1
|
He L, Shen B, Ren Y, Mao H, Yin J, Dai W, Zhao S, Yang H. Hydroxyethylcellulose-Directed Synthesis of Gold Microplates with Hydrogen Peroxide in an Aqueous Phase. ACS OMEGA 2024; 9:8789-8796. [PMID: 38434829 PMCID: PMC10905594 DOI: 10.1021/acsomega.3c06039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 03/05/2024]
Abstract
In this study, we successfully synthesized well-defined polygonal gold microplates for the first time in an aqueous phase using hydroxyethylcellulose (HEC) in the presence of hydrogen peroxide (H2O2). HEC played a pivotal role during the synthesis, acting not only as a biotemplate but also as an in situ reduction site for the nucleation and growth of gold (Au) microplates. H2O2 played a crucial role in accelerating the growth of Au microplates from the Au nucleus. This methodology is ecofriendly and easy to operate and has potential applications in various fields, such as electronics, photonics, and biotechnology.
Collapse
Affiliation(s)
- Linlin He
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
| | - Bo Shen
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
| | - Yu Ren
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| | - Huaming Mao
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| | - Jungang Yin
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| | - Wei Dai
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| | - Shuanglong Zhao
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| | - Hongwei Yang
- State
Key Laboratory of Advanced Technologies for Comprehensive Utilization
of Platinum Metals, Kunming Institute of
Precious Metals, Kunming 650106, People’s
Republic of China
- Yunnan
Precious Metal Laboratory Co. Ltd.,Kunming 650106,People’s Republic of China
| |
Collapse
|
2
|
Lormaneenopparat P, Yukird J, Rodthongkum N, Hoven VP. Bacterial cellulose composite hydrogel for pre-concentration and mass spectrometric detection of thiol-containing biomarker. Int J Biol Macromol 2023; 253:126855. [PMID: 37714234 DOI: 10.1016/j.ijbiomac.2023.126855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/23/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Simple soaking of bacterial cellulose (BC) membrane in carboxymethyl cellulose (CMC) solution yielded BC/CMC hydrogel having re-swellable property. Then, gold nanoparticles (AuNPs) were embedded in the BC/CMC hydrogel via in situ chemical reduction to form BC/CMC/AuNPs composite hydrogel. It was found that the composite hydrogel exhibited physical/chemical characteristics similar to those of BC. The AuNPs with an average diameter of 13 nm distributed uniformly within the BC/CMC matrix as verified by transmission electron microscopy. The novelty of this work is the application of the BC/CMC/AuNPs composite hydrogel for selective adsorption of an important thiol-containing biomarker of Alzheimer's disease, glutathione (GSH), prior to direct laser desorption/ionization mass spectrometric (LDI-MS) detection. GSH adsorbed in the BC/CMC/AuNPs composite hydrogel showed the high ionization signal in LDI-MS providing a linear range of 50-10,000 nM with a limit of detection as low as 54.1 nM, which is a cut-off level for distinguishing between normal individuals and Alzheimer's patients. It should be emphasized that an additional matrix was not necessary as AuNPs can act as self-matrix for LDI-MS analysis. Furthermore, the BC/CMC/AuNPs composite hydrogel can effectively preconcentrate GSH approximately 10 times upon adsorption allowing for ultrasensitive detection of GSH required for disease diagnosis.
Collapse
Affiliation(s)
- Panlop Lormaneenopparat
- Program in Petrochemistry and Polymer Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
4
|
Dakova I, Vasileva P, Karadjova I. Cr(III) Ion-Imprinted Hydrogel Membrane for Chromium Speciation Analysis in Water Samples. Gels 2022; 8:757. [PMID: 36421578 PMCID: PMC9689422 DOI: 10.3390/gels8110757] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 07/29/2023] Open
Abstract
Novel Cr(III)-imprinted poly(vinyl alcohol)/sodium alginate/AuNPs hydrogel membranes (Cr(III)-IIMs) were obtained and characterized and further applied as a sorbent for chromium speciation in waters. Cr(III)-IIMs were prepared via solution blending method using blends of poly(vinyl alcohol) and sodium alginate as film-forming materials, poly(ethylene glycol) as a porogen agent, sodium alginate stabilized gold nanoparticles (SA-AuNPs) as a crosslinking and mechanically stabilizing component, and Cr(III) ions as a template species. The physicochemical characteristics of pre-synthesized AuNPs and obtained hydrogel membranes Cr(III)-IIM were studied by UV-vis and FTIR spectroscopy, TEM and SEM observations, N2 adsorption-desorption measurements, and XRD analysis. The mechanism of the adsorption process toward Cr(III) was best described by pseudo-first-order kinetic and Langmuir models. Experiments performed showed that quantitative retention of Cr(III) is attained in 20 h at pH 6 and temperature 40 °C. Under the same conditions, the adsorption of Cr(VI) is below 5%. A simple and sensitive analytical procedure was developed for the speciation of Cr in an aquatic environment using dispersive solid phase extraction of Cr(III) by Cr(III)-IIM prior to selective Cr(VI) measurement by ETAAS in the supernatants. The detection limits and reproducibility achieved for the Cr speciation analysis fulfill the requirements for their monitoring in waters under the demand of the Water Framework Directive.
Collapse
|
5
|
Design, Synthesis, Characterization, Catalytic, Fluorometric Sensing, Antimicrobial and Antioxidant Activities of Schiff Base Ligand Capped AgNPs. J Fluoresc 2022; 32:2363-2378. [PMID: 36178642 DOI: 10.1007/s10895-022-03026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
In recent days, the usage of biological and non-biological pollutants increased which poses a significant threat to environmental and biological systems. Therefore, the present aim is to develop effective methods to treat such pollutants by using highly stable and small-sized Schiff base ligand capped silver nanoparticles (AgNPs) with a face-centered cubic (fcc) crystalline structure and the size range is 5-10 nm. The potent role of the resulting synthesized AgNPs was found to be on multiple platforms such as catalyst, sensor, antioxidant, and antimicrobial disinfectant. The synthesized AgNPs were characterized through UV-vis spectroscopy, PL, FTIR, XRD, SEM, and TEM. The FTIR spectrum of AgNPs exhibited the interacted functional groups of Schiff base and size was estimated by XRD and TEM. AgNPs were able to catalytically degrade approximately 95% of methylene blue (MB), rhodamine B (RhB), and eosin Y (EY) dyes within 80 min of reaction time using NaBH4. The fluorometric sensor studies of synthesized AgNPs showed selective sensing of the potentially hazardous Fe2+ ion in water. As an antimicrobial agent, the AgNPs are effective against both Gram-positive and Gram-negative bacteria; as well as fungi, with the zones of clearance as approximately compatible with standard drugs. The AgNPs displayed a greater ability to scavenge free radicals, especially DPPH when compared with AgNPs and ascorbic acid. Thus, the results of this study validate the triple role of AgNPs derived via a simple synthesis as a catalyst, sensor, antioxidant, and antimicrobial agent for effective environmental remediation.
Collapse
|
6
|
Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Nalini T, Basha SK, Sadiq AM, Kumari VS. In vitro cytocompatibility assessment and antibacterial effects of quercetin encapsulated alginate/chitosan nanoparticle. Int J Biol Macromol 2022; 219:304-311. [PMID: 35934075 DOI: 10.1016/j.ijbiomac.2022.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
The present work aims at evaluating the in vitro biocompatibility, antibacterial activity and antioxidant capacity of the fabricated and optimized Alginate/Chitosan nanoparticles (ALG/CSNPs) and quercetin loaded Alginate/Chitosan nanoparticles (Q-ALG/CSNPs) with an improved biological efficacy on the hydrophobic flavonoid.The physicochemical properties were determined by TEM and FTIR analysis. The nanoparticles evaluated for the encapsulation of quercetin exerted % encapsulation efficiency (EE) that varied between 76 and 82.4 % and loading capacity (LC) from 31 to 46.5 %. Potential cytotoxicity of the ALG/CSNPs and Q-ALG/CSNPs upon L929 fibroblast cell line was evaluated by MTT reduction Assay and expressed as % cell viability. The in vitro antibacterial property was studied by well diffusion method against gram-positive bacteria Staphylococcus aureus (ATCC 25925) and gram-negative bacteria Escherichia coli (ATCC 25923). The inhibitory efficacy by scavenging free radical intermediates was evaluated by 1,1, diphenyl 2-picrylhydrazyl (DPPH) assay. The results of in vitro cytotoxicity showed biocompatibility towards L929 cells. Quercetin loaded Alginate/Chitosan nanoparticles inhibited the growth of microorganisms than pure quercetin. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging results have shown a high level of antioxidant property for encapsulated Quercetin in Alginate/Chitosan nanoparticles compared to free Quercetin. The findings of our study suggest that the developed ALG/CSNPs and Q-ALG/CSNPs possess the prerequisites and be proposed as a suitable system for delivering quercetin with enhanced therapeutic effectuality.
Collapse
Affiliation(s)
- T Nalini
- PG & Research Department of Biochemistry, D.K.M College (Autonomous),Vellore 632001, Tamil Nadu, India
| | - S Khaleel Basha
- PG & Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Melvisharam 632509, Tamil Nadu, India
| | - A Mohamed Sadiq
- PG & Research Department of Biochemistry, Adhiparasakthi College of Arts and Science, Kalavai 632506,Tamil Nadu, India
| | - V Sugantha Kumari
- PG & Research Department of Chemistry, Auxilium College (Autonomous), Vellore, Tamil Nadu 632006, India.
| |
Collapse
|
9
|
Pawcenis D, Twardowska E, Leśniak M, Jędrzejczyk RJ, Sitarz M, Profic-Paczkowska J. TEMPO-oxidized cellulose for in situ synthesis of Pt nanoparticles. Study of catalytic and antimicrobial properties. Int J Biol Macromol 2022; 213:738-750. [PMID: 35690157 DOI: 10.1016/j.ijbiomac.2022.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
In this work, platinum nanoparticles (PtNPs) were synthesized by a modified polyol process using TEMPO-oxidized nanocellulose (TOCN) as a stabilizing and co-reducing agent. Different ratios of TOCN nanocellulose to Pt4+ ions were studied to establish the optimum stabilizing effect of PtNPs. The effect of different pH of aqueous TOCN suspensions on the morphology of PtNPs was also examined. It was proved that PtNPs can be obtained solely in the presence of TOCN without the use of an additional reducing agent or ethylene glycol. The morphology and structural properties of the nanocellulose‑platinum nanoparticles composites were assessed using spectroscopic, microscopic and diffraction techniques, The catalytic performance in 4-nitrophenol reduction was evaluated. Significant differences in reaction rate constants k were found depending on the pH of the TOCN suspension applied during Pt4+ reduction. The crucial effect of reaction conditions on PtNPs performance was confirmed in tests of antibacterial efficacy against E. coli.
Collapse
Affiliation(s)
- Dominika Pawcenis
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland.
| | - Ewelina Twardowska
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland
| | - Magdalena Leśniak
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
| | - Roman J Jędrzejczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, Poland
| | - Maciej Sitarz
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
| | - Joanna Profic-Paczkowska
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2 street, 30-387 Kraków, Poland
| |
Collapse
|
10
|
On Recent Developments in Biosynthesis and Application of Au and Ag Nanoparticles from Biological Systems. JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/5560244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. The researcher made continuous efforts for the environmental-friendly and economical methods, such as biogenic methods known as green synthesis. There are many strategies for separating and applying gold (Au) and silver (Ag) nanoparticles, of which biological routes have emerged as efficient, low-cost, and environmentally friendly techniques. This review focuses on recent developments of green synthesized AuNPs and AgNPs using biogenic sources such as algae, animals, plants, microbes, bacteria, fungi, and so on. Hence, it discusses their numerous biomedical applications and separating Au and Ag nanoparticles from plants, bacteria, fungi, and algae.
Collapse
|
11
|
Hassabo AA, Ibrahim EI, Ali BA, Emam HE. Anticancer effects of biosynthesized Cu2O nanoparticles using marine yeast. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Jebril S, Fdhila A, Dridi C. Nanoengineering of eco-friendly silver nanoparticles using five different plant extracts and development of cost-effective phenol nanosensor. Sci Rep 2021; 11:22060. [PMID: 34764386 PMCID: PMC8586347 DOI: 10.1038/s41598-021-01609-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The production of environmentally friendly silver nanoparticles (AgNPs) has aroused the interest of the scientific community due to their wide applications mainly in the field of environmental pollution detection and water quality monitoring. Here, for the first time, five plant leaf extracts were used for the synthesis of AgNPs such as Basil, Geranium, Eucalyptus, Melia, and Ruta by a simple and eco-friendly method. Stable AgNPs were obtained by adding a silver nitrate (AgNO3) solution with the leaves extract as reducers, stabilizers and cappers. Only, within ten minutes of reaction, the yellow mixture changed to brown due to the reduction of Ag+ ions to Ag atoms. The optical, structural, and morphology characteristics of synthesized AgNPs were determined using a full technique like UV-visible spectroscopy, FTIR spectrum, XRD, EDX spectroscopy, and the SEM. Thus, Melia azedarach was found to exhibit smaller nanoparticles (AgNPs-M), which would be interesting for electrochemical application. So, a highly sensitive electrochemical sensor based on AgNPs-M modified GCE for phenol determination in water samples was developed, indicating that the AgNPs-M displayed good electrocatalytic activity. The developed sensor showed good sensing performances: a high sensitivity, a low LOD of 0.42 µM and good stability with a lifetime of about one month, as well as a good selectivity towards BPA and CC (with a deviation less than 10%) especially for nanoplastics analysis in the water contained in plastics bottles. The obtained results are repeatable and reproducible with RSDs of 5.49% and 3.18% respectively. Besides, our developed sensor was successfully applied for the determination of phenol in tap and mineral water samples. The proposed new approach is highly recommended to develop a simple, cost effective, ecofriendly, and highly sensitive sensor for the electrochemical detection of phenol which can further broaden the applications of green silver NPs.
Collapse
Affiliation(s)
- Siwar Jebril
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Alaeddine Fdhila
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia ,grid.7900.e0000 0001 2114 4570High School of Sciences and Technology of Hammam Sousse 4011, University of Sousse, Sousse, Tunisia
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology (CRMN), Sousse, Tunisia.
| |
Collapse
|
13
|
Emam HE, Ahmed HB, Abdelhameed RM. Melt intercalation technique for synthesis of hetero-metallic@chitin bio-composite as recyclable catalyst for prothiofos hydrolysis. Carbohydr Polym 2021; 266:118163. [PMID: 34044959 DOI: 10.1016/j.carbpol.2021.118163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022]
Abstract
The compatibility of homo-metallic and hetero-metallic bio-composite was promisingly investigated as recyclable catalyst for prothiofos hydrolysis. Chitin as water insoluble biopolymer was functionalized as a template for generation of homo-metallic (Ag@chitin, Au@chitin and Pd@chitin) and hetero-metallic (Au@Ag@chitin, Pd@Ag@chitin and Pd@Au@Ag@chitin) composites, by using melt intercalation technique. Investigation of the compatibility of the synthesized homo-metallic and hetero-metallic bio-composites in hydrolysis of prothiofos was performed and affirmed via HPLC results. Immobilization of Pd in the composites showed perfection in the catalytic performance for prothiofos hydrolysis. Pd@Au@Ag@chitin exhibited the highest hydrolysis result of 99% for prothiofos was hydrolyzed within 150 min with rate constant (k1) of 24.48 min-1. After five recycles for Pd@Au@Ag@chitin, the hydrolysis of prothiofos was lowered from 346 mg/g to 269 mg/g with reduction percentage of 22%. The synthesized bio-composite was highly effective as recyclable catalyst and can be easily served in the remediation of pesticides.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
14
|
Overview for multimetallic nanostructures with biomedical, environmental and industrial applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Ahmed HB, Emam HE. Environmentally exploitable biocide/fluorescent metal marker carbon quantum dots. RSC Adv 2020; 10:42916-42929. [PMID: 35514886 PMCID: PMC9058413 DOI: 10.1039/d0ra06383e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/08/2020] [Indexed: 11/21/2022] Open
Abstract
Carbon quantum dots are currently investigated to act as safe/potent alternatives for metal-based nanostructures to play the role of probes for environmental applications owing to their low toxicity, low cost, chemical inertness, biocompatibility and outstanding optical properties. The synthesis of biocide/fluorescent metal marker carbon quantum dots with hydrophilic character was performed via a quite simple and green technique. The natural biopolymer that was used in this study for the synthesis of carbon quantum dots is fragmented under strong alkaline conditions. Afterwards, under hydrothermal conditions, re-polymerization, aromatization and subsequent oxidation, the carbonic nanostructures were grown and clustered. Dialysis of the so-produced carbonic nanostructures was carried out to obtain highly purified/mono-dispersed carbon quantum dots with a size distribution of 1.5-6.5 nm. The fluorescence intensity of the synthesized carbon quantum dots under hydrothermal conditions for 3 h was affected by dialysis, however, the fluorescence intensity was significantly increased ca. 20 times. The synthesized carbon quantum dots were exploited as fluorescent markers in the detection of Zn2+ and Hg2+. The prepared carbon quantum dots also exhibited excellent antimicrobial potency against Bacillus cereus, Escherichia coli and Candida albicans. The detected minimal inhibitory concentration for the dialyzed CQDs towards the tested pathogens was 350-450 μL mL-1. The presented approach is a simple and green technique for the scaled-up synthesis of biocide/fluorescent marker carbon quantum dots instead of metal-based nanostructures for environmental applications, without using toxic chemicals or organic solvents.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University Ain-Helwan Cairo 11795 Egypt +201097411189
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Based Textiles, Textile Industries Research Division, National Research Centre, Scopus Affiliation ID 60014618 33 EL Buhouth St., Dokki Giza 12622 Egypt +201008002487
| |
Collapse
|
16
|
In situ synthesis of silver nanoparticles on modified poly(ethylene terephthalate) fibers by grafting for obtaining versatile antimicrobial materials. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03486-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Emam HE, Saad NM, Abdallah AE, Ahmed HB. Acacia gum versus pectin in fabrication of catalytically active palladium nanoparticles for dye discoloration. Int J Biol Macromol 2020; 156:829-840. [DOI: 10.1016/j.ijbiomac.2020.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022]
|
18
|
Lim HP, Ho KW, Surjit Singh CK, Ooi CW, Tey BT, Chan ES. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105659] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Chen YF, Hsu MW, Su YC, Chang HM, Chang CH, Jan JS. Naturally derived DNA nanogels as pH- and glutathione-triggered anticancer drug carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111025. [PMID: 32994007 DOI: 10.1016/j.msec.2020.111025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022]
Abstract
Conventional chemotherapeutic drugs are nonselective and harmful toward normal tissues, causing severe side effects. Therefore, the development of chemotherapeutics that can target cancer cells and improve therapeutic efficacy is of high priority. Biomolecules isolated from nature serve as green solutions for biomedical use, solving biocompatibility and cytotoxicity issues in human bodies. Herein, we use kiwifruit-derived DNA to encapsulate doxorubicin (DOX) using crosslinkers, eventually forming DNA-DOX nanogels (NGs). Drug releasing assays, cell viability and anticancer effects were analyzed to evaluate the DNA NGs' applications. The amount of DOX released by the DOX-loaded DNA (DNA-DOX) NGs at acidic pH was higher than that of neutral pH, and high glutathione (GSH) concentration also triggered more DOX to release in cancer cells, demonstrating pH- and GSH-triggered drug release characteristics of the DNA NGs. The IC50 of DNA-DOX NGs in cancer cells was lower than that of free DOX. Moreover, DOX uptake of cancer cells and apoptotic death were enhanced by the DNA-DOX NGs compared to free DOX. The results suggest that the DNA NGs cross-linked via nitrogen bases of the nucleotides in DNA and presenting pH- and GSH-dependent drug releasing behavior can be alternative biocompatible drug delivery systems for anticancer strategies and other biomedical applications.
Collapse
Affiliation(s)
- Yu-Fon Chen
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ming-Wei Hsu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Yu-Chu Su
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Ho-Min Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan.
| |
Collapse
|
20
|
Ahmed HB, Mikhail MM, El-Sherbiny S, Nagy KS, Emam HE. pH responsive intelligent nano-engineer of nanostructures applicable for discoloration of reactive dyes. J Colloid Interface Sci 2020; 561:147-161. [DOI: 10.1016/j.jcis.2019.11.060] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/10/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
|
21
|
Emam HE, Mikhail MM, El-Sherbiny S, Nagy KS, Ahmed HB. Metal-dependent nano-catalysis in reduction of aromatic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6459-6475. [PMID: 31873885 DOI: 10.1007/s11356-019-07315-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Nanostructures have great potential in catalysis and their compositions may cause some interferences in the reactivity. Therefore, the present study focuses on comparison between three metallic nanoparticle-based Ag, Au, and Pd as nano-catalyst in reduction of aromatic pollutants. To neglect any interpenetration in their catalytic reactivity, the metallic nanoparticles were prepared via a consistent and reproducible one-step method with alkali-activated dextran. Interestingly, small sized/spherical AgNPs, AuNPs, and PdNPs were successively prepared with particle size of 3.4, 8.3, and 17.1 nm, respectively. The catalytic performance of the synthesized NPs was estimated for the reduction of p-nitroaniline and methyl red dye as different aromatic pollutants. Regardless of the particle size, there was a strong relation between catalytic action and the type of metal which followed the order of PdNP > AuNPs > AgNPs. Graphical Abstract.
Collapse
Affiliation(s)
- Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic based Textiles, Textile Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Mary M Mikhail
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Samya El-Sherbiny
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Khaled S Nagy
- Food Engineering and Packaging Department, Agricultural Research Center, 9 Cairo University St, Giza, Egypt
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| |
Collapse
|
22
|
Ahmed HB. Recruitment of various biological macromolecules in fabrication of gold nanoparticles: Overview for preparation and applications. Int J Biol Macromol 2019; 140:265-277. [DOI: 10.1016/j.ijbiomac.2019.08.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/26/2022]
|
23
|
Comparative study between homo-metallic & hetero-metallic nanostructures based agar in catalytic degradation of dyes. Int J Biol Macromol 2019; 138:450-461. [DOI: 10.1016/j.ijbiomac.2019.07.098] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
|
24
|
Song S, Wang Y, Xie J, Sun B, Zhou N, Shen H, Shen J. Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34258-34267. [PMID: 31461267 DOI: 10.1021/acsami.9b12564] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmentally friendly pesticide delivery systems have drawn extensive attention in recent years, and they show great promise in sustainable development of agriculture. We herein report a multifunctional nanoplatform, carboxymethyl chitosan modified carbon nanoparticles (CMC@CNP), as the carrier for emamectin benzoate (EB, a widely used insecticide), and investigate its sustainable antipest activity. EB was loaded on CMC@CNP nanocarrier via simple physisorption process, with a high loading ratio of 55.56%. The EB@CMC@CNP nanoformulation showed improved solubility and dispersion stability in aqueous solution, which is of vital importance to its practical application. Different from free EB, EB@CMC@CNP exhibited pH-responsive controlled release performance, leading to sustained and steady EB release and prolonged persistence time. In addition, the significantly enhanced anti-UV property of EB@CMC@CNP further ensured its antipest activity. Therefore, EB@CMC@CNP exhibited superior pest control performance than free EB. In consideration of its low cost, easy preparation, free of organic solution, and enhanced bioactivity, we expect, CMC@CNP will have a brilliant future in pest control and green agriculture.
Collapse
Affiliation(s)
- Saijie Song
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , China
| | - Yuli Wang
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| | - Jing Xie
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- Honors College , Nanjing Normal University , Nanjing , 210023 , China
| | - Baohong Sun
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| | - Ninglin Zhou
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
- Institute of Agricultural Development , Nanjing Normal University , Nanjing , 210023 , China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, CAS Center for Excellence in Nanoscience, Division of Nanobiomedicine , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , 215123 , China
| | - Jian Shen
- National & Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , China
| |
Collapse
|
25
|
Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.06.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Ahmed HB, Emam HE. Synergistic catalysis of monometallic (Ag, Au, Pd) and bimetallic (Ag Au, Au Pd) versus trimetallic (Ag-Au-Pd) nanostructures effloresced via analogical techniques. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110975] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Pawcenis D, Chlebda DK, Jędrzejczyk RJ, Leśniak M, Sitarz M, Łojewska J. Preparation of silver nanoparticles using different fractions of TEMPO-oxidized nanocellulose. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Ahmed HB, Attia MA, El-Dars FM, Emam HE. Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures: (Ag & Au) nanoparticles versus Ag-Au nano-alloy. Int J Biol Macromol 2019; 128:214-229. [DOI: 10.1016/j.ijbiomac.2019.01.093] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/27/2022]
|
29
|
Eco-friendly synthesis of gold nanoparticles using carboxymethylated gum Cochlospermum gossypium (CMGK) and their catalytic and antibacterial applications. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00722-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Liu F, Li T, Zhang L, Xiang G, Jiang D, Tu D, Liu L, Li Y, Liu C, Pu X. PAMAM/polyhedral nanogold-modified probes with DNAase catalysis for the amperometric electrochemical detection of metastasis-associated lung adenocarcinoma transcript 1. J Biol Eng 2019; 13:21. [PMID: 30886644 PMCID: PMC6404345 DOI: 10.1186/s13036-019-0149-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Abstract Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non coding RNA (lncRNA) present in serum, is an important biomarker for detecting hepatocellular carcinoma (HCC). However, there are some shortcomings in current detection methods. So developing other novel MALAT1 detection methods is necessary. Electrochemical biosensors using different types of nanomaterials with various advantages may provide a suitable method for detection. Here, a new strategy for MALAT1 detection was proposed based on polyhedral nanogold-polyamide-amine dendrimers (PNG-PAMAMs). The SWCNH/Au composite was used as a capture probe immobilization matrix, and PNG-PAMAM was used as a trace label for the detection probe (DP). The strategy takes advantage of the ability of the surface of PNG to bind a capture probe whose sequence contains (GGG)3 trimer that can bind DNAzyme hemin. Moreover, PNG may carry abundant horseradish peroxidases (HRPs) to block excess nonspecific adsorption sites, with synergistic hemin catalysis. The results show that the biosensor provides ultrasensitive detection of MALAT1 with a remarkable catalytic effect. The enhanced biosensor has a detection limit of 0.22 fmol·mL− 1 for MALAT1, and the linear calibration of the biosensor ranged from 1 fmol·mL− 1 to 100 pmol·mL− 1. In addition, the electrochemical biosensor has desirable qualities compared to other detectors; for instance, it is inexpensive, highly stable, and sensitive and has good reproducibility. This assay was also successfully applied to the detection of MALAT1 in serum samples, demonstrating that the technology has potential application in the detection of MALAT1 for clinical HCC diagnosis. Graphical Abstract The schematic presentation ilustrates MALATI detection by biosensor with differential pulse stripping voltammetry. Polyhedral nanogold-PAMAM/horseradish peroxidases (PNG-PAMAM/HRP) detection probe with DNAzyme (hemin) sites was applied to determine MALATI. Signal was amplified by hemin/HRP/H2O2 catalytic system.![]() Electronic supplementary material The online version of this article (10.1186/s13036-019-0149-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Tao Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Liqun Zhang
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Guiming Xiang
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Dongneng Jiang
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Dianji Tu
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Linlin Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Yi Li
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Chang Liu
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| | - Xiaoyun Pu
- Department of Clinical Laboratory, the Second Affiliated Hospital of the Army Medical University, Chongqing, 400037 China
| |
Collapse
|
31
|
Hu H, Wu X, Wang H, Wang H, Zhou J. Photo-reduction of Ag nanoparticles by using cellulose-based micelles as soft templates: Catalytic and antimicrobial activities. Carbohydr Polym 2019; 213:419-427. [PMID: 30879687 DOI: 10.1016/j.carbpol.2019.02.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/21/2023]
Abstract
Amphiphilic cellulose derivatives were synthesized from allyl cellulose (AC) and cystein (Cys)/n-dodecyl mercaptan (NDM) via the thiol-ene click reactions. The derivatives were self-assembled into micelles in distilled water, and the micelles sizes increased with an increase of the DSNDM. The amphiphilic cellulose micelles were served as the soft templates for the controllable synthesis of Ag nanoparticles (NPs) through the photo-reduction. Ag NPs were embedded and stabilized by the amphiphilic cellulose micelles, and their sizes increased from 3.1 to 14.4 nm with an increase of the original template sizes. The catalytic properties of the Ag-loaded micelles were evaluated by the reduction of p-nitropheonl to p-aminophenol. The results demonstrated that the Ag-loaded micelles exhibited excellent catalytic activity. The reduction followed the first-order rate law, and the reaction constant decreased with increasing size of Ag NPs. Moreover, the Ag-loaded micelles displayed good antimicrobial activities to both S. aureus and E. coli. Therefore, the Ag-loaded cellulose-based micelles have potential applications in various fields.
Collapse
Affiliation(s)
- Haoze Hu
- Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, 430072, China
| | - Xiaoqing Wu
- Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, 430072, China
| | - Haoying Wang
- Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, 430072, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Jinping Zhou
- Department of Chemistry and Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, 430072, China.
| |
Collapse
|
32
|
Gopiraman M, Saravanamoorthy S, Baskar R, Ilangovan A, Ill-Min C. Green synthesis of Ag@Au bimetallic regenerated cellulose nanofibers for catalytic applications. NEW J CHEM 2019. [DOI: 10.1039/c9nj04428k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Highly active and reusable bimetallic Ag@Au/CNC nanocomposite was successfully obtainedviaa simple green synthesis for the reduction of nitrophenol and aza-Michael reaction.
Collapse
Affiliation(s)
- Mayakrishnan Gopiraman
- Department of Crop Science
- College of Sanghur Life Science
- Konkuk University
- Seoul
- South Korea
| | | | | | | | - Chung Ill-Min
- Department of Crop Science
- College of Sanghur Life Science
- Konkuk University
- Seoul
- South Korea
| |
Collapse
|
33
|
Ahmed HB. Cluster growth adaptor for generation of bactericide Ag-Au bimetallic nanostructures: substantiation through spectral mapping data. Int J Biol Macromol 2019; 121:774-783. [DOI: 10.1016/j.ijbiomac.2018.10.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 01/24/2023]
|
34
|
Emam HE, Ahmed HB. Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. Int J Biol Macromol 2018; 111:999-1009. [DOI: 10.1016/j.ijbiomac.2018.01.111] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/23/2017] [Accepted: 01/17/2018] [Indexed: 01/05/2023]
|
35
|
Elmaaty TA, El-Nagare K, Raouf S, Abdelfattah K, El-Kadi S, Abdelaziz E. One-step green approach for functional printing and finishing of textiles using silver and gold NPs. RSC Adv 2018; 8:25546-25557. [PMID: 35539781 PMCID: PMC9082526 DOI: 10.1039/c8ra02573h] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022] Open
Abstract
In this study, we present a successful simple method for printing and finishing of polyester and cotton fabrics using gold and silver nanoparticles (Au-NPs and Ag-NPs, respectively) as stable, fast colorants and functional components. The surface plasmon resonance (SPR) bands of the colloidal gold and silver NPs were observed at λmax 520 nm and 450 nm, respectively, indicating the presence of spherical Au-NPs and Ag-NPs, which was further confirmed by TEM analysis. The printed samples were subjected to SEM, XRD and EDX analyses. The SEM images and EDX spectra unequivocally confirmed the existence of embedded NPs on the fabric surfaces. Both the cotton and polyester samples possessed excellent color fastness, as indicated from the color fastness test. The functional properties of the printed fabrics indicated that the incorporation of Au-NPs and Ag-NPs into the fabrics simultaneously imparted multifunctional properties such as stable brilliant colors, highly durable antimicrobial activity and very good UV-protection properties. In this study, we present a successful simple method for printing and finishing of polyester and cotton fabrics using gold and silver nanoparticles (Au-NPs and Ag-NPs, respectively) as stable, fast colorants and functional components.![]()
Collapse
Affiliation(s)
- T. Abou Elmaaty
- Department of Textile Printing
- Dyeing and Finishing
- Faculty of Applied Arts
- Damietta University
- Damietta
| | | | - S. Raouf
- Department of Textile Printing
- Dyeing and Finishing
- Faculty of Applied Arts
- Damietta University
- Damietta
| | - Kh. Abdelfattah
- Department of Agricultural Chemistry and Department of Agricultural Microbiology
- Faculty of Agriculture
- Damietta University
- Egypt
| | - S. El-Kadi
- Department of Agricultural Chemistry and Department of Agricultural Microbiology
- Faculty of Agriculture
- Damietta University
- Egypt
| | - E. Abdelaziz
- Department of textile printing, dyeing & finishing
- Faculty of Applied Arts
- Benha University
- Benha
- Egypt
| |
Collapse
|
36
|
Ahmed HB, El-Hawary NS, Emam HE. Self-assembled AuNPs for ingrain pigmentation of silk fabrics with antibacterial potency. Int J Biol Macromol 2017; 105:720-729. [DOI: 10.1016/j.ijbiomac.2017.07.096] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
|
37
|
Emam HE, El-Zawahry MM, Ahmed HB. One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 2017; 166:1-13. [DOI: 10.1016/j.carbpol.2017.02.091] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
|
38
|
Emam HE, Zahran M, Ahmed HB. Generation of biocompatible nanogold using H 2 O 2 –starch and their catalytic/antimicrobial activities. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Emam HE, Ahmed HB, Bechtold T. In-situ deposition of Cu 2O micro-needles for biologically active textiles and their release properties. Carbohydr Polym 2017; 165:255-265. [PMID: 28363548 DOI: 10.1016/j.carbpol.2017.02.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 11/19/2022]
Abstract
Metal/metal oxide containing fibres are gradually increasing in textile industrialization recently, owing to their high potential for application as antimicrobial textiles. In this study, the reducing properties of cellulose were applied to synthesize cuprous oxide in-situ. The direct formation of Cu2O on viscose fabrics was achieved via quite simple technique in two subsequent steps: alkalization and sorption. Cu contents in fabrics before and after rinsing ranged between 45.2-86.4mmol/kg and 18.1-67.7mmol/kg, respectively. Uniform micro-needles of Cu2O were obtained with regular size and dimensions of 1.60±0.20μm in length and 0.13±0.03μm in width. Release of Cu1+/2+ ions from selected samples was studied in water, physiological fluid and artificial sweat. Copper containing fabrics exhibited a percent of 96.8-97.8% and 85.5-89.0% for reduction in microbial viability, which was tested for S. aureus (as gram positive bacteria), E. coli (as gram-negative bacteria) and C. albicans and A. niger (as fungal species), respectively after 24h contact time.
Collapse
Affiliation(s)
- Hossam E Emam
- Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Scopus Affiliation ID 60014618, El Buhouth St., Dokki, Cairo, 12622, Egypt.
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Thomas Bechtold
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstrasse 73, A-6850 Dornbirn, Austria(1)
| |
Collapse
|
40
|
Emam HE, El-Hawary NS, Ahmed HB. Green technology for durable finishing of viscose fibers via self-formation of AuNPs. Int J Biol Macromol 2016; 96:697-705. [PMID: 28049013 DOI: 10.1016/j.ijbiomac.2016.12.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/04/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
Abstract
Sensitivity of dyes' colors to the surrounding environment causes lower durability and stability of color, which reflects the importance of durable finishing treatment. Current technique offered antimicrobial/durable finishing of viscose fibers through direct formation of AuNPs inside fibers macromolecules without using any external agents. By using the reducing properties of cellulose in viscose, Au+3 was reduced to AuNPs and CHO/OH of cellulose subsequently were oxidized to COOH. For comparison, two different media were used; aqueous and alkaline. Increasing the reactivity and accessibility of cellulose macromolecules in alkali leaded to enlargement of the reduction process and more incorporation of AuNPs. Size of AuNPs inside fiber was recorded to be in range of 22-112nm and 14-100nm, in case of using aqueous and alkaline medium, respectively. Structure and properties of fibers were not changed by treatment according to XRD and ATR-FTIR data. The treated fibers were acquired durable violet color by the action of LSPR for AuNPs and darker color obtained using higher Au+3 concentration. The treated fibers exhibited good inhibition against different pathogenic microbes including bacteria and fungi. One-pot, quite simple, inexpensive, green and industrial viable are the significant advantages of the current technique for viscose finishing (pigmentation and antimicrobial action).
Collapse
Affiliation(s)
- Hossam E Emam
- Pretreatment and Finishing of Cellulosic Fibers, Textile Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12311, Egypt.
| | - Nancy S El-Hawary
- Dyeing, Printing and Auxiliaries Department, Textile Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12311, Egypt
| | - Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| |
Collapse
|