1
|
Podlech J. Natural resorcylic lactones derived from alternariol. Beilstein J Org Chem 2024; 20:2171-2207. [PMID: 39224229 PMCID: PMC11368053 DOI: 10.3762/bjoc.20.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this overview, naturally occurring resorcylic lactones biosynthetically derived from alternariol and almost exclusively produced by fungi, are discussed with view on their isolation, structure, biological activities, biosynthesis, and total syntheses. This class of compounds consists until now of 127 naturally occurring compounds, with very divers structural motifs. Although only a handful of these toxins (i.e., alternariol and its 9-O-methyl ether, altenusin, dehydroaltenusin, altertenuol, and altenuene) were frequently found and isolated as fungal contaminants in food and feed and have been investigated in significant detail, further metabolites, which were much more rarely found as natural products, similarly show interesting biological activities.
Collapse
Affiliation(s)
- Joachim Podlech
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Wu Z, Li XM, Yang SQ, Wang BG, Li X. Antibacterial Polyketides from the Deep-Sea Cold-Seep-Derived Fungus Talaromyces sp. CS-258. Mar Drugs 2024; 22:204. [PMID: 38786595 PMCID: PMC11122946 DOI: 10.3390/md22050204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Thirty-two fungal polyketide derivatives, including eleven new compounds, namely (3R,5'R)-5-hydroxytalaroflavone (1), talaroisochromenols A-C (3, 5, and 11), (8R,9R,10aR)-5-hydroxyaltenuene (13), (8R,9R,10aS)-5-hydroxyaltenuene (14), (8R,9S,10aR)-5-hydroxyaltenuene (15), nemanecins D and E (25 and 26), 2,5-dimethyl-8-iodochromone (27), and talarofurolactone A (29), together with one new naturally occurring but previously synthesized metabolite, 6-hydroxy-4-methoxycoumarin (28), were isolated and identified from the deep-sea cold-seep-derived fungus Talaromyces sp. CS-258. Among them, racemic ((±)-11) or epimeric (13-15, 25, and 26) mixtures were successfully separated by chiral or gradient elution HPLC. Meanwhile, compound 27 represents a rarely reported naturally occurring iodinated compound. Their planar structures as well as absolute configurations were determined by extensive analysis via NMR, MS, single-crystal X-ray diffraction, Mosher's method, and ECD or NMR calculation (with DP4+ probability analysis). Possible biosynthetic routes of some isolated compounds, which are related to chromone or isochromone biosynthetic pathways, were put forward. The biological analysis results revealed that compounds 7, 9, 10, 18-22, 24, 30, and 31 showed broad-spectrum antibacterial activities against several human and aquatic pathogens with MIC ranges of 0.5-64 μg/mL.
Collapse
Affiliation(s)
- Zhenger Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, China; (Z.W.); (X.-M.L.); (S.-Q.Y.)
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Road 1, Qingdao 266237, China
| |
Collapse
|
3
|
Elnaggar MS, Ibrahim N, Elissawy AM, Anwar A, Ibrahim MAA, Ebada SS. Cytotoxic and antimicrobial mycophenolic acid derivatives from an endophytic fungus Penicillium sp. MNP-HS-2 associated with Macrozamia communis. PHYTOCHEMISTRY 2024; 217:113901. [PMID: 37884257 DOI: 10.1016/j.phytochem.2023.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Macrozamia communis and its associated endophytic fungi are untapped sources of bioactive metabolites with great potential for medicinal exploitation. Chemical investigation of the mycelial extract derived from an endophytic fungus Penicillium sp. MNP-HS-2 associated with M. communis fruit afforded four mycophenolic acid derivatives recognized as previously undescribed natural products (1-4), together with nine known metabolites (5-13). Chemical structures of isolated compounds were determined based on extensive spectroscopic analyses, including 1D/2D NMR and HRESIMS. The absolute stereochemistry of alternatain E (1) was unambiguously established by comparing its experimental and calculated time-dependent density functional theory electronic circular dichroism spectra (TDDFT-ECD). All isolated compounds were assessed for their antimicrobial and cytotoxic activities, where mycophenolic acid methyl ester (7), displayed significant cytotoxic activity against seven different cell lines with IC50 values in the low micromolar to nanomolar range. Mycophenolene A (3) exhibited significant antibacterial activity against Staphylococcus aureus (MIC = 2.1 μg/mL).
Collapse
Affiliation(s)
- Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Alaa Anwar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Sherif S Ebada
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
4
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
5
|
Liu HY, Yang FX, Dai JM, Liang MJ, Xiong W, Mi QL, Li XM, Wang K, Deng L, Hu Q, Zhang JD. Isochromenes from the Nicotiana tabacum-Derived Endophytic Fungus Aspergillus versicolor and Their Bioactivities. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities. Mar Drugs 2023; 21:md21020063. [PMID: 36827104 PMCID: PMC9965070 DOI: 10.3390/md21020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs.
Collapse
|
7
|
Budiyanto F, Alhomaidi EA, Mohammed AE, Ghandourah MA, Alorfi HS, Bawakid NO, Alarif WM. Exploring the Mangrove Fruit: From the Phytochemicals to Functional Food Development and the Current Progress in the Middle East. Mar Drugs 2022; 20:303. [PMID: 35621954 PMCID: PMC9146169 DOI: 10.3390/md20050303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Nowadays, the logarithmic production of existing well-known food materials is unable to keep up with the demand caused by the exponential growth of the human population in terms of the equality of access to food materials. Famous local food materials with treasury properties such as mangrove fruits are an excellent source to be listed as emerging food candidates with ethnomedicinal properties. Thus, this study reviews the nutrition content of several edible mangrove fruits and the innovation to improve the fruit into a highly economic food product. Within the mangrove fruit, the levels of primary metabolites such as carbohydrates, protein, and fat are acceptable for daily intake. The mangrove fruits, seeds, and endophytic fungi are rich in phenolic compounds, limonoids, and their derivatives as the compounds present a multitude of bioactivities such as antimicrobial, anticancer, and antioxidant. In the intermediary process, the flour of mangrove fruit stands as a supplementation for the existing flour with antidiabetic or antioxidant properties. The mangrove fruit is successfully transformed into many processed food products. However, limited fruits from species such as Bruguiera gymnorrhiza, Rhizophora mucronata, Sonneratia caseolaris, and Avicennia marina are commonly upgraded into traditional food, though many more species demonstrate ethnomedicinal properties. In the Middle East, A. marina is the dominant species, and the study of the phytochemicals and fruit development is limited. Therefore, studies on the development of mangrove fruits to functional for other mangrove species are demanding. The locally accepted mangrove fruit is coveted as an alternate food material to support the sustainable development goal of eliminating world hunger in sustainable ways.
Collapse
Affiliation(s)
- Fitri Budiyanto
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
- National Research and Innovation Agency, Jl. M.H. Thamrin No. 8, Jakarta 10340, Indonesia
| | - Eman A. Alhomaidi
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed A. Ghandourah
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| | - Hajer S. Alorfi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (H.S.A.); (N.O.B.)
| | - Wailed M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia; (F.B.); (M.A.G.); (W.M.A.)
| |
Collapse
|
8
|
Du G, Kong GH, Hu QF, Zhang LF, Zhang GH, Bao MF, Li YK, Miao D, Wu YP. New Anti-TMV Isochromenes from Nicotiana Tabacum-Derived Endophytic Fungus Aspergillus Versicolor. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Zhai YJ, Huo GM, Wei J, Lin LB, Zhang Q, Li JN, Chen X, Han WB, Gao JM. Structures and absolute configurations of butenolide derivatives from the isopod-associated fungus Pidoplitchkoviella terricola. PHYTOCHEMISTRY 2022; 193:112981. [PMID: 34653910 DOI: 10.1016/j.phytochem.2021.112981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
In this research, twenty aromatic and branched aliphatic polyketides, including seven previously undescribed butenolide derivatives, piterriones A-G and one known analogue, along with twelve known altenusin derivatives, were isolated from the isopod-associated fungus Pidoplitchkoviella terricola. Their structures were elucidated by analysis of NMR (1D and 2D) and mass spectrometry data, and their absolute configurations were determined by Mosher's method, microscale derivatization, and comparison of their specific rotations and ECD spectra. Dihydroaltenuene B exhibited mushroom tyrosinase inhibitory activity with an IC50 value of 38.33 ± 1.59 μM, which was comparable to that of the positive control, kojic acid (IC50 = 39.72 ± 1.34 μM). A molecular-docking study disclosed the hydrogen bonding interactions between the 3-OH and 4'-OH of dihydroaltenuene B and the His244, Met280 and Gly281 residues of tyrosinase.
Collapse
Affiliation(s)
- Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Guang-Ming Huo
- Institute of Medicinal Fungi, School of Food Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 210017, People's Republic of China
| | - Jing Wei
- College of Biology Pharmacy & Food Engineering, Shangluo University, Shangluo, 726000, Shaanxi, People's Republic of China
| | - Li-Bin Lin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Xin Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
10
|
Elbermawi A, Ali AR, Amen Y, Ashour A, Ahmad KF, Mansour ESS, Halim AF. Anti-diabetic activities of phenolic compounds of Alternaria sp., an endophyte isolated from the leaves of desert plants growing in Egypt. RSC Adv 2022; 12:24935-24945. [PMID: 36199870 PMCID: PMC9434606 DOI: 10.1039/d2ra02532a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Six phenolic compounds (talaroflavone (1), alternarienoic acid (2), altenuene (3), altenusin (4), alternariol (5), and alternariol-5-O-methyl ether (6)) were isolated from the solid rice culture media of Alternaria sp., an endophyte isolated from the fresh leaves of three desert plants, Lycium schweinfurthii Dammer (Solanaceae), Pancratium maritimum L. (Amaryllidaceae) and Cynanchum acutum L. (Apocynaceae). Compounds 2, 3, and 4 exhibited potent α-glucosidase and lipase inhibitory activities suggesting that they might act as naturally occurring anti-diabetic candidates. The same compounds showed potent binding in the active site for both enzymes with desirable pharmacokinetic properties. The isolated bioactive compounds were not exclusive to a certain host plant which reveals the dominant ecological standpoints for consequent optimization. This could lead to a cost-effective and reproducible yield applicable to commercial scale-up. Six phenolic compounds were isolated from the solid rice culture media of Alternaria sp., an endophyte isolated from the leaves of three desert plants, Lycium schweinfurthii Dammer (Solanaceae), Pancratium maritimum L. (Amaryllidaceae) and Cynanchum acutum L. (Apocynaceae).![]()
Collapse
Affiliation(s)
- Ahmed Elbermawi
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed R. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Kadria F. Ahmad
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - El-Sayed S. Mansour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ahmed F. Halim
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
11
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Guo HX, Huang CY, Yan ZY, Chen T, Hong K, Long YH. New furo[3,2-h]isochroman from the mangrove endophytic fungus Aspergillus sp. 085242. Chin J Nat Med 2021; 18:855-859. [PMID: 33308608 DOI: 10.1016/s1875-5364(20)60028-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 12/29/2022]
Abstract
Four new compounds, asperisocoumarin G (1), asperisocoumarin H (2), (±)-asperisocoumarin I [(±)-3], along with the known pergillin (4) and penicisochroman L (5) were isolated from a mangrove endophytic fungus Aspergillus sp. 085242 by further chemical investigation. The structures of the new compounds, including their absolute configurations, were established by analysis of HR-ESI-MS and NMR spectroscopic data, and ECD calculation. Asperisocoumarins G-I (1-3) were new isocoumarins belonging to the class of furo[3, 2-h]isocoumarins which are rarely found in natural sources. All of the isolated compounds were evaluated for their α-glucosidase inhibitory effects, and compounds 1 and 4 showed moderate α-glucosidase inhibitory activity, respectively. In an antimicrobial test, the racemate of 3 showed antibacterial activity against Salmonella.
Collapse
Affiliation(s)
- Hui-Xian Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Cui-Ying Huang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Zhang-Yuan Yan
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Yu-Hua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Shabir G, Saeed A, El-Seedi HR. Natural isocoumarins: Structural styles and biological activities, the revelations carry on …. PHYTOCHEMISTRY 2021; 181:112568. [PMID: 33166749 DOI: 10.1016/j.phytochem.2020.112568] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Isocoumarins and dihydroisocoumarins are lactonic phytochemicals plentiful in microbes and higher plants. These are an amazing small scaffolds consecrated with all types of pharmacological applications. Our previous review covered the period 2000-2016, documenting the then known natural products of this class; the current article is a critical account of discovery of known as well as undescribed structural types and pharmacological activities reported in the course of 2016-2020. The classification revealed in our previous review based on the biogenetic origin is further buttressed by discovery of new members of each class and some new structural types hitherto unknown have also been identified. Similarly, the biological activities and SAR conclusions identified were found to be valid as well, nonetheless with new accompaniments. The most recent available literature on the structural diversity and biological activity of these natural products has been included. The information documented in this article are collected from scientific journals, books, electronic search engines and scientific databases.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Hesham R El-Seedi
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Al-Rayan Colleges, Medina, 42541, Saudi Arabia
| |
Collapse
|
14
|
Chen S, Deng Y, Yan C, Wu Z, Guo H, Liu L, Liu H. Secondary Metabolites with Nitric Oxide Inhibition from Marine-Derived Fungus Alternaria sp. 5102. Mar Drugs 2020; 18:md18080426. [PMID: 32823987 PMCID: PMC7460390 DOI: 10.3390/md18080426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Two new benzofurans, alternabenzofurans A and B (1 and 2) and two new sesquiterpenoids, alternaterpenoids A and B (3 and 4), along with 18 known polyketides (5−22), were isolated from the marine-derived fungus Alternaria sp. 5102. Their structures were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, HR-ESIMS, and ECD) and X-ray crystallography, as well as the modified Mosher’s method. Compounds 2, 3, 5, 7, 9–18, and 20–22 exhibited potent anti-inflammatory activity by inhibiting the production of NO in RAW264.7 cells activated by lipopolysaccharide with IC50 values in the range from 1.3 to 41.1 μM. Structure-activity relationships of the secondary metabolites were discussed.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Yanlian Deng
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (S.C.); (Z.W.); (H.G.); (L.L.)
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongju Liu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; (Y.D.); (C.Y.)
- Correspondence: ; Tel.: +86-769-22896599
| |
Collapse
|
15
|
Li H, Liang YR, Chen SX, Wang WX, Zou Y, Nuryyeva S, Houk KN, Xiong J, Hu JF. Amentotaxins C-V, Structurally Diverse Diterpenoids from the Leaves and Twigs of the Vulnerable Conifer Amentotaxus argotaenia and Their Cytotoxic Effects. JOURNAL OF NATURAL PRODUCTS 2020; 83:2129-2144. [PMID: 32633512 DOI: 10.1021/acs.jnatprod.0c00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A phytochemical investigation of the MeOH extract of the leaves and twigs of Amentotaxus argotaenia, a relict vulnerable coniferous species endemic to China, led to the isolation and characterization of 35 diterpenoids/norditerpenoids. Twenty of these are new, including 11 ent-kaurane-type (amentotaxins C-M, 1-11, respectively), three icetexane-type [= 9(10→20)abeo-abietane-type (amentotaxins N-P, 12-14, respectively)], four ent-labdane-type (amentotaxins Q-T, 15-18, respectively), and two isopimarane-type [amentotaxins U (19) and V (20)] compounds. Their structures were elucidated on the basis of spectroscopic data, single-crystal X-ray diffraction, the modified Mosher's method, and electronic circular dichroism data analyses. Compounds 1-9 are rare 18-nor-ent-kaurane-type diterpenoids featuring a 4β,19-epoxy ring. All the isolates were evaluated for their cytotoxic effects against a small panel of cultured human cancer cell lines (HeLa, A-549, MDA-MB-231, SKOV3, Huh-7, and HCT-116), and some of them exhibited cytotoxicities with IC50 values ranging from 1.5 to 10.0 μM.
Collapse
Affiliation(s)
- Hao Li
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Yu-Ru Liang
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Shao-Xin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, No. 285 Gebaini Road, Shanghai 201203, People's Republic of China
| | - Wen-Xuan Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipolu 172, Changsha 410013, People's Republic of China
| | - Yike Zou
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Selbi Nuryyeva
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry & Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Juan Xiong
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| | - Jin-Feng Hu
- School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, People's Republic of China
| |
Collapse
|
16
|
Yang H, Qi B, Ding N, Jiang F, Jia F, Luo Y, Xu X, Wang L, Zhu Z, Liu X, Tu P, Shi S. Polyketides from Alternaria alternata MT-47, an endophytic fungus isolated from Huperzia serrata. Fitoterapia 2019; 137:104282. [PMID: 31381956 DOI: 10.1016/j.fitote.2019.104282] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 12/29/2022]
Abstract
Four new polyketides, alternatains A-D (1-4), along with 17 known compounds (5-21) were obtained from the solid substrate fermentation cultures of Alternaria alternata MT-47, an endophytic fungus isolated from the medicinal plant of Huperzia serrata. Their structures were elucidated by extensive spectroscopic and spectrometric techniques (1D and 2D NMR, IR, and HRESIMS) and calculated electronic circular dichroism (ECD) method. Compounds 4, 6, 15, and 21 exhibited inhibitory activities on ATP release of thrombin-activated platelets with IC50 values in the range of 18.2-68.8 μM.
Collapse
Affiliation(s)
- Hongyun Yang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Bowen Qi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ning Ding
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jiang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Fangfang Jia
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuan Luo
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Lili Wang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Zhixiang Zhu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Beijing Key Lab for Quality Evaluation of Chinese Meteria Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China.
| |
Collapse
|
17
|
Chen Y, Chen R, Xu J, Tian Y, Xu J, Liu Y. Two New Altenusin/Thiazole Hybrids and a New Benzothiazole Derivative from the Marine Sponge-Derived Fungus Alternaria sp. SCSIOS02F49. Molecules 2018; 23:molecules23112844. [PMID: 30388842 PMCID: PMC6278658 DOI: 10.3390/molecules23112844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
Two novel altenusin-thiazole hybrids named altenusinoides A and B (1 and 2), a new benzothiazole derivative (3), and three known altenusin derivatives (4–6) have been obtained from the solid culture of the marine sponge-derived fungal strain, Alternaria sp. SCSIOS02F49. The structures of these new compounds were characterized by NMR, HRESIMS, and X-ray single crystal analysis. Compounds 1 and 2 possess an unusual altenusin-thiazole-fused skeleton core (6/6/5), and compound 3 represents the first benzothiazole derivative from fungi. Compounds 4 and 5 showed significant DPPH free-radical-scavenging activities with the prominent IC50 values of 10.7 ± 0.09 μM and 100.6 ± 0.025 μM, respectively. Additionally, compound 5 exhibited COX-2 inhibitory activity with an IC50 value of 9.5 ± 0.08 μM.
Collapse
Affiliation(s)
- Yaping Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ruyan Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Jinhuai Xu
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Yongqi Tian
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
18
|
Wu Y, Chen Y, Huang X, Pan Y, Liu Z, Yan T, Cao W, She Z. α-Glucosidase Inhibitors: Diphenyl Ethers and Phenolic Bisabolane Sesquiterpenoids from the Mangrove Endophytic Fungus Aspergillus flavus QQSG-3. Mar Drugs 2018; 16:md16090307. [PMID: 30200400 PMCID: PMC6165285 DOI: 10.3390/md16090307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/04/2023] Open
Abstract
Two new diphenyl ethers (1 and 2) and four new phenolic bisabolane sesquiterpenoids (3–6), together with five known related derivatives, were isolated from the culture of the endophytic fungus Aspergillus flavus QQSG-3 obtained from a fresh branch of Kandelia obobata, which was collected from Huizhou city in the province of Guangdong, China. The structures of compounds 1–6 were determined by analyzing NMR and HRESIMS data. The absolute configurations of 5 and 6 were assigned by comparing their experimental ECD spectra with those reported for similar compounds in the literature. All isolates were evaluated for their α-glucosidase inhibitory activity, of which compounds 3, 5, 10, and 11 showed strong inhibitory effects with IC50 values in the range of 1.5–4.5 μM.
Collapse
Affiliation(s)
- Yingnan Wu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yan Chen
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Xishan Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yahong Pan
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- State Key Laboratory of Applied Microbiology, Southern China, Guangdong Institute of Microbiology, Guangzhou 510075, China.
| | - Tao Yan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Wenhao Cao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Perylenequione Derivatives with Anticancer Activities Isolated from the Marine Sponge-Derived Fungus, Alternaria sp. SCSIO41014. Mar Drugs 2018; 16:md16080280. [PMID: 30110969 PMCID: PMC6117713 DOI: 10.3390/md16080280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Seven new secondary metabolites classified as two perylenequinone derivatives (1 and 2), an altenusin derivative (3), two phthalide racemates (4 and 5), and two phenol derivatives (6 and 7), along with twenty-one known compounds (8–28) were isolated from cultures of the sponge-derived fungus, Alternaria sp. SCSIO41014. The structures and absolute configurations of these new compounds (1–7) were determined by spectroscopic analysis, X-ray single crystal diffraction, chiral-phase HPLC separation, and comparison of ECD spectra to calculations. Altertoxin VII (1) is the first example possessing a novel 4,8-dihydroxy-substituted perylenequinone derivative, while the phenolic hydroxy groups have commonly always substituted at C-4 and C-9. Compound 1 exhibited cytotoxic activities against human erythroleukemia (K562), human gastric carcinoma cells (SGC-7901), and hepatocellular carcinoma cells (BEL-7402) with IC50 values of 26.58 ± 0.80, 8.75 ± 0.13, and 13.11 ± 0.95 μg/mL, respectively. Compound 11 showed selectively cytotoxic activity against K562, with an IC50 value of 19.67 ± 0.19 μg/mL. Compound 25 displayed moderate inhibitory activity against Staphylococcus aureus with an MIC value of 31.25 μg/mL.
Collapse
|
20
|
Cai R, Wu Y, Chen S, Cui H, Liu Z, Li C, She Z. Peniisocoumarins A-J: Isocoumarins from Penicillium commune QQF-3, an Endophytic Fungus of the Mangrove Plant Kandelia candel. JOURNAL OF NATURAL PRODUCTS 2018; 81:1376-1383. [PMID: 29792702 DOI: 10.1021/acs.jnatprod.7b01018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ten new isocoumarins, named peniisocoumarins A-J (1-9 and 11), along with three known analogues (10, 12, and 13) were obtained from the fermentation of an endophytic fungus, Penicillium commune QQF-3, which was isolated from a fresh fruit of the mangrove plant Kandelia candel. Their structures were elucidated through extensive spectroscopic analysis. The absolute configurations of 1-7 were determined by single-crystal X-ray diffraction and modified Mosher's method, and those of 8, 9, and 11 were assigned on the basis of experimental and calculated electronic circular dichroism data. Compounds 1 and 2 were unusual dimeric isocoumarins with a symmetric four-membered core. These isolated compounds (1-13) were evaluated for their cytotoxicity and enzyme inhibitory activities against α-glucosidase and Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB). Among them, compounds 3, 7, 9, and 11 exhibited potent inhibitory effects against α-glucosidase with IC50 values ranging from 38.1 to 78.1 μM, and compound 7 was found to inhibit MptpB with an IC50 value of 20.7 μM.
Collapse
Affiliation(s)
- Runlin Cai
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Yingnan Wu
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Senhua Chen
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Hui Cui
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Zhaoming Liu
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
| | - Chunyuan Li
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , People's Republic of China
| | - Zhigang She
- School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , People's Republic of China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
21
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
22
|
Cui H, Yu J, Chen S, Ding M, Huang X, Yuan J, She Z. Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg Med Chem Lett 2017; 27:803-807. [DOI: 10.1016/j.bmcl.2017.01.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 10/20/2022]
|