated solutes was then carried out wherein the effect of the surfactant concentration on the zone shape properties (asymmetry and tailing coefficient) was investigated. The method was applied for the quantitative analysis of the chosen solutes, and the LOD and LOQ values of chosen were determined. These were as follows: acebutolol – 1.11 and 3.36 μg/spot, metoprolol 1.45 μg/spot, 4.4 μg/spot. The chosen system is environmentally friendly due to using silica gel plates and only 5% of propanol in water.
Collapse
|
9
|
Ghosh A, Rajdev B, Parihar N, Ponneganti S, Das P, Naidu VGM, Krishnanand P R, USN M, Kumar J, Pemmaraju DB. Bio-nanoconjugates of lithocholic acid/IR 780 for ROS-mediated apoptosis and optoacoustic imaging applications in breast cancer. Colloids Surf B Biointerfaces 2022; 221:113023. [DOI: 10.1016/j.colsurfb.2022.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
|
10
|
Wang L, Liu Q, Hu X, Zhou C, Ma Y, Wang X, Tang Y, Chen K, Wang X, Liu Y. Enhanced Oral Absorption and Liver Distribution of Polymeric Nanoparticles through Traveling the Enterohepatic Circulation Pathways of Bile Acid. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41712-41725. [PMID: 36069201 DOI: 10.1021/acsami.2c10322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The intestinal epithelium is known to be a main hindrance to oral delivery of nanoparticles. Even though surface ligand modification can enhance cellular uptake of nanoparticles, the "easy entry and hard across" was frequently observed for many active targeting nanoparticles. Here, we fabricated polymeric nanoparticles relayed by bile acid transporters with monomethoxy poly(ethylene glycol)-poly(D,l-lactide) and deoxycholic acid-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) based on structural characteristics of intestine epithelium and the absorption characteristics of endogenous substances. As anticipated, deoxycholic acid-modified polymeric nanoparticles featuring good stability in simulated gastrointestinal fluid could notably promote the internalization of their payload by Caco-2 cells through mediation of apical sodium-dependent bile acid transporter (ASBT) and transmembrane transport of the nanoparticles across Caco-2 cell monolayers via relay-guide of ASBT, ileal bile acid-binding protein, and the heteromeric organic solute transporter (OSTα-OSTβ) along with multidrug resistance-associated protein 3 (MRP3) evidenced by competitive inhibition and fluorescence immunoassay, which was further visually confirmed by the stronger fluorescence from C6-labeled nanoparticles inside enterocytes and the basal side of the intestinal epithelium of mice. The transcellular transport of deoxycholic acid-modified nanoparticles in an intact form was mediated by caveolin/lipid rafts and clathrin with intracellular trafficking trace of endosome-lysosome-ER-Golgi apparatus and bile acid transport route. Furthermore, the increased uptake by HepG2 cells compared with unmodified nanoparticles evidenced the target ability of deoxycholic acid-modified nanoparticles to the liver, which was further supported by ex vivo imaging of excised major organs of mice. Thus, this study provided a feasible and potential strategy to further enhance transepithelial transport efficiency and liver-targeted ability of nanoparticles by means of the specific enterohepatic circulation pathways of bile acid.
Collapse
Affiliation(s)
- Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yining Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoxiao Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingwei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kanghao Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Ahmed M. Functional, Diagnostic and Therapeutic Aspects of Bile. Clin Exp Gastroenterol 2022; 15:105-120. [PMID: 35898963 PMCID: PMC9309561 DOI: 10.2147/ceg.s360563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bile is a unique body fluid synthesized in our liver. Enterohepatic circulation preserves bile in our body through its efficient synthesis, transport, absorption, and reuptake. Bile is the main excretory route for bile salts, bilirubin, and potentially harmful exogenous lipophilic substances. The primary way of eliminating cholesterol is bile. Although bile has many organic and inorganic contents, bile acid is the most physiologically active component. Bile acids have a multitude of critical physiologic functions in our body. These include emulsification of dietary fat, absorption of fat and fat-soluble vitamins, maintaining glucose, lipid, and energy homeostasis, sustenance of intestinal epithelial integrity and epithelial cell proliferation, reducing inflammation in the intestine, and prevention of enteric infection due to its antimicrobial properties. But bile acids can be harmful in certain altered conditions like cholecystectomy, terminal ileal disease or resection, cholestasis, duodenogastric bile reflux, duodenogastroesophageal bile reflux, and bile acid diarrhea. Bile acids can have malignant potentials as well. There are also important diagnostic and therapeutic roles of bile acid and bile acid modulation.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
12
|
Patel S, Challagundla N, Rajput RA, Mishra S. Design, synthesis, characterization and anticancer activity evaluation of deoxycholic acid-chalcone conjugates. Bioorg Chem 2022; 127:106036. [PMID: 35878450 DOI: 10.1016/j.bioorg.2022.106036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/25/2022]
Abstract
A series of deoxycholic acid-chalcone amides were synthesised and tested against the human lung cancer cell line, A549 and the cervical cancer cell line, SiHa. Among the synthesised deoxycholic acid-chalcone conjugates, some conjugates showed encouraging results as anticancer agents with good in vitro activity. More precisely, deoxycholic acid-chalcone conjugates 4b (IC50: 0.51 μM) and 4e (IC50: 0.84 μM) having 2‑nitrophenyl and 3,4,5‑trimethoxyphenyl groups exhibited a good activity against human cancer cell-line SiHa and while 4d (IC50: 0.25 μM) and 4b (IC50: 1.71 μM) showed better activity against A549 lung cancer cell line with respect to deoxycholic acid and chalcones. The anticancer activity of the bile acid conjugated chalcones was more than the activity of chalcone and deoxycholic acid alone. The results indicate that a bile acid conjugate strategy may be beneficial in improving the biological activity of chalcone derivatives. The enhanced activity of certain compounds may be due to their increased bioavailability.
Collapse
Affiliation(s)
- Sejal Patel
- Medicinal Chemistry Lab, Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Naveen Challagundla
- Immunology Lab, Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal Rajput
- Immunology Lab, Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Satyendra Mishra
- Medicinal Chemistry Lab, Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
13
|
Pharmacological Dose-Effect Profiles of Various Concentrations of Humanised Primary Bile Acid in Encapsulated Cells. NANOMATERIALS 2022; 12:nano12040647. [PMID: 35214975 PMCID: PMC8879575 DOI: 10.3390/nano12040647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/08/2023]
Abstract
Bile acids (BA)s are known surfactants and well-documented to play a major role in food digestion and absorption. Recently, potential endocrinological and formulation-stabilisation effects of BAs have been explored and their pharmacological effects on supporting cell survival and functions have gained wide interest. Hence, this study aimed to explore the hyper-glycaemic dependent dose-effect of the BA chenodeoxycholic acid (CDCA) when encapsulated with pancreatic β-cells, allowing assessment of CDCA's impacts when encapsulated. Four different concentrations of the BA were prepared, and viable cells were encapsulated and incubated for 2 days. Multiple analyses were carried out including confocal imaging, glucose-induced cellular mitochondrial viability indices, insulin production, inflammatory biomarker analyses and cellular bioenergetics measurements. There was a significant dose-effect with different concentrations of the BA, affecting cellular viability and antioxidant activities, cell functions and insulin release, inflammatory biomarkers, and cellular-bioenergetics at different oxidative stress levels. The results demonstrate that, when encapsulated, the BA CDCA exerts positive pharmacological effects at the cellular level, and such effects are concentration dependent.
Collapse
|
14
|
Sahoo S, Ghosh P, Khan MEH, De P. Recent Progress in Macromolecular Design and Synthesis of Bile Acid‐Based Polymeric Architectures. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Subhasish Sahoo
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| | - Md Ezaz Hasan Khan
- School of General Education College of the North Atlantic ‐ Qatar Arab League Street Doha 24449 Qatar
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials Department of Chemical Sciences Indian Institute of Science Education and Research Kolkata Nadia West Bengal Mohanpur, 741246 India
| |
Collapse
|
15
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
16
|
Chemotherapy-induced hearing loss: the applications of bio-nanotechnologies and bile acid-based delivery matrices. Ther Deliv 2021; 12:723-737. [PMID: 34697955 DOI: 10.4155/tde-2021-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Advancement in the prevention of chemotherapy-induced hearing loss has proposed new nano-based delivery matrices that can target inner ear regions most damaged by chemotherapy. Chemotherapy agents (e.g., cisplatin) induce increased reactive oxygen species formation in the inner ear that damage sensory hair cells and result in irreversible hearing impairment. Exogenous antioxidants (e.g., Probucol and metformin) have been shown to block the formation of these reactive oxygen species. Delivery of these drugs in effective concentrations remains a challenge. Microencapsulation in combination with drug excipients provides one technique to effectively deliver these drugs. This paper investigates the use of probucol and metformin in combination with drug excipients for novel, inner ear, delivery.
Collapse
|
17
|
Bashyal S, Seo JE, Choi YW, Lee S. Bile acid transporter-mediated oral absorption of insulin via hydrophobic ion-pairing approach. J Control Release 2021; 338:644-661. [PMID: 34481926 DOI: 10.1016/j.jconrel.2021.08.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022]
Abstract
Despite many ongoing and innovative approaches, there are still formidable challenges in the clinical translation of oral peptide drugs into marketable products due to their low absorption and poor bioavailability. Herein, a novel nanocarrier platform was developed that employs a hydrophobic ion-pairing (HIP) of model peptide (insulin) and the anionic bile salt (sodium glycodeoxycholate, SGDC), and markedly improves intestinal absorption via the bile acid pathway. The developed HIP-nanocomplexes (C1 and C2) were optimized, characterized, and in vitro and in vivo evaluation were performed to assess oral efficacy of these system. The optimal molar ratios of C1 and C2-nanocomplexes were 30:1 and 6:1 (SGDC:insulin), respectively. Compared to the insulin solution, the C1 and C2 nanocomplexes significantly enhanced the permeation of insulin across the Caco-2 cell monolayers, with 6.36- and 4.05-fold increases in apparent permeability, respectively. Uptake mechanism studies were conducted using different endocytosis inhibitors and apical sodium-dependent bile acid transporter (ASBT)-transfected MDCK cells, which demonstrated the involvement of the energy-dependent ASBT-mediated active transport. Furthermore, the intrajejunal administration of C1 and C2 resulted in their pharmacological availabilities (PA) being 6.44% and 0.10%, respectively, indicating increased potential for C1, when compared to C2. Similarly, the PA and the relative bioavailability with intrajejunal administration of the C1 were 17.89-fold and 16.82-fold greater than those with intracolonic administration, respectively, confirming better jejunal absorption of C1. Overall, these findings indicate that the HIP-nanocomplexes could be a prominent platform for the effective delivery of peptides with improved intestinal absorption.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea; Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
18
|
Rashid SA, Norman N, Teo SH, Tong WY, Leong CR, Tan WN, Noor MAM. Cholic acid: a novel steroidal uncompetitive inhibitor against β-lactamase produced by multidrug-resistant isolates. World J Microbiol Biotechnol 2021; 37:152. [PMID: 34398332 DOI: 10.1007/s11274-021-03118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
β-lactam antibiotics are the most frequently prescribed class of drugs worldwide, due to its efficacy and good safety profile. However, the emergence of β-lactamase producing bacterial strains eliminated the use of β-lactam antibiotics as a chemotherapeutic choice. To restore their usability, a non-antibiotic adjuvant in conjunction with β-lactam antibiotics is now being utilised. Cholic acid potentially acts as an adjuvant since it can blunt the pro-inflammatory activity in human. Our main objective is to scrutinise the inhibition of β-lactamase-producing bacteria by adjuvant cholic acid, synergism of the test drugs and the primary mechanism of enzymatic reaction. Antibacterial effect of the cholic acid-ampicillin (CA-AMP) on 7 β-lactamase positive isolates were evaluated accordingly to disc diffusion assay, antibiotic susceptibility test, as well as checkerboard analysis. Then, all activities were compared with ampicillin alone, penicillin alone, cholic acid alone and cholic acid-penicillin combination. The CA-AMP displayed notable antibiotic activity on all test bacteria and depicted synergistic influence by representing low fractional inhibitory concentration index (FIC ≤ 0.5). According to kinetic analyses, CA-AMP behaved as an uncompetitive inhibitor against beta lactamase, with reducing values of Michaelis constant (Km) and maximal velocity (Vmax) recorded. The inhibitor constant (Ki) of CA-AMP was equal to 4.98 ± 0.3 µM, which slightly lower than ampicillin (5.00 ± 0.1 µM).
Collapse
Affiliation(s)
- Syarifah Ab Rashid
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Norhaswanie Norman
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Siew Hway Teo
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Woei Yenn Tong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia.
| | - Chean Ring Leong
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Mohd Azizan Mohd Noor
- Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Lot 1988 Kawasan Perindustrian Bandar Vendor, Taboh Naning, 78000, Alor Gajah, Melaka, Malaysia
| |
Collapse
|
19
|
Bashyal S, Seo JE, Keum T, Noh G, Lamichhane S, Kim JH, Kim CH, Choi YW, Lee S. Facilitated Buccal Insulin Delivery via Hydrophobic Ion-Pairing Approach: In vitro and ex vivo Evaluation. Int J Nanomedicine 2021; 16:4677-4691. [PMID: 34262275 PMCID: PMC8275148 DOI: 10.2147/ijn.s318092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The clinical use of therapeutic peptides has been limited because of their inefficient delivery approaches and, therefore, inadequate delivery to target sites. Buccal administration of therapeutic peptides offers patients a potential alternative to the current invasive routes of administration. PURPOSE The aim of the study was to fabricate hydrophobic ion-pairing (HIP)-nanocomplexes (C1 and C2) utilizing anionic bile salts and cationic peptides, and to assess their permeability across TR146 buccal cell layers and porcine buccal tissue. METHODS C1 and C2-nanocomplexes were fabricated using the HIP approach. In addition, their physiochemical and morphological attributes, in vitro and ex vivo permeability properties, and qualitative and quantitative cellular uptake were evaluated and compared. The localization of C1 and C2-nanocomplexes in porcine buccal tissue was determined using confocal laser scanning microscopy. RESULTS The C1-nanocomplex was the superior nanocarrier and significantly enhanced the transport of insulin across TR146 cell layers and porcine buccal tissue, exhibiting a 3.00- and 51.76-fold increase in permeability coefficient, respectively, when compared with insulin solution (p < 0.01). C1-nanocomplex was more efficient than C2-nanocomplex at facilitating insulin permeability, with a 2.18- and 27.64-fold increase across TR146 cell layers and porcine buccal tissue, respectively. The C1-nanocomplex demonstrated immense uptake and localization of insulin in TR146 cells and porcine buccal tissue, as evidenced by a highly intense fluorescence in TR146 cells, and a great shift of fluorescence intensity towards the inner region of buccal tissue over time. The increase in fluorescence intensity was observed in the order of C1 > C2 > insulin solution. CONCLUSION In this study, we highlighted the efficacy of potential nanocarriers in addressing the daunting issues associated with the invasive administration of insulin and indicated a promising strategy for the buccal administration and delivery of this life-saving peptide hormone.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Shrawani Lamichhane
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Jeong Hwan Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| | - Chang Hyun Kim
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Young Wook Choi
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
20
|
Bashyal S, Seo JE, Keum T, Noh G, Lamichhane S, Lee S. Development, Characterization, and Ex Vivo Assessment of Elastic Liposomes for Enhancing the Buccal Delivery of Insulin. Pharmaceutics 2021; 13:pharmaceutics13040565. [PMID: 33923670 PMCID: PMC8073108 DOI: 10.3390/pharmaceutics13040565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Buccal drug delivery is a suitable alternative to invasive routes of drug administration. The buccal administration of insulin for the management of diabetes has received substantial attention worldwide. The main aim of this study was to develop and characterize elastic liposomes and assess their permeability across porcine buccal tissues. Sodium-cholate-incorporated elastic liposomes (SC-EL) and sodium-glycodeoxycholate-incorporated elastic liposomes (SGDC-EL) were prepared using the thin-film hydration method. The prepared liposomes were characterized and their ex vivo permeability attributes were investigated. The distribution of the SC-EL and SGDC-EL across porcine buccal tissues was evaluated using confocal laser scanning microscopy (CLSM). The SGDC-EL were the most superior nanocarriers since they significantly enhanced the permeation of insulin across porcine buccal tissues, displaying a 4.33-fold increase in the permeability coefficient compared with the insulin solution. Compared with the SC-EL, the SGDC-EL were better at facilitating insulin permeability, with a 3.70-fold increase in the permeability coefficient across porcine buccal tissue. These findings were further corroborated based on bioimaging analysis using CLSM. SGDC-ELs showed the greatest fluorescence intensity in buccal tissues, as evidenced by the greater shift of fluorescence intensity toward the inner buccal tissue over time. The fluorescence intensity ranked as follows: SGDC-EL > SC-EL > FITC–insulin solution. Conclusively, this study highlighted the potential nanocarriers for enhancing the buccal permeability of insulin.
Collapse
Affiliation(s)
- Santosh Bashyal
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Shrawani Lamichhane
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea; (S.B.); (J.-E.S.); (T.K.); (G.N.); (S.L.)
- Center for Forensic Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-daero, Dalseo-gu, Daegu 42601, Korea
- Correspondence: ; Tel.: +82-53-580-6655; Fax: +82-53-580-5164
| |
Collapse
|
21
|
Zafar A, Alruwaili NK, Imam SS, Hadal Alotaibi N, Alharbi KS, Afzal M, Ali R, Alshehri S, Alzarea SI, Elmowafy M, Alhakamy NA, Ibrahim MF. Bioactive Apigenin loaded oral nano bilosomes: Formulation optimization to preclinical assessment. Saudi Pharm J 2021; 29:269-279. [PMID: 33981176 PMCID: PMC8085606 DOI: 10.1016/j.jsps.2021.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
AIM Diabetic (type-2) is a metabolic disease characterized by increased blood glucose level from the normal level. In the present study, apigenin (AG) loaded lipid vesicles (bilosomes: BIL) was prepared, optimized and evaluated for the oral therapeutic efficacy. EXPERIMENTAL AG-BIL was prepared by a thin-film evaporation method using cholesterol, span 60 and sodium deoxycholate. The prepared formulation was optimized by 3-factor and 3-level Box-Behnken design using particle size, entrapment efficiency and drug release as a response. The selected formulation further evaluated for ex-vivo permeation, in vivo pharmacokinetic and pharmacodynamics study. RESULTS The optimized AG bilosomes (AG-BILopt) has shown the vesicle size 183.25 ± 2.43 nm, entrapment efficiency 81.67 ± 4.87%. TEM image showed a spherical shape vesicle with sharp boundaries. The drug release study revealed a significant enhancement in AG release (79.45 ± 4.18%) from AG-BILopt as compared to free AG-dispersion (25.47 ± 3.64%). The permeation and pharmacokinetic studies result revealed 4.49 times higher flux and 4.67 folds higher AUC0-t than free AG-dispersion. The antidiabetic activity results showed significant (P < 0.05) enhancement in therapeutic efficacy than free AG-dispersion. The results also showed marked improvement in biochemical parameters. CONCLUSION Our findings suggested, the prepared apigenin loaded bilosomes was found to be an efficient delivery in the therapeutic efficacy in diabetes.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of clinical pharmacy, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Raisuddin Ali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, 72341, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed F. Ibrahim
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
22
|
Salomatina OV, Popadyuk II, Zakharenko AL, Zakharova OD, Chepanova AA, Dyrkheeva NS, Komarova NI, Reynisson J, Anarbaev RO, Salakhutdinov NF, Lavrik OI, Volcho KP. Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure-activity relationship and molecular modeling study. Steroids 2021; 165:108771. [PMID: 33221302 DOI: 10.1016/j.steroids.2020.108771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/05/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
Para-Bromoanilides of deoxycholic acid with various functional groups on the steroid scaffold were designed as promising tyrosyl-DNA phosphodiesterase 1 (Tdp1) inhibitors. Tdp1 is a DNA repair enzyme, involved in removing DNA damage caused by topoisomerase I poisons; an important class of anticancer drugs. Thus, reducing the activity of Tdp1 can increase the efficacy of anticancer drugs in current use. Inhibitory activity in the low micromolar and submicromolar concentrations was observed with 3,12-dimethoxy para-bromoanilide 17 being the most active with an IC50 value of 0.27 μM. The activity of N-methyl para-bromoanilides was 3-4.8 times lower than of the corresponding para-bromoanilides. Increased potency of the ligands was seen with higher molecular weight and log P values. The ligands were evaluated for their cytotoxic potential in a panel of tumor cell lines; all were nontoxic to the A549 pulmonary adenocarcinoma cell line. However, derivatives containing a hydroxyl group at the 12th position were more toxic than their 12-hydroxyl group counterparts (acetoxy-, oxo- and methoxy- group) against HCT-116 human colon and HepG2 hepatocellular carcinomas. In addition, an N-methyl substitution led to an increase in toxicity for the HCT-116 and HepG2 cell lines. The excellent activity as well as low cytotoxicity, derivative 17 can be considered as a lead compound for further development.
Collapse
Affiliation(s)
- Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation.
| | - Irina I Popadyuk
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Arina A Chepanova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nina I Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK
| | - Rashid O Anarbaev
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| | - Konstantin P Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent'ev Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
23
|
Microencapsulation of Coenzyme Q10 and bile acids using ionic gelation vibrational jet flow technology for oral delivery. Ther Deliv 2020; 11:791-805. [PMID: 33225829 DOI: 10.4155/tde-2020-0082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Developing new delivery dosage forms with robust delivery and safety profiles remains a challenge to the pharmaceutical industry in terms of optimum gut absorption, consistent dosing and bioavailability; particularly for orally administered drugs that are poorly water soluble. Coenzyme Q10 is an example of a poorly water-soluble compound with low bioavailability, and significant inter-individual variation after oral administration; limiting its optimum efficacy, as a powerful antioxidant with significant promise in treating hearing disorders. Microencapsulation technology is one way to optimize drug bioavailability and absorption profile. One example is Ionic Gelation Vibrational Jet Flow techniques, using new encapsulating parameters to determine the nature of formed capsules. Bile acids are an example of an excipient that can be used to improve membrane permeability; and will be examined. This review addresses the applications of microencapsulation technology on oral delivery and efficacy profiles of poorly water-soluble drugs, focusing on Coenzyme Q10.
Collapse
|
24
|
Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hanurry EY, Chou HY, Lai JY, Tsai HC, Yang JM, Chang YH. Bioinspired Composite, pH-Responsive Sodium Deoxycholate Hydrogel and Generation 4.5 Poly(amidoamine) Dendrimer Improves Cancer Treatment Efficacy via Doxorubicin and Resveratrol Co-Delivery. Pharmaceutics 2020; 12:E1069. [PMID: 33182410 PMCID: PMC7696475 DOI: 10.3390/pharmaceutics12111069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022] Open
Abstract
Maximizing the antitumor efficacy of doxorubicin (DOX) with a new drug delivery strategy is always desired in the field of biomedical science. Because the clinical applications of DOX in the treatment of cancer is limited by the side effects related to the dose. Herein, we report the co-loading of DOX and resveratrol (RESV) using an injectable in situ formed sodium deoxycholate hydrogel (Na-DOC-hyd) at the pH of the tumor extracellular microenvironment. The sequential, controlled, and sustained release of RESV and DOX for synergistic antitumor effects was confirmed by entrapping G4.5-DOX in the RESV-loaded Na-DOC hydrogel (Na-DOC-hyd-RESV). The synergistic antitumor activity of Na-DOC-hyd-RESV+G4.5-DOX was assessed on HeLa cell xenograft tumor in BALB/c nude mice. In the MTT biocompatibility assay, both the G4.5 PAMAM dendrimer and Na-DOC-hyd exhibited negligible cytotoxicity up to the highest dose of 2.0 mg mL-1 in HeLa, MDA-MB-231, and HaCaT cells. The release profiles of DOX and RESV from the Na-DOC-hyd-RESV+G4.5-DOX confirmed the relatively rapid release of RESV (70.43 ± 1.39%), followed by that of DOX (54.58 ± 0.62%) at pH 6.5 in the 7 days of drug release studies. A single intratumoral injection of Na-DOC-hyd-RESV+G4.5-DOX maximally suppressed tumor growth during the 28 days of the treatment period. Na-DOC-hyd-RESV+G4.5-DOX did not cause any histological damage in the major visceral organs. Therefore, this Na-DOC-hydrogel for dual drugs (DOX and RESV) delivery at the pH of the tumor extracellular microenvironment is a promising, safe, and effective combination for antitumor chemotherapy.
Collapse
Affiliation(s)
- Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (T.W.M.); (A.T.A.); (H.F.D.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R & D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Jen Ming Yang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Yen-Hsiang Chang
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| |
Collapse
|
25
|
Pangeni R, Subedi L, Jha SK, Kweon S, Kang SH, Chang KY, Choi JU, Byun Y, Park JW. Improvements in the Oral Absorption and Anticancer Efficacy of an Oxaliplatin-Loaded Solid Formulation: Pharmacokinetic Properties in Rats and Nonhuman Primates and the Effects of Oral Metronomic Dosing on Colorectal Cancer. Int J Nanomedicine 2020; 15:7719-7743. [PMID: 33116497 PMCID: PMC7555381 DOI: 10.2147/ijn.s267424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The anticancer efficacy of orally administered chemotherapeutics is often constrained by low intestinal membrane permeability and oral bioavailability. In this context, we designed a solid oral formulation of oxaliplatin (OP), a third-generation cisplatin analog, to improve oral bioavailability and investigate its application in metronomic chemotherapy. Methods An ion-pairing complex of OP with a permeation enhancer, Nα-deoxycholyl-l-lysyl-methylester (DLM), was successfully prepared and then mixed with dispersing agents (including poloxamer 188 and Labrasol) to form the solid, amorphous oral formulation OP/DLM (OP/DLM-SF; hereafter, ODSF). Results The optimized powder formulation was sized in the nanoscale range (133±1.47 nm). The effective permeability of OP increased by 12.4-fold after ionic complex formation with DLM and was further increased by 24.0-fold after incorporation into ODSF. ODSF exhibited respective increases of 128% and 1010% in apparent permeability across a Caco-2 monolayer, compared to OP/DLM and OP. Furthermore, inhibition of bile acid transporters by actinomycin D and caveola-mediated uptake by brefeldin in Caco-2 cell monolayers reduced the apparent permeability values of ODSF by 58.4% and 51.1%, respectively, suggesting predominant roles for bile acid transporters and caveola-mediated transport in intestinal absorption of ODSF. In addition, macropinocytosis and paracellular and transcellular passive transport significantly influenced the intestinal permeation of ODSF. The oral bioavailabilities of ODSF in rats and monkeys were 68.2% and 277% higher, respectively, than the oral bioavailability of free OP. In vivo analyses of anticancer efficacy in CT26 and HCT116 cell-bearing mice treated with ODSF demonstrated significant suppression of tumor growth, with respective maximal tumor volume reductions of 7.77-fold and 4.07-fold, compared to controls. Conclusion ODSF exhibits therapeutic potential, constituting an effective delivery system that increases oral bioavailability, with applications to metronomic chemotherapy.
Collapse
Affiliation(s)
- Rudra Pangeni
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Saurav Kumar Jha
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| | - Seho Kweon
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo-Hee Kang
- Global R&D Center, IcureBNP, Seoul 08511, Republic of Korea
| | | | - Jeong Uk Choi
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Youngro Byun
- Department of Molecular Medicine and Biopharmaceutical Science, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Woo Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea.,Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam, 58554, Republic of Korea
| |
Collapse
|
26
|
Recent Development of Microfluidic Technology for Cell Trapping in Single Cell Analysis: A Review. Processes (Basel) 2020. [DOI: 10.3390/pr8101253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Microfluidic technology has emerged from the MEMS (Micro-Electro-Mechanical System)-technology as an important research field. During the last decade, various microfluidic technologies have been developed to open up a new era for biological studies. To understand the function of single cells, it is very important to monitor the dynamic behavior of a single cell in a living environment. Cell trapping in single cell analysis is urgently demanded There have been some review papers focusing on drug screen and cell analysis. However, cell trapping in single cell analysis has rarely been covered in the previous reviews. The present paper focuses on recent developments of cell trapping and highlights the mechanisms, governing equations and key parameters affecting the cell trapping efficiency by contact-based and contactless approach. The applications of the cell trapping method are discussed according to their basic research areas, such as biology and tissue engineering. Finally, the paper highlights the most promising cell trapping method for this research area.
Collapse
|
27
|
Design and evaluation of bioenhanced oral tablets of Dunaliella salina microalgae for treatment of liver fibrosis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Apical sodium-dependent bile acid transporter, drug target for bile acid related diseases and delivery target for prodrugs: Current and future challenges. Pharmacol Ther 2020; 212:107539. [PMID: 32201314 DOI: 10.1016/j.pharmthera.2020.107539] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/11/2020] [Indexed: 02/06/2023]
|
29
|
Bile acid transporter-mediated oral drug delivery. J Control Release 2020; 327:100-116. [PMID: 32711025 DOI: 10.1016/j.jconrel.2020.07.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Bile acids are synthesized in the liver, stored in the gallbladder, and secreted into the duodenum at meals. Apical sodium-dependent bile acid transporter (ASBT), an ileal Na+-dependent transporter, plays the leading role of bile acid absorption into enterocytes, where bile acids are delivered to basolateral side by ileal bile acid binding protein (IBABP) and then released by organic solute transporter OSTα/β. The absorbed bile acids are delivered to the liver via portal vein. In this process called "enterohepatic recycling", only 5% of the bile acid pool (~3 g in human) is excreted in feces, indicating the large recycling capacity and high transport efficacy of ASBT-mediated absorption. Therefore, bile acid transporter-mediated oral drug delivery has been regarded as a feasible and potential strategy to improve the oral bioavailability. This review introduces the key factors in enterohepatic recycling, especially the mechanism of bile acid uptake by ASBT, and the development of bile acid-based oral drug delivery for ASBT-targeting, including bile acid-based prodrugs, bile acid/drug electrostatic complexation and bile acid-containing nanocarriers. Furthermore, the specific transport pathways of bile acid in enterocytes are described and the recent finding of lymphatic delivery of bile acid-containing nanocarriers is discussed.
Collapse
|
30
|
Ibrahim YHEY, Regdon G, Hamedelniel EI, Sovány T. Review of recently used techniques and materials to improve the efficiency of orally administered proteins/peptides. Daru 2020; 28:403-416. [PMID: 31811628 PMCID: PMC7214593 DOI: 10.1007/s40199-019-00316-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES The main objective of present review is to explore and evaluate the effectiveness of recently developed methods to improve the bioavailability of orally administered biopharmaceutical drugs. METHODS A systematic search of sciencedirect, tandfonline and Google Scholar databases based on various sets of keywords was performed. All results were evaluated based on their abstracts, and irrelevant studies were neglected during further evaluation. RESULTS At present, biopharmaceuticals are used as injectable therapies as they are not absorbed adequately from the different routes of drug administration, particularly the oral one. Their insufficient absorption is attributed to their high molecular weight, degradation by proteolytic enzymes, high hydrophilicity and rigidity of the absorptive tissues. From industrial aspect incorporation of enzyme inhibitors (EIs) and permeation enhancers (PEs) and mucoadhesive polymers into conventional dosage forms may be the easiest way of formulation of orally administered macromolecular drugs, but the effectiveness of protection and absorption enhancement here is the most questionable. Conjugation may be problematic from regulatory aspect. Encapsulation into lipid-based vesicles sufficiently protects the incorporated macromolecule and improves intestinal uptake but have considerable stability issues. In contrast, polymeric nanocarriers may provide good stability but provides lower internalization efficacy in comparison with the lipid-based carriers. CONCLUSION It can be concluded that the combination of the advantages of mucoadhesive polymeric and lid-based carriers in hybrid lipid/polymer nanoparticles may result in improved absorption and might represent a potential means for the oral administration of therapeutic proteins in the near future. Graphical abstract Delivery systems for oral protein daministration.
Collapse
Affiliation(s)
- Yousif H-E Y Ibrahim
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
- Pharmaceutics Department, Omdurman Islamic University, Omdurman, Sudan
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary
| | | | - Tamás Sovány
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös u. 6, Szeged, H-6720, Hungary.
| |
Collapse
|
31
|
Azuar A, Zhao L, Hei TT, Nevagi RJ, Bartlett S, Hussein WM, Khalil ZG, Capon RJ, Toth I, Skwarczynski M. Cholic Acid-based Delivery System for Vaccine Candidates against Group A Streptococcus. ACS Med Chem Lett 2019; 10:1253-1259. [PMID: 31531193 DOI: 10.1021/acsmedchemlett.9b00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 01/08/2023] Open
Abstract
Peptide-based subunit vaccines require an immunostimulant (adjuvant) and/or delivery system to protect the antigenic peptide from degradation and induce the desired immunity. Currently available adjuvants are either too toxic for human use (experimental adjuvants) or they are limited for use in particular vaccines or licensed countries (commercial adjuvants). Therefore, there is an immediate need for novel adjuvants that are both safe and effective. Herein, we assessed the ability of cholic acid (a major bile acid) as a nontoxic, biodegradable, human-derived, potent vaccine delivery system. An antigenic peptide derived from Group A Streptococcus was conjugated to hydrophobic cholic acid via solid phase peptide synthesis to produce lipopeptide that self-assembled into rod-like nanoparticles under aqueous conditions. Following intranasal immunization in mice, this lipopeptide was capable of inducing the production of opsonic epitope-specific antibodies on its own and in liposomal formulation. The cholic acid-based conjugate induced significantly stronger humoral immune responses than cholera toxin-based adjuvant. Thus, we demonstrated, for the first time, capability of the human-derived lipid to act as a built-in immunoadjuvant for vaccines.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Tsui Ting Hei
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Reshma J. Nevagi
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Stacey Bartlett
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Egypt
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
32
|
Han Y, Gao Z, Chen L, Kang L, Huang W, Jin M, Wang Q, Bae YH. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019; 9:902-922. [PMID: 31649842 PMCID: PMC6804447 DOI: 10.1016/j.apsb.2019.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/28/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
In last few years, therapeutic peptides/proteins are rapidly growing in drug market considering their higher efficiency and lower toxicity than chemical drugs. However, the administration of therapeutic peptides/proteins is mainly limited in parenteral approach. Oral therapy which was hampered by harsh gastrointestinal environment and poorly penetrating epithelial barriers often results in low bioavailability (less than 1%-2%). Therefore, delivery systems that are rationally designed to overcome these challenges in gastrointestinal tract and ameliorate the oral bioavailability of therapeutic peptides/proteins are seriously promising. In this review, we summarized various multifunctional delivery systems, including lipid-based particles, polysaccharide-based particles, inorganic particles, and synthetic multifunctional particles that achieved effective oral delivery of therapeutic peptides/proteins.
Collapse
|
33
|
Liang W, He X, Reddy NR, Bai Y, An L, Fang J. Morphology Transformation of Supramolecular Structures in Aqueous Mixtures of Two Oppositely Charged Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9004-9010. [PMID: 31244246 DOI: 10.1021/acs.langmuir.9b01140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The co-assembly of oppositely charged amphiphiles provides a fascinating approach for forming complex supramolecular structures, which are interesting from both fundamental and technological viewpoints. Here, we report a stepwise morphology transformation of co-assembled supramolecular structures in the aqueous mixture of lithocholic acid (LCA) and cetyltrimethylammonium bromide (CTAB) at mixed molar ratios of 1:1 and 2:1. The co-assembly of LCA and CTAB initially forms multilamellar vesicles followed by the spontaneous growth of membrane tubes from the vesicles. The vesicle-to-tube transition is accompanied by a fluidic-to-crystalline phase transition. After being aged, the membrane tubes twist into left-handed helices, which then intertwine into left-handed double helices and multihelix bundles. The single handedness of these supramolecular structures is a reflection of the amplification of the chirality of LCA. An understanding of the co-assembly mechanism and pathway is a key step toward producing supramolecular structures with distinguished morphologies.
Collapse
|
34
|
di Gregorio MC, Travaglini L, Del Giudice A, Cautela J, Pavel NV, Galantini L. Bile Salts: Natural Surfactants and Precursors of a Broad Family of Complex Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6803-6821. [PMID: 30234994 DOI: 10.1021/acs.langmuir.8b02657] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.
Collapse
Affiliation(s)
| | - Leana Travaglini
- CNRS, ISIS UMR 7006 , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Alessandra Del Giudice
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Jacopo Cautela
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Nicolae Viorel Pavel
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Luciano Galantini
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| |
Collapse
|
35
|
Kim D, Yoon J, Kim S, Choi H, Han I. A Novel Transdermal Delivery System based on a Bile Acid- Conjugated Nanoparticle Model for Cosmetics. ACTA ACUST UNITED AC 2019. [DOI: 10.20402/ajbc.2018.0265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 DOI: 10.3389/fphar.2018.01283/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 05/27/2023] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
37
|
Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front Pharmacol 2018; 9:1283. [PMID: 30467479 PMCID: PMC6237018 DOI: 10.3389/fphar.2018.01283] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022] Open
Abstract
Bile acids have received considerable interest in the drug delivery research due to their peculiar physicochemical properties and biocompatibility. The main advantage of bile acids as drug absorption enhancers is their ability to act as both drug solubilizing and permeation-modifying agents. Therefore, bile acids may improve bioavailability of drugs whose absorption-limiting factors include either poor aqueous solubility or low membrane permeability. Besides, bile acids may withstand the gastrointestinal impediments and aid in the transporter-mediated absorption of physically complexed or chemically conjugated drug molecules. These biomolecules may increase the drug bioavailability also at submicellar levels by increasing the solubility and dissolution rate of non-polar drugs or through the partition into the membrane and increase of membrane fluidity and permeability. Most bile acid-induced effects are mediated by the nuclear receptors that activate transcriptional networks, which then affect the expression of a number of target genes, including those for membrane transport proteins, affecting the bioavailability of a number of drugs. Besides micellar solubilization, there are many other types of interactions between bile acids and drug molecules, which can influence the drug transport across the biological membranes. Most common drug-bile salt interaction is ion-pairing and the formed complexes may have either higher or lower polarity compared to the drug molecule itself. Furthermore, the hydroxyl and carboxyl groups of bile acids can be utilized for the covalent conjugation of drugs, which changes their physicochemical and pharmacokinetic properties. Bile acids can be utilized in the formulation of conventional dosage forms, but also of novel micellar, vesicular and polymer-based therapeutic systems. The availability of bile acids, along with their simple derivatization procedures, turn them into attractive building blocks for the design of novel pharmaceutical formulations and systems for the delivery of drugs, biomolecules and vaccines. Although toxic properties of hydrophobic bile acids have been described, their side effects are mostly produced when present in supraphysiological concentrations. Besides, minor structural modifications of natural bile acids may lead to the creation of bile acid derivatives with the reduced toxicity and preserved absorption-enhancing activity.
Collapse
Affiliation(s)
- Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Maja Ðanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Bojan Stanimirov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Hani Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Karmen Stankov
- Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
38
|
Park J, Choi JU, Kim K, Byun Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials 2017; 147:145-154. [DOI: 10.1016/j.biomaterials.2017.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 02/06/2023]
|
39
|
Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. J Control Release 2017; 268:305-313. [DOI: 10.1016/j.jconrel.2017.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/01/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022]
|
40
|
Kang SH, Revuri V, Lee SJ, Cho S, Park IK, Cho KJ, Bae WK, Lee YK. Oral siRNA Delivery to Treat Colorectal Liver Metastases. ACS NANO 2017; 11:10417-10429. [PMID: 28902489 DOI: 10.1021/acsnano.7b05547] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Convenient multiple dosing makes oral administration an ideal route for delivery of therapeutic siRNA. However, hostile GI environments and nonspecific biological trafficking prevent achieving appropriate bioavailability of siRNA. Here, an orally administered AuNP-siRNA-glycol chitosan-taurocholic acid nanoparticle (AR-GT NPs) was developed to selectively deliver Akt2 siRNA and treat colorectal liver metastases (CLM). AR-GT NPs are dual padlocked nonviral vectors in which the initially formed AuNP-siRNA (AR) conjugates are further encompassed by bifunctional glycol chitosan-taurocholic acid (GT) conjugates. Covering the surface of AR with GT protected the Akt2 siRNA from GI degradation, facilitated active transport through enterocytes, and enhanced selective accumulation in CLM. Our studies in CLM animal models resulted in the reduction in Akt2 production, followed by initiation of apoptosis in cancer cells after oral administration of Akt2 siRNA-loaded AR-GT. This therapeutic siRNA delivery system may be a promising approach in treating liver-associated diseases.
Collapse
Affiliation(s)
- Sung Hun Kang
- Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Vishnu Revuri
- Department of Green Bio Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| | - Sang-Joon Lee
- Department of Biomedical Science, Chonnam National University Medical School , Gwangju 500-757, Republic of Korea
- Department of Health Administration, Gwangju Health University , Gwangju, Republic of Korea
| | - Sungpil Cho
- KB BioMed Inc. , Chungju 380-702, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School , Gwangju 500-757, Republic of Korea
| | - Kwang Jae Cho
- Department of Otolaryngology, Head & Neck Surgery, College of Medicine, The Catholic University of Korea , Seoul 480-717, Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital , Hwasun-gun, Jeollanamdo, Republic of Korea
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
- KB BioMed Inc. , Chungju 380-702, Republic of Korea
- Department of Green Bio Engineering, Korea National University of Transportation , Chungju 380-702, Republic of Korea
| |
Collapse
|
41
|
Rational Design of Nucleoside-Bile Acid Conjugates Incorporating a Triazole Moiety for Anticancer Evaluation and SAR Exploration. Molecules 2017; 22:molecules22101710. [PMID: 29023408 PMCID: PMC6151511 DOI: 10.3390/molecules22101710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 11/17/2022] Open
Abstract
Herein we report a study on the synthesis and biological evaluation of a library of nucleoside-bile acid conjugates prepared by combining 2′-deoxyadenosine, 2′-deoxyguanosine, 2′-deoxyuridine as well as adenosine and guanosine derivatives with cheno-, urso-, nor-cheno-, nor-urso- and taurourso-desoxycholic acid derivatives by means of the click reaction. The new nucleoside-bile acid conjugates incorporating a triazole moiety were tested in vitro against leukemic K562 and HCT116 colon carcinoma, as well as on normal fibroblast cells. Six compounds displayed interesting anti-proliferative activity against the selected cancer lines and no cytotoxic effects against normal fibroblasts. A possible structure activity relationship was also investigated.
Collapse
|