1
|
Vasic V, Dickopf S, Spranger N, Rosenberger RS, Fischer M, Mayer K, Larraillet V, Bates JA, Maier V, Sela T, Nussbaum B, Duerr H, Dengl S, Brinkmann U. Generation of binder-format-payload conjugate-matrices by antibody chain-exchange. Nat Commun 2024; 15:9406. [PMID: 39477939 PMCID: PMC11525586 DOI: 10.1038/s41467-024-53730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The generation of antibody-drug conjugates with optimal functionality depends on many parameters. These include binder epitope, antibody format, linker composition, conjugation site(s), drug-to-antibody ratio, and conjugation method. The production of matrices that cover all possible parameters is a major challenge in identifying optimal antibody-drug conjugates. To address this bottleneck, we adapted our Format Chain Exchange technology (FORCE), originally established for bispecific antibodies, toward the generation of binder-format-payload matrices (pair-FORCE). Antibody derivatives with exchange-enabled Fc-heterodimers are combined with payload-conjugated Fc donors, and subsequent chain-exchange transfers payloads to antibody derivatives in different formats. The resulting binder-format-conjugate matrices can be generated with cytotoxic payloads, dyes, haptens, and large molecules, resulting in versatile tools for ADC screening campaigns. We show the relevance of pair-FORCE for identifying optimal HER2-targeting antibody-drug conjugates. Analysis of this matrix reveals that the notion of format-defines-function applies not only to bispecific antibodies, but also to antibody-drug conjugates.
Collapse
Affiliation(s)
- Vedran Vasic
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Veraxa Biotech, Heidelberg, Germany
| | - Nadine Spranger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
- Institute of Molecular Immunology, School of Medicine and Health, Technical University Munich (TUM), Munich, Germany
| | - Rose-Sophie Rosenberger
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Fischer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Vincent Larraillet
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Jack A Bates
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Verena Maier
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Tatjana Sela
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Bianca Nussbaum
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Harald Duerr
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Dengl
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research (LMR), Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
2
|
Temgoua RCT, Dontsi FT, Lebègue E, Thobie-Gautier C, Tonlé IK, Boujtita M. Understanding the behavior of phenylurazole-tyrosine-click electrochemical reaction using hybrid electroanalytical techniques. J Pharm Biomed Anal 2024; 245:116147. [PMID: 38640847 DOI: 10.1016/j.jpba.2024.116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
In this work, the electrochemical behavior of 4-phenylurazole (Ph-Ur) was studied and the latter was used as a molecular anchor for the electrochemical bioconjugation of tyrosine (Y). Cyclic voltammetry (CV) and controlled potential coulometry (CPC) allowed the in-situ generation of the PTAD (4-phenyl-3 H-1,2,4-triazole-3,5(4 H)-dione) species from phenylurazole on demand for tyrosine electrolabeling. The chemoselectivity of the reaction was studied with another amino acid (lysine, Lys) and no changes in Lys were observed. To evaluate the performance of tyrosine electrolabeling, coulometric analyses at controlled potentials were performed on solutions of phenylurazole and the phenylurazole-tyrosine mixture in different proportions (2:1, 1:1, and 1:2). The electrolysis of the phenylurazole-tyrosine mixture in the ratio (1:2) produced a charge of 2.07 C, very close to the theoretical value (1.93 C), with high reaction kinetics, a result obtained here for the first time. The products obtained were identified and characterized by liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HRMS and LC- HRMS2). Two products were formed from the click reactions, one of which was the majority. Another part of this work was to study the electrochemical degradation of the molecular anchor 4-phenylazole (Ph-Ur). Four stable degradation products of phenylurazole were identified (C7H9N2O, C6H8N, C6H8NO, C14H13N4O2) based on chromatographic profiles and mass spectrometry results. The charge generated during the electrolysis of phenylurazole (two-electron process) (2.85 C) is inconsistent with the theoretical or calculated charge (1.93 C), indicating that secondary/parasitic reactions occurred during the electrolysis of the latter. In conclusion, the electrochemically promoted click phenylurazole-tyrosine reactions give rise to click products with high reaction kinetics and yields in the (1:2) phenylurazole-tyrosine ratios, and the presence of side reactions is likely to affect the yield of the click phenylurazole-tyrosine reaction.
Collapse
Affiliation(s)
- Ranil C T Temgoua
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France; University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon.
| | - Fabiola T Dontsi
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | - Estelle Lebègue
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | | | - Ignas K Tonlé
- University of Dschang, Electrochemistry and Chemistry of Materials, Department of Chemistry, Dschang, Cameroon
| | | |
Collapse
|
3
|
Zhang B, Wang M, Sun L, Liu J, Yin L, Xia M, Zhang L, Liu X, Cheng Y. Recent Advances in Targeted Cancer Therapy: Are PDCs the Next Generation of ADCs? J Med Chem 2024; 67:11469-11487. [PMID: 38980167 DOI: 10.1021/acs.jmedchem.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise antibodies, cytotoxic payloads, and linkers, which can integrate the advantages of antibodies and small molecule drugs to achieve targeted cancer treatment. However, ADCs also have some shortcomings, such as non-negligible drug resistance, a low therapeutic index, and payload-related toxicity. Many studies have focused on changing the composition of ADCs, and some have even further extended the concept and types of targeted conjugated drugs by replacing the targeted antibodies in ADCs with peptides, revolutionarily introducing peptide-drug conjugates (PDCs). This Perspective summarizes the current research status of ADCs and PDCs and highlights the structural innovations of ADC components. In particular, PDCs are regarded as the next generation of potential targeted drugs after ADCs, and the current challenges of PDCs are analyzed. Our aim is to offer fresh insights for the efficient design and expedited development of innovative targeted conjugated drugs.
Collapse
Affiliation(s)
- Baochen Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mo Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Li Sun
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Jiawei Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Libinghan Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Mingjing Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, P.R. China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| | - Yu Cheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Science, Hebei Normal University, Shijiazhuang 050024, P.R. China
| |
Collapse
|
4
|
Ahangarpour M, Brimble MA, Kavianinia I. Late-Stage Desulfurization Enables Rapid and Efficient Solid-Phase Synthesis of Cathepsin-Cleavable Linkers for Antibody-Drug Conjugates. Bioconjug Chem 2024; 35:1007-1014. [PMID: 38874557 DOI: 10.1021/acs.bioconjchem.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The synthesis of linker-payloads is a critical step in developing antibody-drug conjugates (ADCs), a rapidly advancing therapeutic approach in oncology. The conventional method for synthesizing cathepsin B-labile dipeptide linkers, which are commonly used in ADC development, involves the solution-phase assembly of cathepsin B-sensitive dipeptides, followed by the installation of self-immolative para-aminobenzyl carbonate to facilitate the attachment of potent cytotoxic payloads. However, this approach is often low yield and laborious, especially when extending the peptide chain with components like glutamic acid to improve mouse serum stability or charged amino acids or poly(ethylene glycol) moieties to enhance linker hydrophilicity. Here, we introduce a novel approach utilizing late-stage desulfurization chemistry, enabling safe, facile, and cost-effective access to the cathepsin B-cleavable linker, Val-Ala-PABC-MMAE, on resin for the first time.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Iman Kavianinia
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Chiu YL, Fu WY, Huang WY, Hsu FT, Chen HW, Wang TW, Keng PY. Enhancing Cancer Therapy: Boron-Rich Polyboronate Ester Micelles for Synergistic Boron Neutron Capture Therapy and PD-1/PD-L1 Checkpoint Blockade. Biomater Res 2024; 28:0040. [PMID: 38933089 PMCID: PMC11205919 DOI: 10.34133/bmr.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Malignant cancers, known for their pronounced heterogeneity, pose substantial challenges to monotherapeutic strategies and contribute to the risk of metastasis. Addressing this, our study explores the synergistic potential of combining boron neutron capture therapy (BNCT) with immune checkpoint blockade to enhance cancer treatment efficacy. We synthesized boron-rich block copolymer micelles as a novel boron drug for BNCT. Characterization was conducted using nuclear magnetic resonance, gel-permeation chromatography, transmission electron microscopy, and dynamic light scattering. These micelles, with an optimal size of 91.3 nm and a polydispersity index of 0.18, are suitable for drug delivery applications. In vitro assessments on B16-F10 melanoma cells showed a 13-fold increase in boron uptake with the micelles compared to borophenyl alanine (BPA), the conventional boron drug for BNCT. This resulted in a substantial increase in BNCT efficacy, reducing cell viability to 77% post-irradiation in micelle-treated cells, in contrast to 90% in BPA-treated cells. In vivo, melanoma-bearing mice treated with these micelles exhibited an 8-fold increase in boron accumulation in tumor tissues versus those treated with BPA, leading to prolonged tumor growth delay (5.4 days with micelles versus 3.3 days with BPA). Moreover, combining BNCT with anti-PD-L1 immunotherapy further extended the tumor growth delay to 6.6 days, and enhanced T-cell infiltration and activation at tumor sites, thereby indicating a boosted immune response. This combination demonstrates a promising approach by enhancing cytotoxic T-cell priming and mitigating the immunosuppressive effects of melanoma tumors.
Collapse
Affiliation(s)
- Yi-Lin Chiu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Wan Yun Fu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Wei-Yuan Huang
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Fang-Tzu Hsu
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Hsin-Wei Chen
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Tzu-Wei Wang
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| | - Pei Yuin Keng
- Department of Material Science and
Engineering, National Tsing Hua
University, Hsinchu City 300, Taiwan
| |
Collapse
|
6
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Schauenburg D, Gao B, Rochet LNC, Schüler D, Coelho JAS, Ng DYW, Chudasama V, Kuan SL, Weil T. Macrocyclic Dual-Locked "Turn-On" Drug for Selective and Traceless Release in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202314143. [PMID: 38179812 DOI: 10.1002/anie.202314143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bingjie Gao
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Léa N C Rochet
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Darijan Schüler
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - David Y W Ng
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
8
|
Osgood AO, Roy SJS, Koo D, Gu R, Chatterjee A. A Genetically Encoded Photocaged Cysteine for Facile Site-Specific Introduction of Conjugation-Ready Thiol Residues in Antibodies. Bioconjug Chem 2024; 35:457-464. [PMID: 38548654 DOI: 10.1021/acs.bioconjchem.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a powerful class of anticancer therapeutics that enable the selective delivery of toxic payloads into target cells. There is increasing appreciation for the importance of synthesizing such ADCs in a defined manner where the payload is attached at specific permissive sites on the antibody with a defined drug to antibody ratio. Additionally, the ability to systematically alter the site of attachment is important to fine-tune the therapeutic properties of the ADC. Engineered cysteine residues have been used to achieve such site-specific programmable attachment of drug molecules onto antibodies. However, engineered cysteine residues on antibodies often get "disulfide-capped" during secretion and require reductive regeneration prior to conjugation. This reductive step also reduces structurally important disulfide bonds in the antibody itself, which must be regenerated through oxidation. This multistep, cumbersome process reduces the efficiency of conjugation and presents logistical challenges. Additionally, certain engineered cysteine sites are resistant to reductive regeneration, limiting their utility and the overall scope of this conjugation strategy. In this work, we utilize a genetically encoded photocaged cysteine residue that can be site-specifically installed into the antibody. This photocaged amino acid can be efficiently decaged using light, revealing a free cysteine residue available for conjugation without disrupting the antibody structure. We show that this ncAA can be incorporated at several positions within full-length recombinant trastuzumab and decaged efficiently. We further used this method to generate a functional ADC site-specifically modified with monomethyl auristatin F (MMAF).
Collapse
Affiliation(s)
- Arianna O Osgood
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Soumya Jyoti Singha Roy
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - David Koo
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Renpeng Gu
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 201 Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Mir MH, Parmar S, Singh C, Kalia D. Location-agnostic site-specific protein bioconjugation via Baylis Hillman adducts. Nat Commun 2024; 15:859. [PMID: 38286847 PMCID: PMC10825175 DOI: 10.1038/s41467-024-45124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Proteins labelled site-specifically with small molecules are valuable assets for chemical biology and drug development. The unique reactivity profile of the 1,2-aminothiol moiety of N-terminal cysteines (N-Cys) of proteins renders it highly attractive for regioselective protein labelling. Herein, we report an ultrafast Z-selective reaction between isatin-derived Baylis Hillman adducts and 1,2-aminothiols to form a bis-heterocyclic scaffold, and employ it for stable protein bioconjugation under both in vitro and live-cell conditions. We refer to our protein bioconjugation technology as Baylis Hillman orchestrated protein aminothiol labelling (BHoPAL). Furthermore, we report a lipoic acid ligase-based technology for introducing the 1,2-aminothiol moiety at any desired site within proteins, rendering BHoPAL location-agnostic (not limited to N-Cys). By using this approach in tandem with BHoPAL, we generate dually labelled protein bioconjugates appended with different labels at two distinct specific sites on a single protein molecule. Taken together, the protein bioconjugation toolkit that we disclose herein will contribute towards the generation of both mono and multi-labelled protein-small molecule bioconjugates for applications as diverse as biophysical assays, cellular imaging, and the production of therapeutic protein-drug conjugates. In addition to protein bioconjugation, the bis-heterocyclic scaffold we report herein will find applications in synthetic and medicinal chemistry.
Collapse
Affiliation(s)
- Mudassir H Mir
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Sangeeta Parmar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Chhaya Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India
| | - Dimpy Kalia
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, Madhya Pradesh, India.
| |
Collapse
|
10
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
11
|
Blake-Hedges J, Groff D, Foo W, Hanson J, Castillo E, Wen M, Cheung D, Masikat MR, Lu J, Park Y, Carlos NA, Usman H, Fong K, Yu A, Zhou S, Kwong J, Tran C, Li X, Yuan D, Hallam T, Yin G. Production of antibodies and antibody fragments containing non-natural amino acids in Escherichia coli. MAbs 2024; 16:2316872. [PMID: 38381460 PMCID: PMC10883104 DOI: 10.1080/19420862.2024.2316872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Therapeutic bioconjugates are emerging as an essential tool to combat human disease. Site-specific conjugation technologies are widely recognized as the optimal approach for producing homogeneous drug products. Non-natural amino acid (nnAA) incorporation allows the introduction of bioconjugation handles at genetically defined locations. Escherichia coli (E. coli) is a facile host for therapeutic nnAA protein synthesis because it can stably replicate plasmids encoding genes for product and nnAA incorporation. Here, we demonstrate that by engineering E. coli to incorporate high levels of nnAAs, it is feasible to produce nnAA-containing antibody fragments and full-length immunoglobulin Gs (IgGs) in the cytoplasm of E. coli. Using high-density fermentation, it was possible to produce both of these types of molecules with site-specifically incorporated nnAAs at titers > 1 g/L. We anticipate this strategy will help simplify the production and manufacture of promising antibody therapeutics.
Collapse
Affiliation(s)
| | - Dan Groff
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Wilson Foo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jeffrey Hanson
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Elenor Castillo
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Miao Wen
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Diana Cheung
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Mary Rose Masikat
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Jian Lu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Young Park
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Nina Abi Carlos
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Hans Usman
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Kevin Fong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Abigail Yu
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Sihong Zhou
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Joyce Kwong
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Cuong Tran
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Xiaofan Li
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Dawei Yuan
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Trevor Hallam
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| | - Gang Yin
- Research and Process Development, Sutro Biopharma, Inc, South San Francisco, CA, USA
| |
Collapse
|
12
|
Koutsopetras I, Mishra AK, Benazza R, Hernandez-Alba O, Cianférani S, Chaubet G, Nicolai S, Waser J. Cysteine-Cysteine Cross-Conjugation of both Peptides and Proteins with a Bifunctional Hypervalent Iodine-Electrophilic Reagent. Chemistry 2023; 29:e202302689. [PMID: 37712523 DOI: 10.1002/chem.202302689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Peptide and protein bioconjugation sees ever-growing applications in the pharmaceutical sector. Novel strategies and reagents that can address the chemo- and regioselectivity issues inherent to these biomolecules, while delivering stable and functionalizable conjugates, are therefore needed. Herein, we introduce the crosslinking ethynylbenziodazolone (EBZ) reagent JW-AM-005 for the conjugation of peptides and proteins through the selective linkage of cysteine residues. This easily accessed compound gives access to peptide dimers or stapled peptides under mild and tuneable conditions. Applied to the antibody fragment of antigen binding (Fab) species, JW-AM-005 delivered rebridged proteins in a one-pot three-reaction process with high regioselectivity, outperforming the standard reagents commonly used for this transformation.
Collapse
Affiliation(s)
- Ilias Koutsopetras
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Abhaya Kumar Mishra
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Rania Benazza
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, Université de Strasbourg CNRS, 67087, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI-FR2048, 67087, Strasbourg, France
| | - Guilhem Chaubet
- UMR 7199 CNRS-UdS, Chime Bio-Fonctionnelle, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch cedex, France
| | - Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédéralede de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Gulyak EL, Alferova VA, Korshun VA, Sapozhnikova KA. Introduction of Carbonyl Groups into Antibodies. Molecules 2023; 28:7890. [PMID: 38067618 PMCID: PMC10707781 DOI: 10.3390/molecules28237890] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Antibodies and their derivatives (scFv, Fabs, etc.) represent a unique class of biomolecules that combine selectivity with the ability to target drug delivery. Currently, one of the most promising endeavors in this field is the development of molecular diagnostic tools and antibody-based therapeutic agents, including antibody-drug conjugates (ADCs). To meet this challenge, it is imperative to advance methods for modifying antibodies. A particularly promising strategy involves the introduction of carbonyl groups into the antibody that are amenable to further modification by biorthogonal reactions, namely aliphatic, aromatic, and α-oxo aldehydes, as well as aliphatic and aryl-alkyl ketones. In this review, we summarize the preparation methods and applications of site-specific antibody conjugates that are synthesized using this approach.
Collapse
Affiliation(s)
| | | | | | - Ksenia A. Sapozhnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (E.L.G.); (V.A.A.); (V.A.K.)
| |
Collapse
|
14
|
Richard M, Martin Aubert S, Denis C, Dubois S, Nozach H, Truillet C, Kuhnast B. Fluorine-18 and Radiometal Labeling of Biomolecules via Disulfide Rebridging. Bioconjug Chem 2023; 34:2123-2132. [PMID: 37881943 DOI: 10.1021/acs.bioconjchem.3c00440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Biomolecules labeled with positron-emitting radionuclides like fluorine-18 or radiometals like copper-64 and zirconium-89 are increasingly employed in nuclear medicine for diagnosis purposes. Given the fragility and complexity of these compounds, their labeling requires mild conditions. Besides, it is essential to develop methods inducing minimal modification of the tertiary structure, as it is fundamental for the biological activity of such complex entities. Given these requirements, disulfide rebridging represents a promising possibility since it allows protein modification as well as conservation of the tertiary structure. In this context, we have developed an original radiofluorinated dibromopyridazine dione prosthetic group for labeling of disulfide-containing biomolecules via rebridging. We employed it to radiolabel octreotide, a somatostatin analogue, and to radiolabel fragment antigen binding (Fab) targeting programmed death-ligand 1 (PD-L1), whose properties were then evaluated in vitro and in vivo by positron emission tomography (PET) imaging. We next extended our strategy to the radiolabeling of cetuximab, a monoclonal antibody, with various radiometals commonly used in PET imaging (zirconium-89, copper-64) by developing various rebridging molecules bearing the appropriate chelators. The stabilities of the radiolabeled antibody conjugates were assessed in biological conditions.
Collapse
Affiliation(s)
- Mylène Richard
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | | | - Caroline Denis
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | - Steven Dubois
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Paris-Saclay University, Gif-sur-Yvette 91191, France
| | - Hervé Nozach
- CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Paris-Saclay University, Gif-sur-Yvette 91191, France
| | - Charles Truillet
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| | - Bertrand Kuhnast
- CEA, CNRS, Inserm, BioMaps, SHFJ, Paris-Saclay University, Orsay 91401, France
| |
Collapse
|
15
|
Hsu WH, Ku CL, Lai YR, Wang SSS, Chou SH, Lin TH. Developing targeted drug delivery carriers for breast cancer using glutathione-sensitive doxorubicin-coupled glycated bovine serum albumin nanoparticles. Int J Biol Macromol 2023; 249:126114. [PMID: 37541475 DOI: 10.1016/j.ijbiomac.2023.126114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Incorporation of the nano-based carriers into drug delivery provides a promising alternative to overcome the limitations of the conventional chemotherapy. Doxorubicin (DOXO) is an effective chemotherapeutic drug widely used in chemotherapy for breast cancer treatment. A globular protein bovine serum albumin (BSA) holds great potential as carriers in pharmaceutical applications. This work is aimed at developing the DOXO-coupled glycated BSA nanoparticles via desolvation method for improving the capability of targeting the GLUT5 transporters over-expressed on breast cancer cells. Fructosamine assay and Fourier transform infrared spectroscopy were employed to determine the content of fructosamine structure and structural changes on the surfaces of nanoparticles, respectively. Additionally, the synthesized BSA nanoparticles were further characterized by electron microscopy and dynamic light scattering. Results revealed that the DOXO-coupled glycated BSA nanoparticles were spherically shaped with a hydrodynamic diameter of ~60.74 nm and a ζ-potential of ~ - 42.20 mV. Moreover, the DOXO release behavior of as-synthesized DOXO-coupled glycated BSA nanoparticles was examined under different conditions. Finally, the DOXO-coupled glycated BSA nanoparticles were found to exhibit cytotoxicity toward both MCF-7 and MDA-MB-231 cells. Our findings evidently suggested that the drug-coupled glycated BSA nanoparticles serve as the potential candidates for targeted drug delivery platform used in breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Hsiang Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chien-Liang Ku
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Steven S-S Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Xinzhuang Dist., New Taipei City 24205, Taiwan.
| | - Ta-Hsien Lin
- Laboratory of Nuclear Magnetic Resonance, Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
16
|
Cerofolini L, Vasa K, Bianconi E, Salobehaj M, Cappelli G, Bonciani A, Licciardi G, Pérez-Ràfols A, Padilla-Cortés L, Antonacci S, Rizzo D, Ravera E, Viglianisi C, Calderone V, Parigi G, Luchinat C, Macchiarulo A, Menichetti S, Fragai M. Combining Solid-State NMR with Structural and Biophysical Techniques to Design Challenging Protein-Drug Conjugates. Angew Chem Int Ed Engl 2023; 62:e202303202. [PMID: 37276329 DOI: 10.1002/anie.202303202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Several protein-drug conjugates are currently being used in cancer therapy. These conjugates rely on cytotoxic organic compounds that are covalently attached to the carrier proteins or that interact with them via non-covalent interactions. Human transthyretin (TTR), a physiological protein, has already been identified as a possible carrier protein for the delivery of cytotoxic drugs. Here we show the structure-guided development of a new stable cytotoxic molecule based on a known strong binder of TTR and a well-established anticancer drug. This example is used to demonstrate the importance of the integration of multiple biophysical and structural techniques, encompassing microscale thermophoresis, X-ray crystallography and NMR. In particular, we show that solid-state NMR has the ability to reveal effects caused by ligand binding which are more easily relatable to structural and dynamical alterations that impact the stability of macromolecular complexes.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Kristian Vasa
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Elisa Bianconi
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Maria Salobehaj
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Cappelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Alice Bonciani
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giulia Licciardi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Anna Pérez-Ràfols
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Luis Padilla-Cortés
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Sabrina Antonacci
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Domenico Rizzo
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Caterina Viglianisi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
- Giotto Biotech s.r.l, Sesto Fiorentino, Via della Madonna del Piano 6, 50019, Florence, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti n.48, 06123, Perugia, Italy
| | - Stefano Menichetti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Centre (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
17
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
18
|
Bednar RM, Karplus PA, Mehl RA. Site-specific dual encoding and labeling of proteins via genetic code expansion. Cell Chem Biol 2023; 30:343-361. [PMID: 36977415 PMCID: PMC10764108 DOI: 10.1016/j.chembiol.2023.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The ability to selectively modify proteins at two or more defined locations opens new avenues for manipulating, engineering, and studying living systems. As a chemical biology tool for the site-specific encoding of non-canonical amino acids into proteins in vivo, genetic code expansion (GCE) represents a powerful tool to achieve such modifications with minimal disruption to structure and function through a two-step "dual encoding and labeling" (DEAL) process. In this review, we summarize the state of the field of DEAL using GCE. In doing so, we describe the basic principles of GCE-based DEAL, catalog compatible encoding systems and reactions, explore demonstrated and potential applications, highlight emerging paradigms in DEAL methodologies, and propose novel solutions to current limitations.
Collapse
Affiliation(s)
- Riley M Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences Building, Corvallis, OR 97331-7305, USA; GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
19
|
Cao W, Maza JC, Chernyak N, Flygare JA, Krska SW, Toste FD, Francis MB. Modification of Cysteine-Substituted Antibodies Using Enzymatic Oxidative Coupling Reactions. Bioconjug Chem 2023; 34:510-517. [PMID: 36787347 DOI: 10.1021/acs.bioconjchem.2c00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Cysteines are routinely used as site-specific handles to synthesize antibody-drug conjugates for targeted immunotherapy applications. Michael additions between thiols and maleimides are some of the most common methods for modifying cysteines, but these functional groups can be difficult to prepare on scale, and the resulting linkages have been shown to be reversible under some physiological conditions. Here, we show that the enzyme tyrosinase, which oxidizes conveniently accessed phenols to afford reactive ortho-quinone intermediates, can be used to attach phenolic cargo to cysteines engineered on antibody surfaces. The resulting linkages between the thiols and ortho-quinones are shown to be more resistant than maleimides to reversion under physiological conditions. Using this approach, we construct antibody conjugates bearing cytotoxic payloads, which exhibit targeted cell killing, and further demonstrate this method for the attachment of a variety of cargo to antibodies, including fluorophores and oligonucleotides.
Collapse
Affiliation(s)
- Wendy Cao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Natalia Chernyak
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - John A Flygare
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Shane W Krska
- Department of Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - F Dean Toste
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Hashad RA, Jap E, Casey JL, Candace Ho YT, Wright A, Thalmann C, Sleeman M, Lupton DW, Hagemeyer CE, Cryle MJ, Robert R, Alt K. Chemoselective Methionine Labelling of Recombinant Trastuzumab Shows High In Vitro and In Vivo Tumour Targeting. Chemistry 2023; 29:e202202491. [PMID: 36451579 PMCID: PMC10946977 DOI: 10.1002/chem.202202491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.
Collapse
Affiliation(s)
- Rania A. Hashad
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams University1181CairoEgypt
| | - Edwina Jap
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Joanne L. Casey
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Y. T. Candace Ho
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Alexander Wright
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Claudia Thalmann
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Mark Sleeman
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - David W. Lupton
- School of ChemistryMonash UniversityClayton3800VictoriaAustralia
| | - Christoph E. Hagemeyer
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria 3800 (Australia)EMBL AustraliaMonash UniversityClaytonVictoria3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClayton3800VictoriaAustralia
| | - Remy Robert
- Department of PhysiologyBiomedicine Discovery InstituteMonash UniversityClaytonVictoria3800Australia
| | - Karen Alt
- Australian Centre for Blood DiseasesCentral Clinical SchoolMonash UniversityMelbourneVictoria3004Australia
| |
Collapse
|
21
|
MacPherson DS, Hwang D, Sarrett SM, Keinänen O, Rodriguez C, Rader C, Zeglis BM. Leveraging a Dual Variable Domain Immunoglobulin to Create a Site-Specifically Modified Radioimmunoconjugate. Mol Pharm 2023; 20:775-782. [PMID: 36377696 PMCID: PMC10263003 DOI: 10.1021/acs.molpharmaceut.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Site-specifically modified radioimmunoconjugates exhibit superior in vitro and in vivo behavior compared to analogues synthesized via traditional stochastic methods. However, the development of approaches to site-specific bioconjugation that combine high levels of selectivity, simple reaction conditions, and clinical translatability remains a challenge. Herein, we describe a novel solution to this problem: the use of dual-variable domain immunoglobulins (DVD-IgG). More specifically, we report the synthesis, in vitro evaluation, and in vivo validation of a 177Lu-labeled radioimmunoconjugate based on HER2DVD, a DVD-IgG containing the HER2-targeting variable domains of trastuzumab and the catalytic variable domains of IgG h38C2. To this end, we first modified HER2DVD with a phenyloxadiazolyl methlysulfone-modified variant of the chelator CHX-A″-DTPA (PODS-CHX-A''-DTPA) and verified the site-specificity of the conjugation for the reactive lysines within the catalytic domains via chemical assay, MALDI-ToF mass spectrometry, and SDS-PAGE. The chelator-bearing immunoconjugate was subsequently labeled with [177Lu]Lu3+ to produce the completed radioimmunoconjugate, [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD, in >80% radiochemical conversion and a specific activity of 29.5 ± 7.1 GBq/μmol. [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD did not form aggregates upon prolonged incubation in human serum, displayed 87% stability to demetalation over a 7 days of incubation in serum, and exhibited an immunoreactive fraction of 0.95 with HER2-coated beads. Finally, we compared the pharmacokinetic profile of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD to that of a 177Lu-labeled variant of trastuzumab in mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. The in vivo performance of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD matched that of 177Lu-labeled trastuzumab, with the former producing a tumoral activity concentration of 34.1 ± 12.1 %ID/g at 168 h and tumor-to-blood, tumor-to-liver, and tumor-to-kidney activity concentration ratios of 10.5, 9.6, and 21.8, respectively, at the same time point. Importantly, the DVD-IgG did not exhibit a substantially longer serum half-life than the traditional IgG despite its significantly larger size (202 kDa for the former vs 148 kDa for the latter). Taken together, these data suggest that DVD-IgGs represent a viable platform for the future development of highly effective site-specifically labeled radioimmunoconjugates for diagnostic imaging, theranostic imaging, and radioimmunotherapy.
Collapse
Affiliation(s)
- Douglas S. MacPherson
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Dobeen Hwang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Samantha M. Sarrett
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, 520 East 70th Street, New York, New York 10065, United States
| |
Collapse
|
22
|
Yu L, Shang Z, Jin Q, Chan SY, Hong W, Li N, Li P. Antibody-Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv Healthc Mater 2023; 12:e2202207. [PMID: 36300640 DOI: 10.1002/adhm.202202207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/19/2022] [Indexed: 02/03/2023]
Abstract
As the development of new antibiotics lags far behind the emergence of drug-resistant bacteria, alternative strategies to resolve this dilemma are urgently required. Antibody-drug conjugate is a promising therapeutic platform to delivering cytotoxic payloads precisely to target cells for efficient disease treatment. Antibody-antimicrobial conjugates (AACs) have recently attracted considerable interest from researchers as they can target bacteria in the target sites and improve the effectiveness of drugs (i.e., reduced drug dosage and adverse effects), abating the upsurge of antimicrobial resistance. In this review, the selection and progress of three essential blocks that compose the AACs: antibodies, antimicrobial payloads, and linkers are discussed. The commonly used conjugation strategies and the latest applications of AACs in recent years are also summarized. The challenges and opportunities of this booming technology are also discussed at the end of this review.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong Province, 518026, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, 100101, China
| | - Qizhe Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Weilin Hong
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Nan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
23
|
Dannheim FM, Walsh SJ, Orozco CT, Hansen AH, Bargh JD, Jackson SE, Bond NJ, Parker JS, Carroll JS, Spring DR. All-in-one disulfide bridging enables the generation of antibody conjugates with modular cargo loading. Chem Sci 2022; 13:8781-8790. [PMID: 35975158 PMCID: PMC9350601 DOI: 10.1039/d2sc02198f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/10/2022] [Indexed: 12/30/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.
Collapse
Affiliation(s)
| | - Stephen J Walsh
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Cancer Research UK Cambridge Institute, University of Cambridge Cambridge CB2 0RE UK
| | - Carolina T Orozco
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Anders Højgaard Hansen
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Chemistry, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Jonathan D Bargh
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Nicholas J Bond
- Analytical Sciences, Biopharmaceutical Development, R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Development, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge Cambridge CB2 0RE UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
24
|
Fryszkowska A, An C, Alvizo O, Banerjee G, Canada KA, Cao Y, DeMong D, Devine PN, Duan D, Elgart DM, Farasat I, Gauthier DR, Guidry EN, Jia X, Kong J, Kruse N, Lexa KW, Makarov AA, Mann BF, Milczek EM, Mitchell V, Nazor J, Neri C, Orr RK, Orth P, Phillips EM, Riggins JN, Schafer WA, Silverman SM, Strulson CA, Subramanian N, Voladri R, Yang H, Yang J, Yi X, Zhang X, Zhong W. A chemoenzymatic strategy for site-selective functionalization of native peptides and proteins. Science 2022; 376:1321-1327. [PMID: 35709255 DOI: 10.1126/science.abn2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.
Collapse
Affiliation(s)
- Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Chihui An
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Oscar Alvizo
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | | | - Keith A Canada
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Yang Cao
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Duane DeMong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Paul N Devine
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Da Duan
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - David M Elgart
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Iman Farasat
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Donald R Gauthier
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erin N Guidry
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Xiujuan Jia
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jongrock Kong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Nikki Kruse
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Katrina W Lexa
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Alexey A Makarov
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Benjamin F Mann
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Erika M Milczek
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Vesna Mitchell
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Jovana Nazor
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Claudia Neri
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Robert K Orr
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter Orth
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Eric M Phillips
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - James N Riggins
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wes A Schafer
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Steven M Silverman
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | | | | | - Rama Voladri
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Hao Yang
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Jie Yang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiang Yi
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Xiyun Zhang
- Codexis Inc., 200 Penobscot Drive, Redwood City, CA 94063, USA
| | - Wendy Zhong
- Process Research and Development, Merck & Co., Inc., Rahway, NJ 07065, USA
| |
Collapse
|
25
|
Boll LB, Raines RT. Context‐dependence of the Reactivity of Cysteine and Lysine Residues. Chembiochem 2022; 23:e202200258. [PMID: 35527228 PMCID: PMC9308718 DOI: 10.1002/cbic.202200258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/11/2022]
Abstract
The S‐alkylation of Cys residues with a maleimide and the Nϵ‐acylation of Lys residues with an N‐hydroxysuccinimide (NHS) ester are common methods for bioconjugation. Using Cys and Lys derivatives as proxies, we assessed differences in reactivity depending on the position of Cys or Lys in a protein sequence. We find that Cys position is exploitable to improve site‐selectivity in maleimide‐based modifications. Reactivity decreases substantially in the order N‐terminal>in‐chain>C‐terminal Cys due to modulation of sulfhydryl pKa by the α‐ammonium and carboxylate groups at the termini. A lower pKa value yields a larger fraction thiolate, which promotes selectivity while somewhat decreasing thiolate nucleophilicity in accord with βnuc
=0.41. Lowering pH and salt concentration enhances selectivity still further. In contrast, differences in the reactivity of Lys towards an NHS ester were modest due to an appreciable decrease in amino group nucleophilicity with a lower pKa of its conjugate acid. Hence, site‐selective Lys modification protocols will require electrophiles other than NHS esters.
Collapse
Affiliation(s)
- Linus B. Boll
- Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts Avenue 02139 Cambridge UNITED STATES
| | - Ronald T. Raines
- Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts Avenue, 18-498 02139-4307 Cambridge UNITED STATES
| |
Collapse
|
26
|
Jendryczko K, Rzeszotko J, Krzyscik MA, Kocyła A, Szymczyk J, Otlewski J, Szlachcic A. Drug Conjugation via Maleimide-Thiol Chemistry Does Not Affect Targeting Properties of Cysteine-Containing Anti-FGFR1 Peptibodies. Mol Pharm 2022; 19:1422-1433. [PMID: 35389227 PMCID: PMC9066409 DOI: 10.1021/acs.molpharmaceut.1c00946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
With a wide range of available cytotoxic therapeutics, the main focus of current cancer research is to deliver them specifically to the cancer cells, minimizing toxicity against healthy tissues. Targeted therapy utilizes different carriers for cytotoxic drugs, combining a targeting molecule, typically an antibody, and a highly toxic payload. For the effective delivery of such cytotoxic conjugates, a molecular target on the cancer cell is required. Various proteins are exclusively or abundantly expressed in cancer cells, making them a possible target for drug carriers. Fibroblast growth factor receptor 1 (FGFR1) overexpression has been reported in different types of cancer, but no FGFR1-targeting cytotoxic conjugate has been approved for therapy so far. In this study, the FGFR1-targeting peptide previously described in the literature was reformatted into a peptibody-peptide fusion with the fragment crystallizable (Fc) domain of IgG1. PeptibodyC19 can be effectively internalized into FGFR1-overexpressing cells and does not induce cells' proliferation. The main challenge for its use as a cytotoxic conjugate is a cysteine residue located within the targeting peptide. A standard drug-conjugation strategy based on the maleimide-thiol reaction involves modification of cysteines within the Fc domain hinge region. Applied here, however, may easily result in the modification of the targeting peptide with the drug, limiting its affinity to the target and therefore the potential for specific drug delivery. To investigate if this is the case, we have performed conjugation reactions with different auristatin derivatives (PEGylated and unmodified) under various conditions. By controlling the reduction conditions and the type of cytotoxic payload, different numbers of cysteines were substituted, allowing us to avoid conjugating the drug to the targeting peptide, which could affect its binding to FGFR1. The optimized protocol with PEGylated auristatin yielded doubly substituted peptibodyC19, showing specific cytotoxicity toward the FGFR1-expressing lung cancer cells, with no effect on cells with low FGFR1 levels. Indeed, additional cysteine poses a risk of unwanted modification, but changes in the type of cytotoxic payload and reaction conditions allow the use of standard thiol-maleimide-based conjugation to achieve standard Fc hinge region cysteine modification, analogously to antibody-drug conjugates.
Collapse
Affiliation(s)
- Karolina Jendryczko
- Department
of Protein Engineering, University of Wroclaw, Wroclaw 50-383, Poland
| | - Jakub Rzeszotko
- Department
of Protein Engineering, University of Wroclaw, Wroclaw 50-383, Poland
| | | | - Anna Kocyła
- Department
of Chemical Biology, University of Wroclaw, Wroclaw 50-383, Poland
| | - Jakub Szymczyk
- Department
of Protein Engineering, University of Wroclaw, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Department
of Protein Engineering, University of Wroclaw, Wroclaw 50-383, Poland
| | - Anna Szlachcic
- Department
of Protein Engineering, University of Wroclaw, Wroclaw 50-383, Poland
| |
Collapse
|
27
|
Ghirardello M, Shyam R, Liu X, Garcia-Millan T, Sittel I, Ramos-Soriano J, Kurian KM, Galan MC. Carbon dot-based fluorescent antibody nanoprobes as brain tumour glioblastoma diagnostics. NANOSCALE ADVANCES 2022; 4:1770-1778. [PMID: 35434521 PMCID: PMC8962998 DOI: 10.1039/d2na00060a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The development of efficient and sensitive tools for the detection of brain cancer in patients is of the utmost importance particularly because many of these tumours go undiagnosed until the disease has advanced and when treatment is less effective. Current strategies employ antibodies (Abs) to detect Glial Fibrillary Acid Protein (GFAP) in tissue samples, since GFAP is unique to the brain and not present in normal peripheral blood, and it relies on fluorescent reporters. Herein we describe a low cost, practical and general method for the labelling of proteins and antibodies with fluorescent carbon dots (CD) to generate diagnostic probes that are robust, photostable and applicable to the clinical setting. The two-step protocol relies on the conjugation of a dibenzocyclooctyne (DBCO)-functionalised CD with azide functionalised proteins by combining amide conjugation and strain promoted alkyne-azide cycloaddition (SPAAC) ligation chemistry. The new class of Ab-CD conjugates developed using this strategy was successfully used for the immunohistochemical staining of human brain tissues of patients with glioblastoma (GBM) validating the approach. Overall, these novel fluorescent probes offer a promising and versatile strategy in terms of costs, photostability and applicability which can be extended to other Abs and protein systems.
Collapse
Affiliation(s)
| | - Radhe Shyam
- School of Chemistry, University of Bristol Bristol UK
| | - Xia Liu
- Bristol Medical School, Public Health Sciences, Southmead Hospital, University of Bristol Bristol UK
| | | | - Imke Sittel
- School of Chemistry, University of Bristol Bristol UK
| | | | - Kathreena M Kurian
- Bristol Medical School, Public Health Sciences, Southmead Hospital, University of Bristol Bristol UK
| | | |
Collapse
|
28
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
29
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
30
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site‐Specific DNA‐Antibody Bioconjugation by Using Benzoylacrylic‐Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Libby Brown
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Daniel R. Whiten
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yukun Zuo
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Peter Ravn
- AstraZeneca R&D BioPharmaceuticals Unit
- Antibody Discovery & Protein Engineering (ADPE) Milstein Building, Granta Park Cambridge CB21 6GH UK
- Current address: Department of Biotherapeutic Discovery H. Lundbeck A/S Ottiliavej 9, 2500 Valby Denmark
| | - David Klenerman
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- UK Dementia Research Institute University of Cambridge Cambridge CB2 0XY UK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Instituto de Medicina Molecular João Lobo Antunes Faculdade de Medicina Universidade de Lisboa Avenida Professor Egas Moniz 1649-028 Lisboa Portugal
| |
Collapse
|
31
|
Konč J, Brown L, Whiten DR, Zuo Y, Ravn P, Klenerman D, Bernardes GJL. A Platform for Site-Specific DNA-Antibody Bioconjugation by Using Benzoylacrylic-Labelled Oligonucleotides. Angew Chem Int Ed Engl 2021; 60:25905-25913. [PMID: 34555238 PMCID: PMC9297960 DOI: 10.1002/anie.202109713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Many bioconjugation strategies for DNA oligonucleotides and antibodies suffer limitations, such as site-specificity, stoichiometry and hydrolytic instability of the conjugates, which makes them unsuitable for biological applications. Here, we report a new platform for the preparation of DNA-antibody bioconjugates with a simple benzoylacrylic acid pentafluorophenyl ester reagent. Benzoylacrylic-labelled oligonucleotides prepared with this reagent can be site-specifically conjugated to a range of proteins and antibodies through accessible cysteine residues. The homogeneity of the prepared DNA-antibody bioconjugates was confirmed by a new LC-MS protocol and the bioconjugate probes were used in fluorescence or super-resolution microscopy cell imaging experiments. This work demonstrates the versatility and robustness of our bioconjugation protocol that gives site-specific, well-defined and plasma-stable DNA-antibody bioconjugates for biological applications.
Collapse
Affiliation(s)
- Juraj Konč
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Libby Brown
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Daniel R. Whiten
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Yukun Zuo
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Peter Ravn
- AstraZenecaR&D BioPharmaceuticals Unit|Antibody Discovery & Protein Engineering (ADPE)Milstein Building, Granta ParkCambridgeCB21 6GHUK
- Current address: Department of Biotherapeutic DiscoveryH. Lundbeck A/SOttiliavej 9, 2500ValbyDenmark
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeCB2 0XYUK
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
32
|
Xu L, Silva MJSA, Gois PMP, Kuan SL, Weil T. Chemoselective cysteine or disulfide modification via single atom substitution in chloromethyl acryl reagents. Chem Sci 2021; 12:13321-13330. [PMID: 34777751 PMCID: PMC8528048 DOI: 10.1039/d1sc03250j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
The development of bioconjugation chemistry has enabled the combination of various synthetic functionalities to proteins, giving rise to new classes of protein conjugates with functions well beyond what Nature can provide. Despite the progress in bioconjugation chemistry, there are no reagents developed to date where the reactivity can be tuned in a user-defined fashion to address different amino acid residues in proteins. Here, we report that 2-chloromethyl acryl reagents can serve as a simple yet versatile platform for selective protein modification at cysteine or disulfide sites by tuning their inherent electronic properties through the amide or ester linkage. Specifically, the 2-chloromethyl derivatives (acrylamide or acrylate) can be obtained via a simple and easily implemented one-pot reaction based on the coupling reaction between commercially available starting materials with different end-group functionalities (amino group or hydroxyl group). 2-Chloromethyl acrylamide reagents with an amide linkage favor selective modification at the cysteine site with fast reaction kinetics and near quantitative conversations. In contrast, 2-chloromethyl acrylate reagents bearing an ester linkage can undergo two successive Michael reactions, allowing the selective modification of disulfides bonds with high labeling efficiency and good conjugate stability. 2-Chloromethyl acryl derivatives (acrylamides and acrylates) can serve as simple and versatile bioconjugation reagents to achieve site-selective cysteine and disulfide modification on demand and with high efficiency.![]()
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa 1649-003 Lisbon Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa 1649-003 Lisbon Portugal
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
33
|
Yang B, Kwon I. Chemical Modification of Cysteine with 3-Arylpropriolonitrile Improves the In Vivo Stability of Albumin-Conjugated Urate Oxidase Therapeutic Protein. Biomedicines 2021; 9:biomedicines9101334. [PMID: 34680451 PMCID: PMC8533278 DOI: 10.3390/biomedicines9101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains unclear, probably due to the too short in vivo serum half-life of a protein to observe significant cleavage of thiol-maleimide/-APN reaction products. The conjugation of human serum albumin (HSA) to a therapeutic protein reportedly prolongs the in vivo serum half-life. To evaluate the in vivo stability of the thiol-APN reaction product, we prepared HSA-conjugated Arthrobacter globiformis urate oxidase (AgUox), a therapeutic protein for gout treatment. Site-specific HSA conjugation to AgUox was achieved by combining site-specific incorporation of tetrazine containing an amino acid (frTet) into AgUox and a crosslinker containing trans-cyclooctene and either thiol-maleimide (AgUox-MAL-HSA) or -APN chemistry (AgUox-APN-HSA). Substantial cleavage of the thioester of AgUox-MAL-HSA was observed in vitro, whereas no cleavage of the thiol-APN product of AgUox-APN-HSA was observed. Furthermore, the in vivo serum half-life of AgUox-APN-HSA in the late phase was significantly longer than that of AgUox-MAL-HSA. Overall, these results demonstrate that the thiol-APN chemistry enhanced the in vivo stability of the HSA-conjugated therapeutic protein.
Collapse
|
34
|
Cao YJ, Yu C, Wu KL, Wang X, Liu D, Tian Z, Zhao L, Qi X, Loredo A, Chung A, Xiao H. Synthesis of precision antibody conjugates using proximity-induced chemistry. Theranostics 2021; 11:9107-9117. [PMID: 34522229 PMCID: PMC8419051 DOI: 10.7150/thno.62444] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Therapeutic antibody conjugates allow for the specific delivery of cytotoxic agents or immune cells to tumors, thus enhancing the antitumor activity of these agents and minimizing adverse systemic effects. Most current antibody conjugates are prepared by nonspecific modification of antibody cysteine or lysine residues, inevitably resulting in the generation of heterogeneous conjugates with limited therapeutic efficacies. Traditional strategies to prepare homogeneous antibody conjugates require antibody engineering or chemical/enzymatic treatments, processes that often affect antibody folding and stability, as well as yield and cost. Developing a simple and cost-effective way to precisely couple functional payloads to native antibodies is of great importance. Methods: We describe a simple proximity-induced antibody conjugation method (pClick) that enables the synthesis of homogeneous antibody conjugates from native antibodies without requiring additional antibody engineering or post-synthesis treatments. A proximity-activated crosslinker is introduced into a chemically synthesized affinity peptide modified with a bioorthogonal handle. Upon binding to a specific antibody site, the affinity peptide covalently attaches to the antibody via spontaneous crosslinking, yielding an antibody molecule ready for bioorthogonal conjugation with payloads. Results: We have prepared well-defined antibody-drug conjugates and bispecific small molecule-antibody conjugates using pClick technology. The resulting conjugates exhibit excellent in vitro cytotoxic activity against cancer cells and, in the case of bispecific conjugates, superb antitumor activity in mouse xenograft models. Conclusions: Our pClick technology enables efficient, simple, and site-specific conjugation of various moieties to the existing native antibodies. This technology does not require antibody engineering or additional UV/chemical/enzymatic treatments, therefore providing a general, convenient strategy for developing novel antibody conjugates.
Collapse
|
35
|
Mckertish CM, Kayser V. Advances and Limitations of Antibody Drug Conjugates for Cancer. Biomedicines 2021; 9:872. [PMID: 34440076 PMCID: PMC8389690 DOI: 10.3390/biomedicines9080872] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
The popularity of antibody drug conjugates (ADCs) has increased in recent years, mainly due to their unrivalled efficacy and specificity over chemotherapy agents. The success of the ADC is partly based on the stability and successful cleavage of selective linkers for the delivery of the payload. The current research focuses on overcoming intrinsic shortcomings that impact the successful development of ADCs. This review summarizes marketed and recently approved ADCs, compares the features of various linker designs and payloads commonly used for ADC conjugation, and outlines cancer specific ADCs that are currently in late-stage clinical trials for the treatment of cancer. In addition, it addresses the issues surrounding drug resistance and strategies to overcome resistance, the impact of a narrow therapeutic index on treatment outcomes, the impact of drug-antibody ratio (DAR) and hydrophobicity on ADC clearance and protein aggregation.
Collapse
Affiliation(s)
| | - Veysel Kayser
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
36
|
Yang X, Seol H, Lin W, Xu X, Shen B, Qiu H, Li N. Site-Specific Quantitation of Drug Conjugations on Antibody-Drug Conjugates (ADCs) Using a Protease-Assisted Drug Deconjugation and Linker-like Labeling (PADDLL) Method. Anal Chem 2021; 93:9549-9558. [PMID: 34196532 DOI: 10.1021/acs.analchem.1c01619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals for the targeted delivery of antitumor agents. ADCs can be highly heterogeneous with various drug-to-antibody ratio (DAR) species, conjugation sites, and occupancy levels. The conjugation site can modulate the ADC stability and efficacy and therefore can be considered to be a critical quality attribute (CQA) during development. Traditional mass spectrometry (MS)-based peptide mapping methods cannot accurately quantify site-specific conjugations due to a significant ionization discrepancy between unconjugated native peptides and conjugated peptides. Here, we developed a novel protease-assisted drug deconjugation and linker-like labeling (PADDLL) method to quantify the levels of linker payload at specific conjugation sites. We utilized optimized papain digestion to deconjugate the drug payload and labeled unoccupied conjugation sites with a linker-like structure to provide comparable ionization efficiency for MS-based quantitation. This method was successfully applied on two cysteine-linked, protease-cleavable ADCs, and the method demonstrated good linearity and reliability, reaching a limit of quantitation of below 1%. The calculated DARs were comparable with the results from intact mass analysis. The lot-to-lot variation in conjugation distribution and inferior conjugation stability at HC Cys225 to other interchain cysteines were observed. This method provides a valuable tool for ADC design and product development. To the best of our knowledge, this is the first analytical method developed to accurately quantify site-specific linker-drug payload conjugations for ADCs.
Collapse
Affiliation(s)
- Xiangkun Yang
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Haeri Seol
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Wei Lin
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Xiaobin Xu
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Biao Shen
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Haibo Qiu
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
37
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021; 60:13757-13777. [PMID: 33258535 PMCID: PMC8248073 DOI: 10.1002/anie.202012034] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Site-selective protein functionalization serves as an invaluable tool for investigating protein structures and functions in complicated cellular environments and accomplishing semi-synthetic protein conjugates such as traceable therapeutics with improved features. Dual functionalization of proteins allows the incorporation of two different types of functionalities at distinct location(s), which greatly expands the features of native proteins. The attachment and crosstalk of a fluorescence donor and an acceptor dye provides fundamental insights into the folding and structural changes of proteins upon ligand binding in their native cellular environments. Moreover, the combination of drug molecules with different modes of action, imaging agents or stabilizing polymers provides new avenues to design precision protein therapeutics in a reproducible and well-characterizable fashion. This review aims to give a timely overview of the recent advancements and a future perspective of this relatively new research area. First, the chemical toolbox for dual functionalization of proteins is discussed and compared. The strengths and limitations of each strategy are summarized in order to enable readers to select the most appropriate method for their envisaged applications. Thereafter, representative applications of these dual-modified protein bioconjugates benefiting from the synergistic/additive properties of the two synthetic moieties are highlighted.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
38
|
Shirasu T, Yodsanit N, Xie X, Zhao Y, Wang Y, Xie R, Huang Y, Wang B, Urabe G, Gong S, Guo LW, Kent KC. An adventitial painting modality of local drug delivery to abate intimal hyperplasia. Biomaterials 2021; 275:120968. [PMID: 34153787 DOI: 10.1016/j.biomaterials.2021.120968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
A major medical problem is the persistent lack of approved therapeutic methods to prevent postoperative intimal hyperplasia (IH) which leads to high-rate failure of open vascular reconstructions such as bypass grafting. Hydrogel has been widely used in preclinical trials for perivascular drug administration to mitigate postoperative IH. However, bulky hydrogel is potentially pro-inflammatory, posing a significant hurdle to clinical translation. Here we developed a new modality of directly "painting" drug-loaded unimolecular micelles (UM) to the adventitia thus obviating the need for a hydrogel. To render tissue adhesion, we generated amine-reactive unimolecular micelles with N-hydroxysuccinimide ester (UM-NHS) terminal groups to form stable amide bonds with the adventitia. To test periadventitial application, we either soaked balloon-injured rat carotid arteries in crosslinked UM-NHS (Mode-1) or non-crosslinked UM-NHS (Mode-2), or painted the vessel surface with non-crosslinked UM-NHS (Mode-3). The UM-NHS were loaded with or without a model drug (rapamycin) known to be IH inhibitory. We found that Mode-1 produced a marked IH-mitigating drug effect but also caused severe tissue damage. Mode-2 resulted in lower tissue toxicity yet less drug effect on IH. However, the painting method, Mode-3, demonstrated a pronounced therapeutic effect (75% inhibition of IH) without obvious toxicity. In summary, we present a simple painting modality of periadventitial local drug delivery using tissue-adhesive UM. Given the robust IH-abating efficacy and low tissue toxicity, this prototype merits further development towards an effective anti-stenosis therapy suitable for open vascular reconstructions.
Collapse
Affiliation(s)
- Takuro Shirasu
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Nisakorn Yodsanit
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiujie Xie
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yi Zhao
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yitao Huang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Go Urabe
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
39
|
Wagner HJ, Mohsenin H, Weber W. Synthetic Biology-Empowered Hydrogels for Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:197-226. [PMID: 33582837 DOI: 10.1007/10_2020_158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic biology is strongly inspired by concepts of engineering science and aims at the design and generation of artificial biological systems in different fields of research such as diagnostics, analytics, biomedicine, or chemistry. To this aim, synthetic biology uses an engineering approach relying on a toolbox of molecular sensors and switches that endows cellular hosts with non-natural computing functions and circuits. Importantly, this concept is not only limited to cellular approaches. Synthetic biological building blocks have also conferred sensing and switching capability to otherwise inactive materials. This principle has attracted high interest for the development of biohybrid materials capable of sensing and responding to specific molecular stimuli, such as disease biomarkers, antibiotics, or heavy metals. Moreover, the interconnection of individual sense-and-respond materials to complex materials systems has enabled the processing of, for example, multiple inputs or the amplification of signals using feedback topologies. Such systems holding high potential for applications in the analytical and diagnostic sectors will be described in this chapter.
Collapse
Affiliation(s)
- Hanna J Wagner
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hasti Mohsenin
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
40
|
Abawi A, Wang X, Bompard J, Bérot A, Andretto V, Gudimard L, Devillard C, Petiot E, Joseph B, Lollo G, Granjon T, Girard-Egrot A, Maniti O. Monomethyl Auristatin E Grafted-Liposomes to Target Prostate Tumor Cell Lines. Int J Mol Sci 2021; 22:ijms22084103. [PMID: 33921088 PMCID: PMC8071391 DOI: 10.3390/ijms22084103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Novel nanomedicines have been engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or short half-life. Lipid-based carriers such as liposomes represent one of the most advanced classes of drug delivery systems. A Monomethyl Auristatin E (MMAE) warhead was grafted on a lipid derivative and integrated in fusogenic liposomes, following the model of antibody drug conjugates. By modulating the liposome composition, we designed a set of particles characterized by different membrane fluidities as a key parameter to obtain selective uptake from fibroblast or prostate tumor cells. Only the fluid liposomes made of palmitoyl-oleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine, integrating the MMAE-lipid derivative, showed an effect on prostate tumor PC-3 and LNCaP cell viability. On the other hand, they exhibited negligible effects on the fibroblast NIH-3T3 cells, which only interacted with rigid liposomes. Therefore, fluid liposomes grafted with MMAE represent an interesting example of drug carriers, as they can be easily engineered to promote liposome fusion with the target membrane and ensure drug selectivity.
Collapse
Affiliation(s)
- Ariana Abawi
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Xiaoyi Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Julien Bompard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Anna Bérot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Valentina Andretto
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (V.A.); (G.L.)
| | - Leslie Gudimard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Chloé Devillard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Emma Petiot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Benoit Joseph
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (V.A.); (G.L.)
| | - Thierry Granjon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
| | - Ofelia Maniti
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Univ Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France; (A.A.); (X.W.); (J.B.); (A.B.); (L.G.); (C.D.); (E.P.); (B.J.); (T.G.); (A.G.-E.)
- Correspondence: ; Tel.: +33-(0)4-72-44-82-14
| |
Collapse
|
41
|
Sharma SK, Adumeau P, Keinänen O, Sisodiya V, Sarvaiya H, Tchelepi R, Korsen JA, Pourat J, Edwards KJ, Ragupathi A, Hamdy O, Saunders LR, Rudin CM, Poirier JT, Lewis JS, Zeglis BM. Synthesis and Comparative In Vivo Evaluation of Site-Specifically Labeled Radioimmunoconjugates for DLL3-Targeted ImmunoPET. Bioconjug Chem 2021; 32:1255-1262. [PMID: 33835770 PMCID: PMC8295218 DOI: 10.1021/acs.bioconjchem.1c00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delta-like ligand 3 (DLL3) is a therapeutic target for the treatment of small cell lung cancer, neuroendocrine prostate cancer, and isocitrate dehydrogenase mutant glioma. In the clinic, DLL3-targeted 89Zr-immunoPET has the potential to aid in the assessment of disease burden and facilitate the selection of patients suitable for therapies that target the antigen. The overwhelming majority of 89Zr-labeled radioimmunoconjugates are synthesized via the random conjugation of desferrioxamine (DFO) to lysine residues within the immunoglobulin. While this approach is admittedly facile, it can produce heterogeneous constructs with suboptimal in vitro and in vivo behavior. In an effort to circumvent these issues, we report the development and preclinical evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted immunoPET. To this end, we modified a cysteine-engineered variant of the DLL3-targeting antibody SC16-MB1 with two thiol-reactive variants of DFO: one bearing a maleimide moiety (Mal-DFO) and the other containing a phenyloxadiazolyl methyl sulfone group (PODS-DFO). In an effort to obtain immunoconjugates with a DFO-to-antibody ratio (DAR) of 2, we explored both the reduction of the antibody with tris(2-carboxyethyl) phosphine (TCEP) as well as the use of a combination of glutathione and arginine as reducing and stabilizing agents, respectively. While exerting control over the DAR of the immunoconjugate proved cumbersome using TCEP, the use of glutathione and arginine enabled the selective reduction of the engineered cysteines and thus the formation of homogeneous immunoconjugates. A head-to-head comparison of the resulting 89Zr-radioimmunoconjugates in mice bearing DLL3-expressing H82 xenografts revealed no significant differences in tumoral uptake and showed comparable radioactivity concentrations in most healthy nontarget organs. However, 89Zr-DFOPODS-DAR2SC16-MB1 produced 30% lower uptake (3.3 ± 0.5 %ID/g) in the kidneys compared to 89Zr-DFOMal-DAR2SC16-MB1 (4.7 ± 0.5 %ID/g). In addition, H82-bearing mice injected with a 89Zr-labeled isotype-control radioimmunoconjugate synthesized using PODS exhibited ∼40% lower radioactivity in the kidneys compared to mice administered its maleimide-based counterpart. Taken together, these results demonstrate the improved in vivo performance of the PODS-based radioimmunoconjugate and suggest that a stable, well-defined DAR2 radiopharmaceutical may be suitable for the clinical immunoPET of DLL3-expressing cancers.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Pierre Adumeau
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Outi Keinänen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Vikram Sisodiya
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Hetal Sarvaiya
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Robert Tchelepi
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Joshua A Korsen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Omar Hamdy
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Laura R Saunders
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
42
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site‐Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
43
|
Monahan M, Cai B, Jian T, Zhang S, Zhu G, Chen CL, De Yoreo JJ, Cossairt BM. Peptoid-directed assembly of CdSe nanoparticles. NANOSCALE 2021; 13:1273-1282. [PMID: 33404572 DOI: 10.1039/d0nr07509d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The high information content of proteins drives their hierarchical assembly and complex function, including the organization of inorganic nanomaterials. Peptoids offer an organic scaffold very similar to proteins, but with a wider solubility range and easily tunable side chains and functional groups to create a variety of self-assembling architectures with atomic precision. If we could harness this paradigm and understand the factors that govern how they direct nucleation and assembly of inorganic materials to design order within such materials, new dimensions of function and fundamental science would emerge. In this work, peptoid tubes and sheets were explored as platforms to assemble colloidal quantum dots (QDs) and clusters. We have successfully synthesized CdSe QDs with difunctionalized capping ligands containing both carboxylic acid and thiol groups and mixed them with maleimide containing peptoids, to create an assembly of the QDs on the peptoid surface via a covalent linkage. This conjugation was seen to be successful with peptoid tubes, sheets and CdSe QDs and clusters. The particles were seen to have a high preference for the peptoid surface but non-specific interactions with carboxylic acid groups on the peptoids limited control over QD density via maleimide conjugation. Replacing the carboxylic acid groups with methoxy ethers, however, allowed for control over QD density as a function of maleimide concentration. 1H NMR analysis demonstrated that binding of QDs to peptoids involved a subset of surface ligands bound through the carboxylate functional group, allowing the distal thiol to engage in a covalent linkage to the maleimide. Overall, we have shown the compatibility and control of CdSe-peptoid interactions via a covalent linkage with varying peptoid structures and CdSe particles to create complex hybrid structures.
Collapse
Affiliation(s)
- Madison Monahan
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
| | - Bin Cai
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tengyue Jian
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shuai Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA and Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-1700, USA
| | - Guomin Zhu
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA and Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-1700, USA
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA and Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - James J De Yoreo
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA. and Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA and Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195-1700, USA
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA.
| |
Collapse
|
44
|
Kuan SL, Raabe M. Solid-Phase Protein Modifications: Towards Precision Protein Hybrids for Biological Applications. ChemMedChem 2021; 16:94-104. [PMID: 32667697 PMCID: PMC7818443 DOI: 10.1002/cmdc.202000412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins have attracted increasing attention as biopharmaceutics and diagnostics due to their high specificity, biocompatibility, and biodegradability. The biopharmaceutical sector in particular is experiencing rapid growth, which has led to an increase in the production and sale of protein drugs and diagnostics over the last two decades. Since the first-generation biopharmaceutics dominated by native proteins, both recombinant and chemical technologies have evolved and transformed the outlook of this rapidly developing field. This review article presents updates on the fabrication of covalent and supramolecular fusion hybrids, as well as protein-polymer hybrids using solid-phase approaches that hold great promise for preparing protein hybrids with precise control at the macromolecular level to incorporate additional features. In addition, the applications of the resultant protein hybrids in medicine and diagnostics are highlighted where possible.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marco Raabe
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
45
|
Miyabe H. Aryne-Mediated Synthesis of Oxygen Heterocycles and Application to Cysteine-Selective Trapping. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
King TA, Mandrup Kandemir J, Walsh SJ, Spring DR. Photocatalytic methods for amino acid modification. Chem Soc Rev 2021; 50:39-57. [DOI: 10.1039/d0cs00344a] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This tutorial review introduces photocatalysis for amino acid modification and summarises recent advances in the field.
Collapse
Affiliation(s)
- Thomas A. King
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | | | - Stephen J. Walsh
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| | - David R. Spring
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW
- UK
| |
Collapse
|
47
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
48
|
Singh S, Dhawan A, Karhana S, Bhat M, Dinda AK. Quantum Dots: An Emerging Tool for Point-of-Care Testing. MICROMACHINES 2020; 11:E1058. [PMID: 33260478 PMCID: PMC7761335 DOI: 10.3390/mi11121058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023]
Abstract
Quantum dots (QDs) are semiconductor crystals in the nanodimension having unique optical and electronic properties that differ from bulk material due to quantum mechanics. The QDs have a narrow emission peak, size-dependent emission wavelength, and broad excitation range which can be utilized for diverse biomedical applications such as molecular imaging, biosensing, and diagnostic systems. This article reviews the current developments of biomedical applications of QDs with special reference to point-of-care testing.
Collapse
Affiliation(s)
| | | | | | | | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029, India; (S.S.); (A.D.); (S.K.); (M.B.)
| |
Collapse
|
49
|
Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Commun Chem 2020; 3:171. [PMID: 36703459 PMCID: PMC9814624 DOI: 10.1038/s42004-020-00413-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023] Open
Abstract
Bioconjugation reactions play a central facilitating role in engendering modified peptides and proteins. Early progress in this area was inhibited by challenges such as the limited range of substrates and the relatively poor biocompatibility of bioconjugation reagents. However, the recent developments in visible-light induced photoredox catalysis and electrochemical catalysis reactions have permitted significant novel reactivities to be developed in the field of synthetic and bioconjugation chemistry. This perspective describes recent advances in the use of biocompatible energy input for the modification of peptides and proteins mainly, via the single electron transfer (SET) process, as well as key future developments in this area.
Collapse
|
50
|
Russo R, Padanha R, Fernandes F, Veiros LF, Corzana F, Gois PMP. Engineering Boron Hot Spots for the Site-Selective Installation of Iminoboronates on Peptide Chains. Chemistry 2020; 26:15226-15231. [PMID: 32627856 DOI: 10.1002/chem.202002675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Indexed: 11/11/2022]
Abstract
Boronic acids (BAs) are a promising bioconjugation function to design dynamic materials as they can establish reversible covalent bonds with oxygen/nitrogen nucleophiles that respond to different pH, ROS, carbohydrates and glutathione levels. However, the dynamic nature of these bonds also limits the control over the stability and site-selectivity of the bioconjugation, which ultimately leads to heterogeneous conjugates with poor stability under physiological conditions. Here we disclose a new strategy to install BAs on peptide chains. In this study, a "boron hot spot" based on the 3-hydroxyquinolin-2(1H)-one scaffold was developed and upon installation on a peptide N-terminal cysteine, enables the site-selective formation of iminoboronates with 2-formyl-phenyl boronic acids (Ka of 58128±2 m-1 ). The reaction is selective in the presence of competing lysine ϵ-amino groups, and the resulting iminoboronates, displayed improved stability in buffers solutions and a cleavable profile in the presence of glutathione. Once developed, the methodology was used to prepare cleavable fluorescent conjugates with a laminin fragment, which enabled the validation of the 67LR receptor as a target to deliver cargo to cancer HT29 cells.
Collapse
Affiliation(s)
- Roberto Russo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Padanha
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006, Logroño, Spain
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|