1
|
Yeganeh Ghotbi M, Farhadi M, Abbasi F. Iron Nanoparticles Wrapped with an N-Doped Carbon Material Produced by Using a Zinc Hydroxide Ferrocyanide Nanohybrid for Use in Commercial-like Supercapacitors. ACS OMEGA 2023; 8:22964-22974. [PMID: 37396247 PMCID: PMC10308404 DOI: 10.1021/acsomega.3c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023]
Abstract
According to the technology of carbon-based supercapacitors, modifying the structure of carbon as an active electrode material leads to an increase in capacitance. A modification involves introducing heteroatoms such as nitrogen into the carbon structure and composing it with metals such as iron. In this research, an anionic source called ferrocyanide was used to produce N-doped carbon consisting of iron nanoparticles. In fact, ferrocyanide was located as a guest between the layers of a host material, which is zinc hydroxide in the α phase. This new nanohybrid material was then heat-treated under Ar, and the heated product after acid washing was iron nanoparticles wrapped with N-doped carbon materials. This material was used as an active material in the production of symmetric supercapacitors with different organic (TEABF4 in acetonitrile) and aqueous (sodium sulfate) electrolytes as well as a new electrolyte (KCN in methanol). Accordingly, the supercapacitor made by the N/Fe-carbon active material and the organic electrolyte showed a capacitance value of 21 F/g at a current density of 0.1 A/g. This value is comparable to and even higher than the values observed in commercial supercapacitors.
Collapse
|
2
|
Chu HI, Ho HY, Huang YJ, Tsai DS, Lee CP. Synthesis of non-planar graphene-wrapped copper nanoparticles with iron(III) oxide decoration for high performance supercapacitors. NANOTECHNOLOGY 2023; 34:285401. [PMID: 37019102 DOI: 10.1088/1361-6528/acca8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
The performance of supercapacitors strongly depends on the electrochemical characterizations of electrode materials. Herein, a composite material consisted of iron(III) oxide (Fe2O3) and multilayer graphene-wrapped copper nanoparticles (Fe2O3/MLG-Cu NPs) is fabricated on a flexible carbon cloth (CC) substrate via two-step synthesis process for supercapacitor application. Where, MLG-Cu NPs are prepared on CC by one-step chemical vapor deposition synthesis approach; thereafter, the Fe2O3is further deposited on the MLG-Cu NPs/CC via successive ionic layer adsorption and reaction method. The related material characterizations of Fe2O3/MLG-Cu NPs are well investigated by scanning electron microscopic, high resolution transmission electron microscopy), Raman spectrometer and X-ray photoelectron spectroscopy; the electrochemical behaviors of the pertinent electrodes are studied by cyclic voltammogram, galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy measurements. The flexible electrode with Fe2O3/MLG-Cu NPs composites exhibits the best specific capacitance of 1092.6 mF cm-2at 1 A g-1, which is much higher than those of electrodes with Fe2O3(863.7 mF cm-2), MLG-Cu NPs (257.4 mF cm-2), multilayer graphene hollow balls (MLGHBs, 14.4 mF cm-2) and Fe2O3/MLGHBs (287.2 mF cm-2). Fe2O3/MLG-Cu NPs electrode also exhibits an excellent GCD durability, and its capacitance remains 88% of its original value after 5000 cycles of the GCD process. Finally, a supercapacitor system consisted of four Fe2O3/MLG-Cu NPs/CC electrodes can efficiently power various light-emitting diodes (i.e. red, yellow, green, and blue lights), demonstrating the practical application of Fe2O3/MLG-Cu NPs/CC electrode.
Collapse
Affiliation(s)
- Hsuan-I Chu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| | - Hsiao-Yun Ho
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| | - Yi-June Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States of America
| | - Dung-Sheng Tsai
- Department of Electronic Engineering, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chuan-Pei Lee
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 10048, Taiwan
| |
Collapse
|
3
|
Mummoorthi G, Shajahan S, Abu Haija M, Mahalingam U, Rajendran R. Synthesis and Characterization of Ternary α-Fe 2O 3/NiO/rGO Composite for High-Performance Supercapacitors. ACS OMEGA 2022; 7:27390-27399. [PMID: 35967063 PMCID: PMC9366972 DOI: 10.1021/acsomega.2c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, pure α-Fe2O3, binary α-Fe2O3/NiO, and ternary α-Fe2O3/NiO/rGO composites were prepared by a hydrothermal method. The properties of the prepared materials were studied by powder X-ray diffraction, scanning electron microscopy, TEM, XPS, and Brunauer-Emmett-Teller techniques. The clusters of smaller α-Fe2O3 nanoparticles (∼30 nm) along with conducting NiO was freely covered by the rGO layer sheet, which offer a higher electrode-electrolyte interface for improved electrochemical performance. The ternary composite has shown a higher specific capacitance of 747 F g-1@ a current density of 1 A g-1 in a 6 M KOH solution, when compared with that of α-Fe2O3/rGO (610 F g-1@1 A g-1) and α-Fe2O3 (440 F g-1@1 A g-1) and the nanocomposite. Moreover, the ternary α-Fe2O3/NiO/rGO composite exhibited a 98% rate capability @ 10 A g-1. The exceptional electrochemical performance of ternary composites has been recognized as a result of their well-designed unique architecture, which provides a large surface area and synergistic effects among all three constituents. The asymmetric supercapacitor (ASC) device was assembled using the ternary α-Fe2O3/NiO/rGO composite as the anode electrode (positive) material and activated carbon as the cathode (negative) material. The ASC device has an energy density of 35.38 W h kg-1 at a power density of 558.6 W kg-1 and retains a 94.52% capacitance after 5000 cycles at a 1 A g-1 current density.
Collapse
Affiliation(s)
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788 Abu Dhabi, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box., 127788 Abu Dhabi, United Arab
Emirates
| | - Umadevi Mahalingam
- Department
of Physics, Mother Teresa Women’s
University, 624 10 Kodaikanal, Tamil Nadu, India
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, 636 011 Salem, Tamil Nadu, India
| |
Collapse
|
4
|
Abstract
Personal, portable, and wearable electronics have become items of extensive use in daily life. Their fabrication requires flexible electronic components with high storage capability or with continuous power supplies (such as solar cells). In addition, formerly rigid tools such as electrochromic windows find new utilizations if they are fabricated with flexible characteristics. Flexibility and performances are determined by the material composition and fabrication procedures. In this regard, low-cost, easy-to-handle materials and processes are an asset in the overall production processes and items fruition. In the present mini-review, the most recent approaches are described in the production of flexible electronic devices based on NiO as low-cost material enhancing the overall performances. In particular, flexible NiO-based all-solid-state supercapacitors, electrodes electrochromic devices, temperature devices, and ReRAM are discussed, thus showing the potential of NiO as material for future developments in opto-electronic devices.
Collapse
|
5
|
Ahmed MMM, Imae T, Ohshima H, Ariga K, Shrestha LK. External Magnetic Field-Enhanced Supercapacitor Performance of Cobalt Oxide/Magnetic Graphene Composites. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mahmoud M. M. Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Toyoko Imae
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, 43 Section 4, Keelung Road, Taipei 10607, Taiwan
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Katsuhiko Ariga
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| | - Lok Kumar Shrestha
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
6
|
Wang Y, Du Z, Xiao J, Cen W, Yuan S. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138486] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kumar R, Naz Ansari S, Deka R, Kumar P, Saraf M, Mobin SM. Progress and Perspectives on Covalent-organic Frameworks (COFs) and Composites for Various Energy Applications. Chemistry 2021; 27:13669-13698. [PMID: 34288163 DOI: 10.1002/chem.202101587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Indexed: 11/10/2022]
Abstract
Covalent-organic frameworks (COFs), being a new member of the crystalline porous materials family, have emerged as important materials for energy storage/conversion/generation devices. They possess high surface areas, ordered micro/mesopores, designable structures and an ability to precisely control electro-active groups in their pores, which broaden their application window. Thanks to their low weight density, long range crystallinity, reticular nature and tunable synthesis approach towards two and three dimensional (2D and 3D) networks, they have been found suitable for a range of challenging electrochemical applications. Our review focuses on the progress made on the design, synthesis and structure of COFs and their composites for various energy applications, such as metal-ion batteries, supercapacitors, water-splitting and solar cells. Additionally, attempts have been made to correlate the structural and mechanistic characteristics of COFs with their applications.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shagufi Naz Ansari
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Rakesh Deka
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Mohit Saraf
- Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India.,Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
8
|
Shaikh JS, Shaikh NS, Mishra YK, Pawar SS, Parveen N, Shewale PM, Sabale S, Kanjanaboos P, Praserthdam S, Lokhande CD. The implementation of graphene-based aerogel in the field of supercapacitor. NANOTECHNOLOGY 2021; 32:362001. [PMID: 34125718 DOI: 10.1088/1361-6528/ac0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area. The aerogels encompass a high volume of pores which leads to easy soak by the electrolyte and fast charge-discharge process. Graphene aerogels assembled into three-dimensional (3D) architecture prevent there stacking of graphene sheets and maintain the high surface area and hence excellent cycling stability and rate capacitance. However, the energy density of graphene aerogels is limited due to EDLC type of charge storage mechanism. Consequently, 3D graphene aerogel coupled with pseudocapacitive materials such as transition metal oxides, metal hydroxides, conducting polymers, nitrides, chalcogenides show an efficient energy density and power density performance due to the presence of both types of charge storage mechanisms. This laconic review focuses on the design and development of graphene-based aerogel in the field of the supercapacitor. This review is an erudite article about methods, technology and electrochemical properties of graphene aerogel.
Collapse
Affiliation(s)
- Jasmin S Shaikh
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| | - Navajsharif S Shaikh
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - S S Pawar
- Department of Engineering Sciences, Sinhgad College of Engineering, Vadgaon, Pune, 41, India
| | - Nazish Parveen
- Department of Chemistry, College of Science, King Faisal University, PO Box 380, Hofuf, Al-Ahsa 31982, Saudi Arabia
| | - Poonam M Shewale
- D. Y. Patil School of Engineering and Technology, Lohegaon, Pune-412 105, Maharashtra, India
| | - Sandip Sabale
- P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, India
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supareak Praserthdam
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Chandrakant D Lokhande
- Centre of Interdisciplinary Research, D. Y. Patil University, Kolhapur, 416006, Maharashtra, India
| |
Collapse
|
9
|
Rajalakshmi R, Remya KP, Viswanathan C, Ponpandian N. Enhanced electrochemical activities of morphologically tuned MnFe 2O 4 nanoneedles and nanoparticles integrated on reduced graphene oxide for highly efficient supercapacitor electrodes. NANOSCALE ADVANCES 2021; 3:2887-2901. [PMID: 36134187 PMCID: PMC9417254 DOI: 10.1039/d1na00144b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 06/15/2023]
Abstract
The morphology of a nanoparticle strongly controls the path of electronic interaction, which directly correlates with the physicochemical properties and also the electrochemical comportment. Combining it with a two-dimensional (2D) material for a layer-by-layer approach will increase its possibilities in applications such as energy conversion and storage. Here, two different morphologies of MnFe2O4, nanoparticles and nanoneedles, are developed by a facile hydrothermal approach and sandwiched with reduced graphene oxide for constructing a 2D/3D sandwiched architecture. The rGO planar structure with abundant hierarchical short pores facilitates the thorough utilization of the utmost surface area to permeate the electrolyte within the structure to minimize the accumulation of rGO nanosheets laterally. The ferrite composited with rGO manifests high specific capacitance as the EDLC behaviour surpasses the faradaic pseudocapacitance boosting electrical conductivity compared to the as-synthesized MnFe2O4 structures. Benefiting from a 3D structure and the synergetic contribution of the MnFe2O4 nanoneedles and electrically conductive rGO layer, the MnFe2O4 nanoneedles@rGO electrode exhibits a high areal capacitance of 890 mF cm-2 and a remarkable specific capacitance of 1327 F g-1 at a current density of 5 mA cm-2. 93.36% of the initial capacitance was retained after 5000 cycles in 1 mol L-1 Na2SO4 indicating its high cycling stability. The synthesis route proves to be beneficial for a comprehensive yield of MnFe2O4@rGO nanosheets of different morphologies for use in the sophisticated design of energy-storing devices. This research strongly suggests that nanoparticle geometry, in addition to two-dimensional carbon-based materials, is a critical factor in a supercapacitor design.
Collapse
Affiliation(s)
- R Rajalakshmi
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2428 421
| | - K P Remya
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2428 421
| | - C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2428 421
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore 641 046 India +91-422-2428 421
| |
Collapse
|
10
|
Zhang H, Yang D, Lau A, Ma T, Lin H, Jia B. Hybridized Graphene for Supercapacitors: Beyond the Limitation of Pure Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007311. [PMID: 33634597 DOI: 10.1002/smll.202007311] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Graphene-based supercapacitors have been attracting growing attention due to the predicted intrinsic high surface area, high electron mobility, and many other excellent properties of pristine graphene. However, experimentally, the state-of-the-art graphene electrodes face limitations such as low surface area, low electrical conductivity, and low capacitance, which greatly limit their electrochemical performances for supercapacitor applications. To tackle these issues, hybridizing graphene with other species (e.g., atom, cluster, nanostructure, etc.) to enlarge the surface area, enhance the electrical conductivity, and improve capacitance behaviors are strongly desired. In this review, different hybridization principles (spacers hybridization, conductors hybridization, heteroatoms doping, and pseudocapacitance hybridization) are discussed to provide fundamental guidance for hybridization approaches to solve these challenges. Recent progress in hybridized graphene for supercapacitors guided by the above principles are thereafter summarized, pushing the performance of hybridized graphene electrodes beyond the limitation of pure graphene materials. In addition, the current challenges of energy storage using hybridized graphene and their future directions are discussed.
Collapse
Affiliation(s)
- Huihui Zhang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Dan Yang
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Alan Lau
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Tianyi Ma
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Han Lin
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
11
|
Porous gel polymer electrolyte for the solid state metal oxide supercapacitor with a wide potential window. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2020.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Tiwari SK, Thakur AK, Adhikari AD, Zhu Y, Wang N. Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2046. [PMID: 33081271 PMCID: PMC7602964 DOI: 10.3390/nano10102046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
This review acmes the latest developments of composites of metal oxides/sulfide comprising of graphene and its analogues as electrode materials in the construction of the next generation of supercapacitors (SCs). SCs have become an indispensable device of energy-storage modes. A prompt increase in the number of scientific accomplishments in this field, including publications, patents, and device fabrication, has evidenced the immense attention they have attracted from scientific communities. These efforts have resulted in rapid advancements in the field of SCs, focusing on the development of electrode materials with features of high performance, economic viability, and robustness. It has been demonstrated that carbon-based electrode materials mixed with metal oxides and sulfoxides can perform extremely well in terms of energy density, durability, and exceptional cyclic stability. Herein, the state-of-the-art technologies relevant to the fabrication, characterization, and property assessment of graphene-based SCs are discussed in detail, especially for the composite forms when mixing with metal sulfide, metal oxides, metal foams, and nanohybrids. Effective synthetic methodologies for the nanocomposite fabrications via intercalation, coating, wrapping, and covalent interactions will be reviewed. We will first introduce some fundamental aspects of SCs, and briefly highlight the impact of graphene-based nanostructures on the basic principle of SCs, and then the recent progress in graphene-based electrodes, electrolytes, and all-solid-state SCs will be covered. The important surface properties of the metal oxides/sulfides electrode materials (nickel oxide, nickel sulfide, molybdenum oxide, ruthenium oxides, stannous oxide, nickel-cobalt sulfide manganese oxides, multiferroic materials like BaMnF, core-shell materials, etc.) will be described in each section as per requirement. Finally, we will show that composites of graphene-based electrodes are promising for the construction of the next generation of high performance, robust SCs that hold the prospects for practical applications.
Collapse
Affiliation(s)
- Santosh K. Tiwari
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Anukul K. Thakur
- Department of Printed Electronics Engineering, Sunchon National University, Chonnam 57922, Korea;
| | - Amrita De Adhikari
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Yanqiu Zhu
- Department of Mathematics and Physical Sciences, College of Engineering, University of Exeter, London EX4 4QJ, UK
| | - Nannan Wang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi Institute Fullerene Technology (GIFT), Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
13
|
Yang C, Shi M, Nuli Y, Song X, Zhao L, Liu J, Zhang P, Gao L. Interfacial electrochemical investigation of 3D space-confined MnFe2O4 for high-performance ionic liquid-based supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
El‐Mahdy AFM, Hung Y, Mansoure TH, Yu H, Chen T, Kuo S. A Hollow Microtubular Triazine‐ and Benzobisoxazole‐Based Covalent Organic Framework Presenting Sponge‐Like Shells That Functions as a High‐Performance Supercapacitor. Chem Asian J 2019; 14:1429-1435. [DOI: 10.1002/asia.201900296] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ahmed F. M. El‐Mahdy
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut 71516 Egypt
| | - Ying‐Hui Hung
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
| | - Tharwat Hassan Mansoure
- Chemistry DepartmentFaculty of ScienceAssiut University Assiut 71516 Egypt
- Institute of ChemistryAcademic Sinica 128 Academic Road, Sec. 2 Nankang Taipei 11529 Taiwan
- Nanoscience and Technology ProgramTaiwan International Graduate ProgramAcademic Sinica and National Taiwan University Taipei 11529 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
| | - Hsiao‐Hua Yu
- Institute of ChemistryAcademic Sinica 128 Academic Road, Sec. 2 Nankang Taipei 11529 Taiwan
- Nanoscience and Technology ProgramTaiwan International Graduate ProgramAcademic Sinica and National Taiwan University Taipei 11529 Taiwan
- Department of ChemistryNational Taiwan University Taipei 106 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Tao Chen
- Ningbo Institute of Material Technology and EngineeringChinese Academy of Science Zhongguan West Road 1219 315201 Ningbo China
| | - Shiao‐Wei Kuo
- Department of Materials and Optoelectronic ScienceCenter of Crystal ResearchNational Sun Yat-Sen University Kaohsiung 80424 Taiwan
- Department of Medicinal and Applied ChemistryKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
15
|
Xu L, Liu R, Wang F, Yan S, Shi X, Yang J. Preparation of triazine containing porous organic polymer for high performance supercapacitor applications. RSC Adv 2019; 9:1586-1590. [PMID: 35518024 PMCID: PMC9059576 DOI: 10.1039/c8ra09099h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/06/2019] [Indexed: 11/24/2022] Open
Abstract
By condensing M and TFP under solvothermal conditions, a new porous organic polymer POPM-TFP was obtained. The electrode modified with triazine containing POPM-TFP exhibits well-defined rapid redox processes and showed a high specific capacitance of 130.5 F g-1 at 2 A g-1, suggesting well electrochemical performance.
Collapse
Affiliation(s)
- Lirong Xu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
| | - Ruiying Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
| | - Fang Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
| | - Shina Yan
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
| | - Xinxin Shi
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
| | - Jiaqin Yang
- School of Chemistry and Chemical Engineering, Qufu Normal University Qufu 273165 Shandong China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Talukdar M, Behera SK, Deb P. Graphitic carbon nitride decorated with FeNi3 nanoparticles for flexible planar micro-supercapacitor with ultrahigh energy density and quantum storage capacity. Dalton Trans 2019; 48:12137-12146. [DOI: 10.1039/c9dt02423a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schematic description of graphitic-C3N4@FeNi3 (pseudocapacitive FeNi3 and electrochemical double layer g-C3N4) heterostructure having energy density and quantum storage capacity for in-plane micro-supercapacitor application.
Collapse
Affiliation(s)
- Meenakshi Talukdar
- Advanced Functional Material Laboratory (AFML)
- Department of Physics
- Tezpur University (Central University)
- Tezpur-784028
- India
| | - Sushant Kumar Behera
- Advanced Functional Material Laboratory (AFML)
- Department of Physics
- Tezpur University (Central University)
- Tezpur-784028
- India
| | - Pritam Deb
- Advanced Functional Material Laboratory (AFML)
- Department of Physics
- Tezpur University (Central University)
- Tezpur-784028
- India
| |
Collapse
|
17
|
Strauss V, Anderson M, Wang C, Borenstein A, Kaner RB. Carbon Nanodots as Feedstock for a Uniform Hematite-Graphene Nanocomposite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803656. [PMID: 30417529 DOI: 10.1002/smll.201803656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/22/2018] [Indexed: 06/09/2023]
Abstract
High degrees of dispersion are a prerequisite for functional composite materials for applications in electronics such as sensors, charge and data storage, and catalysis. The use of small precursor materials can be a decisive factor in achieving a high degree of dispersion. In this study, carbon nanodots are used to fabricate a homogeneous, finely dispersed Fe2 O3 -graphene composite aerogel in a one-step conversion process from a precursor mixture. The laser-assisted conversion of small size carbon nanodots enables a uniform distribution of 6.5 nm Fe2 O3 nanoparticles during the formation of a highly conductive carbon matrix. Structural and electrochemical characterization shows that the features of both material entities are maintained and successfully integrated. The presence of Fe2 O3 nanoparticles has a positive effect on the active surface area of the carbon aerogel and thus on the capacitance of the material. This is demonstrated by testing the performance of the composite in supercapacitors. Faradaic reactions are exploited in an aqueous electrolyte through the high accessible surface of the incorporated small Fe2 O3 nanoparticles boosting the specific capacitance of the 3D turbostratic graphene network significantly.
Collapse
Affiliation(s)
- Volker Strauss
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Max Planck Institut für Kolloid- und Grenzflächenforschung Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mackenzie Anderson
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Chenxiang Wang
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Arie Borenstein
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Materials Science and Engineering, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
Liu X, Chen C, Chen X, Qian G, Wang J, Wang C, Cao Z, Liu Q. WO3 QDs enhanced photocatalytic and electrochemical perfomance of GO/TiO2 composite. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Li P, Gui Y, Blackwood DJ. Development of a Nanostructured α-MnO 2/Carbon Paper Composite for Removal of Ni 2+/Mn 2+ Ions by Electrosorption. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19615-19625. [PMID: 29786429 DOI: 10.1021/acsami.8b02471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Toxic metal ions, such as Ni2+ and Mn2+, in industrial waste streams are nonbiodegradable and can cause damage to the human body. Electrochemical cleaning techniques are attractive as they offer more control and produce less sludge than do chemical/biological approaches without the high pressures needed for membranes. Here, nanoneedle-structured α-MnO2/carbon fiber paper (CFP) composites were synthesized by a hydrothermal approach and used as electrodes for combined electroadsorption and capacitive deionization removal of nickel and manganese ions from pseudoindustrial waste streams. The specific performance of α-MnO2/CFP (16.4 mg Ni2+ per g of active material) not only shows a great improvement in comparison with its original CFP substrate (0.034 Ni2+ mg per g), but also is over 6 times that of activated carbon (2.5 mg Ni2+ per g). The high performance of α-MnO2/CFP composites is attributed to their high surface area, desirable mesoporosity, pore-size distribution that permits the further access of ions, and their property as a pseudocapacitor, which contributes to a more efficient electron/charge transfer in the faradic process. Unfortunately, it was also found that some Mn2+ ions are released due to the partial reduction of MnO2 when operated as a negative electrode. For the removal of Mn2+ ions, an asymmetric arrangement, consisting of a MnO2/CFP positive electrode and an activated carbon negative electrode, was employed. This arrangement reduced the Mn2+ concentration from 100 ppm to less than 2 ppm, a vast improvement over the systematical two-activated carbon electrode system that could only reach 42 ppm under the same conditions. It was also observed that as long as the MnO2/CFP composite was maintained as a positive electrode, it was completely stable. The technique was able to reduce both Ni2+ and Mn2+ ions to well below the 10 ppm requirement for discharge into public sewers in Singapore.
Collapse
Affiliation(s)
- Pengju Li
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117574
| | - Yang Gui
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117574
| | - Daniel John Blackwood
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117574
| |
Collapse
|
20
|
Ma J, Guo X, Yan Y, Xue H, Pang H. FeO x -Based Materials for Electrochemical Energy Storage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700986. [PMID: 29938176 PMCID: PMC6010812 DOI: 10.1002/advs.201700986] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/30/2018] [Indexed: 05/22/2023]
Abstract
Iron oxides (FeO x ), such as Fe2O3 and Fe3O4 materials, have attracted much attention because of their rich abundance, low cost, and environmental friendliness. However, FeO x , which is similar to most transition metal oxides, possesses a poor rate capability and cycling life. Thus, FeO x -based materials consisting of FeO x , carbon, and metal-based materials have been widely explored. This article mainly discusses FeO x -based materials (Fe2O3 and Fe3O4) for electrochemical energy storage applications, including supercapacitors and rechargeable batteries (e.g., lithium-ion batteries and sodium-ion batteries). Furthermore, future perspectives and challenges of FeO x -based materials for electrochemical energy storage are briefly discussed.
Collapse
Affiliation(s)
- Jingyi Ma
- School of Chemistry and Chemical EngineeringInstitute for Innovative Materials and EnergyYangzhou UniversityYangzhou225009JiangsuP. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical EngineeringInstitute for Innovative Materials and EnergyYangzhou UniversityYangzhou225009JiangsuP. R. China
| | - Yan Yan
- School of Chemistry and Chemical EngineeringInstitute for Innovative Materials and EnergyYangzhou UniversityYangzhou225009JiangsuP. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringInstitute for Innovative Materials and EnergyYangzhou UniversityYangzhou225009JiangsuP. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringInstitute for Innovative Materials and EnergyYangzhou UniversityYangzhou225009JiangsuP. R. China
| |
Collapse
|
21
|
Seok JY, Lee J, Yang M. Self-Generated Nanoporous Silver Framework for High-Performance Iron Oxide Pseudocapacitor Anodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17223-17231. [PMID: 29726257 DOI: 10.1021/acsami.8b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rapid development of electric vehicles is increasing the demand for next-generation fast-charging energy storage devices with a high capacity and long-term stability. Metal oxide/hydroxide pseudocapacitors are the most promising technology because they show a theoretical capacitance that is 10-100 times higher than that of conventional supercapacitors and rate capability and long-term stability that are much higher than those of Li-ion batteries. However, the poor electrical conductivity of metal oxides/hydroxides is a serious obstacle for achieving the theoretical pseudocapacitor performance. Here, a nanoporous silver (np-Ag) structure with a tunable pore size and ligament is developed using a new silver halide electroreduction process. The structural characteristics of np-Ag (e.g., large specific surface area, electric conductivity, and porosity) are desirable for metal oxide-based pseudocapacitors. This work demonstrates an ultra-high-capacity, fast-charging, and long-term cycling pseudocapacitor anode via the development of an np-Ag framework and deposition of a thin layer of Fe2O3 on its surface (np-Ag@Fe2O3). The np-Ag@Fe2O3 anode shows a capacitance of ∼608 F g-1 at 10 A g-1, and ∼84.9% of the capacitance is retained after 6000 charge-discharge cycles. This stable and high-capacity anode, which can be charged within a few tens of seconds, is a promising candidate for next-generation energy storage devices.
Collapse
Affiliation(s)
- Jae Young Seok
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Jaehak Lee
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| | - Minyang Yang
- Department of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 305-701 , Republic of Korea
| |
Collapse
|
22
|
Wu J, Yu D, Wang G, Yang J, Wang H, Liu X, Guo L, Han X. Flexible Micro-Supercapacitors Based on Naturally Derived Juglone. Chempluschem 2018; 83:423-430. [PMID: 31957350 DOI: 10.1002/cplu.201800121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/05/2018] [Indexed: 11/09/2022]
Abstract
Recently, great efforts have been devoted to designing and fabricating flexible, lightweight, wearable, and miniaturized supercapacitors. At the same time, the exploration of green, renewable, and biocompatible energy-storage materials has been attracting intensive attention. By taking fabrication and configuration design into consideration, the naturally derivable juglone molecule was exploited as an active charge-storage material, and integrated into flexible and micro-supercapacitor devices. The polypyrrole/juglone-composite-based supercapacitors exhibit significant energy-storage capabilities with high specific capacitance and long cyclability, which are comparable to that of conventional electrode materials. This study presents a new way for developing flexible, lightweight, portable, and/or wearable electronic devices with biocompatible and environmentally friendly attributes.
Collapse
Affiliation(s)
- Jiapeng Wu
- Beijing Key Laboratory of Microstructure and Property of Advanced, Materials, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Dandan Yu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Guangzhen Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jie Yang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hua Wang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiaoyu Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Property of Advanced, Materials, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
23
|
Han Y, Hu N, Liu S, Hou Z, Liu J, Hua X, Yang Z, Wei L, Wang L, Wei H. Nanocoating covalent organic frameworks on nickel nanowires for greatly enhanced-performance supercapacitors. NANOTECHNOLOGY 2017; 28:33LT01. [PMID: 28721952 DOI: 10.1088/1361-6528/aa7bb6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.
Collapse
Affiliation(s)
- Yang Han
- Key Laboratorty for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ghosh K, Yue CY, Sk MM, Jena RK. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO 2@PANI) Composite and Self-Assembled 3D Pillared Graphene Foam for Asymmetric All-Solid-State Flexible Supercapacitor Application. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15350-15363. [PMID: 28414212 DOI: 10.1021/acsami.6b16406] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We have fabricated high-energy-density all-solid-state flexible asymmetric supercapacitor by using a facile novel 3D hollow urchin-shaped coaxial manganese dioxide@polyaniline (MnO2@PANI) composite as positive electrode and 3D graphene foam (GF) as negative electrode materials with polyvinyl alcohol (PVA)/KOH gel electrolyte. The coaxial MnO2@PANI composite was fabricated by hydrothermal route followed by oxidation without use of an external oxidant. The formation mechanism of the 3D hollow MnO2@PANI composite occurs first by nucleation and growth of the MnO2 crystal species via dissolution-recrystallization and oriented attachment mechanisms followed by the oxidation of aniline monomers on the MnO2 crystalline template. The self-assembled 3D graphene block was synthesized by hydrothermal route using vitamin C as a reducing agent. The microstructures of the composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The morphology is characterized by field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which clearly showed the formation of urchin-shaped coaxial MnO2@PANI composite. The electrochemical studies are explored by cyclic voltammetry, electrochemical impedance spectrometry, and cyclic charge-discharge tests. The symmetric all-solid-state flexible MnO2@PANI//MnO2@PANI and GF//GF supercapacitors exhibit the specific capacitance of 129.2 and 82.1 F g-1 at 0.5 A/g current density, respectively. The solid-state asymmetric supercapacitor shows higher energy density (37 Wh kg-1) with respect to the solid-state symmetric supercapacitors MnO2@PANI//MnO2@PANI and GF//GF, where the obtained energy density are found to be 17.9 and 11.4 Wh kg-1, respectively, at 0.5 A/g current density. Surprisingly, the asymmetric supercapacitor shows a high energy density of 22.3 Wh kg-1 at a high current density of 5 A g-1. The solid-state asymmetric supercapacitor shows a good cyclic stability in which ∼11% capacitance loss was observed after 5000 cycles.
Collapse
Affiliation(s)
- Kalyan Ghosh
- School of Mechanical and Aerospace Engineering and ‡School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Chee Yoon Yue
- School of Mechanical and Aerospace Engineering and ‡School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Md Moniruzzaman Sk
- School of Mechanical and Aerospace Engineering and ‡School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| | - Rajeeb Kumar Jena
- School of Mechanical and Aerospace Engineering and ‡School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
25
|
Jinlong L, Meng Y, Miura H. The effect of urea on microstructures of tin dioxide grown on Ti plate and its supercapacitor performance. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Tanaka S, Salunkhe RR, Kaneti YV, Malgras V, Alshehri SM, Ahamad T, Zakaria MB, Dou SX, Yamauchi Y, Hossain MSA. Prussian blue derived iron oxide nanoparticles wrapped in graphene oxide sheets for electrochemical supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra03179c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work reports the synthesis of hybrid materials combining graphene oxide (GO) sheets with Prussian blue (PB) nanoparticles which can be converted into porous GO/iron oxide hybrids for supercapacitor applications.
Collapse
|
27
|
Chen J, Chen Q, Xu J, Wong CP. Hybridizing Fe3O4 nanocrystals with nitrogen-doped carbon nanowires for high-performance supercapacitors. RSC Adv 2017. [DOI: 10.1039/c7ra09723a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nanocomposite hybridizing Fe3O4 nanocrystals with N-doped carbon nanowires exhibits great performances for supercapacitors.
Collapse
Affiliation(s)
- Jizhang Chen
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Qiongyu Chen
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Junling Xu
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
| | - Ching-Ping Wong
- Department of Electronic Engineering
- The Chinese University of Hong Kong
- New Territories
- Hong Kong
| |
Collapse
|