1
|
Matsumoto H, Iwai T, Sawamura M, Miura Y. Continuous-Flow Catalysis Using Phosphine-Metal Complexes on Porous Polymers: Designing Ligands, Pores, and Reactors. Chempluschem 2024; 89:e202400039. [PMID: 38549362 DOI: 10.1002/cplu.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Continuous-flow syntheses using immobilized catalysts can offer efficient chemical processes with easy separation and purification. Porous polymers have gained significant interests for their applications to catalytic systems in the field of organic chemistry. The porous polymers are recognized for their large surface area, high chemical stability, facile modulation of surface chemistry, and cost-effectiveness. It is crucial to immobilize transition-metal catalysts due to their difficult separation and high toxicity. Supported phosphine ligands represent a noteworthy system for the effective immobilization of metal catalysts and modulation of catalytic properties. Researchers have been actively pursuing strategies involving phosphine-metal complexes supported on porous polymers, aiming for high activities, durabilities, selectivities, and applicability to continuous-flow systems. This review provides a concise overview of phosphine-metal complexes supported on porous polymers for continuous-flow catalytic reactions. Polymer catalysts are categorized based on pore sizes, including micro-, meso-, and macroporous polymers. The characteristics of these porous polymers are explored concerning their efficiency in immobilized catalysis and continuous-flow systems.
Collapse
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Centeno-Vega I, Megías-Sayago C, Ivanova S. New insights for valorization of polyolefins/light alkanes: catalytic dehydrogenation of n-alkanes by immobilized pincer-iridium complexes. Dalton Trans 2024; 53:11216-11227. [PMID: 38887859 DOI: 10.1039/d4dt00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
This scientific review delves into the innovative realm of polyolefins/light alkanes valorization through their catalytic dehydrogenation employing pincer-ligated iridium organometallic complexes. These widely studied catalysts exhibit outstanding properties, although the intrinsic characteristics of homogeneous catalysis (such as challenging product-catalyst separation, poor applicability to continuous-flow processes and low recyclability) limit their activity and industrial application, as well as their thermal stability. Through the immobilization of complexes on inorganic supports, these downsides have been bypassed, harnessing the true potential of these catalysts, affording more selective and stable catalysts in addition to facilitating their implementation in industrial processes. The findings described herein contribute to the advancement in the understanding of catalytic processes in hydrocarbon transformations, offering promising avenues for sustainable and selective production of valuable chemical intermediates from readily available feedstocks.
Collapse
Affiliation(s)
- Ignacio Centeno-Vega
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Cristina Megías-Sayago
- Departamento de Química Inorgánica, Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Svetlana Ivanova
- Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| |
Collapse
|
3
|
Iliescu A, Oppenheim JJ, Sun C, Dincǎ M. Conceptual and Practical Aspects of Metal-Organic Frameworks for Solid-Gas Reactions. Chem Rev 2023; 123:6197-6232. [PMID: 36802581 DOI: 10.1021/acs.chemrev.2c00537] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The presence of site-isolated and well-defined metal sites has enabled the use of metal-organic frameworks (MOFs) as catalysts that can be rationally modulated. Because MOFs can be addressed and manipulated through molecular synthetic pathways, they are chemically similar to molecular catalysts. They are, nevertheless, solid-state materials and therefore can be thought of as privileged solid molecular catalysts that excel in applications involving gas-phase reactions. This contrasts with homogeneous catalysts, which are overwhelmingly used in the solution phase. Herein, we review theories dictating gas phase reactivity within porous solids and discuss key catalytic gas-solid reactions. We further treat theoretical aspects of diffusion within confined pores, the enrichment of adsorbates, the types of solvation spheres that a MOF might impart on adsorbates, definitions of acidity/basicity in the absence of solvent, the stabilization of reactive intermediates, and the generation and characterization of defect sites. The key catalytic reactions we discuss broadly include reductive reactions (olefin hydrogenation, semihydrogenation, and selective catalytic reduction), oxidative reactions (oxygenation of hydrocarbons, oxidative dehydrogenation, and carbon monoxide oxidation), and C-C bond forming reactions (olefin dimerization/polymerization, isomerization, and carbonylation reactions).
Collapse
Affiliation(s)
- Andrei Iliescu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mircea Dincǎ
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Synthesis of Phenol-Tagged Ruthenium Alkylidene Olefin Metathesis Catalysts for Robust Immobilisation Inside Metal–Organic Framework Support. Catalysts 2023. [DOI: 10.3390/catal13020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two new unsymmetrical N-heterocyclic carbene ligand (uNHC)-based ruthenium complexes featuring phenolic OH function were obtained and fully characterised. The more active one was then immobilised on the metal–organic framework (MOF) solid support (Al)MIL-101-NH2. The catalytic activity of such a heterogeneous system was tested, showing that, while the heterogeneous catalyst is less active than the corresponding homogeneous catalyst in solution, it can catalyse selected olefin metathesis reactions, serving as the proof-of-concept for the immobilisation of catalytically active complexes in MOFs using a phenolic tag.
Collapse
|
5
|
Mo Q, Zhang L, Li S, Song H, Fan Y, Su CY. Engineering Single-Atom Sites into Pore-Confined Nanospaces of Porphyrinic Metal-Organic Frameworks for the Highly Efficient Photocatalytic Hydrogen Evolution Reaction. J Am Chem Soc 2022; 144:22747-22758. [PMID: 36427195 DOI: 10.1021/jacs.2c10801] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As a type of heterogeneous catalyst expected for the maximum atom efficiency, a series of single-atom catalysts (SACs) containing spatially isolated metal single atoms (M-SAs) have been successfully prepared by confining M-SAs in the pore-nanospaces of porphyrinic metal-organic frameworks (MOFs). The prepared MOF composites of M-SAs@Pd-PCN-222-NH2 (M = Pt, Ir, Au, and Ru) display exceptionally high and persistent efficiency in the photocatalytic hydrogen evolution reaction with a turnover number (TON) of up to 21713 in 32 h and a beginning/lasting turnover frequency (TOF) larger than 1200/600 h-1 based on M-SAs under visible light irradiation (λ ≥ 420 nm). The photo-/electrochemical property studies and density functional theory calculations disclose that the close proximity of the catalytically active Pt-SAs to the Pd-porphyrin photosensitizers with the confinement and stabilization effect by chemical binding could accelerate electron-hole separation and charge transfer in pore-nanospaces, thus promoting the catalytic H2 evolution reaction with lasting effectiveness.
Collapse
Affiliation(s)
- Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Li Zhang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Sihong Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haili Song
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
König M, Traxler M, Rudolph MA, Schmidt J, Küçükkeçeci H, Schomäcker R, Thomas A. Anchoring an Iridium Pincer Complex in a Hydrophobic Microporous Polymer for Application in Continuous‐Flow Alkane Dehydrogenation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michaela König
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | | | | | - Johannes Schmidt
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Hüseyin Küçükkeçeci
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Reinhard Schomäcker
- Technische Universität Berlin: Technische Universitat Berlin Chemistry GERMANY
| | - Arne Thomas
- Technische Universität Berlin: Technische Universitat Berlin Department of Chemistry / Functional Materials Hardenbergstr. 40 10623 Berlin GERMANY
| |
Collapse
|
7
|
Polukeev AV, Wallenberg R, Uhlig J, Hulteberg CP, Wendt OF. Iridium-Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On-Board Hydrogen Generation From Liquid Organic Hydrogen Carriers. CHEMSUSCHEM 2022; 15:e202200085. [PMID: 35263025 PMCID: PMC9310812 DOI: 10.1002/cssc.202200085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/06/2022] [Indexed: 06/12/2023]
Abstract
To enable the large-scale use of hydrogen fuel cells for mobility applications, convenient methods for on-board hydrogen storage and release are required. A promising approach is liquid organic hydrogen carriers (LOHCs), since these are safe, available on a large scale, and compatible with existing refueling infrastructure. Usually, LOHC dehydrogenation is carried out in batch-type reactors by transition metals and their complexes and suffers from slow H2 release kinetics and/or inability to reach high energy density by weight, owing to low conversion or the need to dilute the reaction mixture. In this study, a continuous flow reactor is used in combination with a heterogenized iridium pincer complex, which enables a tremendous increase in LOHC dehydrogenation rates. Thus, dehydrogenation of isopropanol is performed in a regime that, in terms of gravimetric energy density, hydrogen generation rate, and precious metal content, is potentially compatible with applications in a fuel-cell powered car.
Collapse
Affiliation(s)
- Alexey V. Polukeev
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP.O. Box 124SE-221 00LundSweden
| | - Reine Wallenberg
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP.O. Box 124SE-221 00LundSweden
- National Center for HREMDepartment of ChemistryLund UniversityP.O. Box 124SE-221 00LundSweden
| | - Jens Uhlig
- Division of Chemical PhysicsDepartment of ChemistryLund UniversityP.O. Box 124SE-221 00LundSweden
| | | | - Ola F. Wendt
- Centre for Analysis and SynthesisDepartment of ChemistryLund UniversityP.O. Box 124SE-221 00LundSweden
| |
Collapse
|
8
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
9
|
Kaleeswari K, Tamil Selvi A. Selective hydrogenation of substituted styrene to alkylbenzene catalyzed by Al2O3 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Liu JJ, Fu JJ, Liu T, Shen X, Cheng FX. The modulation effect of an electron-rich guest on the luminescence of naphthalene diimide-based metal–organic frameworks. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00768a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of host–guest MOF materials were successfully fabricated by virtue of donor–acceptor interactions, which exhibit color-tunable emissions in a wide wavelength range by rational selection of guest molecules.
Collapse
Affiliation(s)
- Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jia-Jia Fu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Fei-Xiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
11
|
Fouad H, Yang G, El-Sayed AA, Mao G, Khalafallah D, Saad M, Ga'al H, Ibrahim E, Mo J. Green synthesis of AgNP-ligand complexes and their toxicological effects on Nilaparvata lugens. J Nanobiotechnology 2021; 19:318. [PMID: 34645452 PMCID: PMC8513204 DOI: 10.1186/s12951-021-01068-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite developments in nanotechnology for use in the pharmaceutical field, there is still a need for implementation of this technology in agrochemistry. In this study, silver nanoparticles (AgNPs) were successfully prepared by a facile and an eco-friendly route using two different ligands, 2'-amino-1,1':4',1″-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4L) and 1,3,6,8-tetrakis (p-benzoic acid)-pyrene (TBAPy), as reducing agents. The physiochemical properties of the as-obtained AgNPs were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The toxicity of H4L-AgNP and TBAPy-AgNP against the brown planthopper (BPH, Nilaparvata lugens) was also measured. RESULTS SEM and TEM analyses demonstrated the formation of quasi-spherical AgNP structures in the presence of H4L and TBAPy. Insecticidal assays showed that TBAPy is less effective against N. lugens, with a median lethal concentration (LC50) of 810 mg/L, while the toxicity of H4L increased and their LC50 reached 786 mg/L 168 h posttreatment at a high concentration of 2000 mg/L. H4L-AgNPs were also highly toxic at a low concentration of 20 mg/L, with LC50 = ~ 3.9 mg/L 168 h posttreatment, while TBAPy-AgNPs exhibited less toxicity at the same concentration, with LC50 = ~ 4.6 mg/L. CONCLUSIONS These results suggest that the synthesized AgNPs using the two ligands may be a safe and cheaper method compared with chemical insecticides for protection of rice plants from pests and has potential as an effective insecticide in the N. lugens pest management program.
Collapse
Affiliation(s)
- Hatem Fouad
- Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, People's Republic of China.
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre 12622, Dokki, Cairo, Egypt.
| | - Guiying Yang
- Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ahmed A El-Sayed
- Photochemistry Department, National Research Center, Dokki, Giza, Egypt
| | - Guofeng Mao
- Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Diab Khalafallah
- State Key Laboratory of Silicon Material, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mahmoud Saad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre 12622, Dokki, Cairo, Egypt
| | - Hassan Ga'al
- Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianchu Mo
- Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, People's Republic of China.
| |
Collapse
|
12
|
Bien CE, Cai Z, Wade CR. Using Postsynthetic X-Type Ligand Exchange to Enhance CO 2 Adsorption in Metal-Organic Frameworks with Kuratowski-Type Building Units. Inorg Chem 2021; 60:11784-11794. [PMID: 34185507 DOI: 10.1021/acs.inorgchem.1c01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postsynthetic modification methods have emerged as indispensable tools for tuning the properties and reactivity of metal-organic frameworks (MOFs). In particular, postsynthetic X-type ligand exchange (PXLE) at metal building units has gained increasing attention as a means of immobilizing guest species, modulating the reactivity of framework metal ions, and introducing new functional groups. The reaction of a Zn-OH functionalized analogue of CFA-1 (1-OH, Zn(ZnOH)4(bibta)3, where bibta2- = 5,5'-bibenzotriazolate) with organic substrates containing mildly acidic E-H groups (E = C, O, N) results in the formation of Zn-E species and water as a byproduct. This Brønsted acid-base PXLE reaction is compatible with substrates with pKa(DMSO) values as high as 30 and offers a rapid and convenient means of introducing new functional groups at Kuratwoski-type metal nodes. Gas adsorption and diffuse reflectance infrared Fourier transform spectroscopy experiments reveal that the anilide-exchanged MOFs 1-NHPh0.9 and 1-NHPh2.5 exhibit enhanced low-pressure CO2 adsorption compared to 1-OH as a result of a Zn-NHPh + CO2 ⇌ Zn-O2CNHPh chemisorption mechanism. The MFU-4l analogue 2-NHPh ([Zn5(OH)2.1(NHPh)1.9(btdd)3], where btdd2- = bis(1,2,3-triazolo)dibenzodioxin), shows a similar improvement in CO2 adsorption in comparison to the parent MOF containing only Zn-OH groups.
Collapse
Affiliation(s)
- Caitlin E Bien
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhongzheng Cai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
14
|
Hood TM, Chaplin AB. Synthesis and reactivity of iridium complexes of a macrocyclic PNP pincer ligand. Dalton Trans 2021; 50:2472-2482. [PMID: 33511383 DOI: 10.1039/d0dt04303f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Having recently reported on the synthesis and rhodium complexes of the novel macrocyclic pincer ligand PNP-14, which is derived from lutidine and features terminal phosphine donors trans-substituted with a tetradecamethylene linker (Dalton Trans., 2020, 49, 2077-2086 and Dalton Trans., 2020, 49, 16649-16652), we herein describe our findings critically examining the chemistry of iridium homologues. The five-coordinate iridium(i) and iridium(iii) complexes [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] and [Ir(PNP-14)(2,2'-biphenyl)][BArF4] are readily prepared and shown to be effective precursors for the generation of iridium(iii) dihydride dihydrogen, iridium(i) bis(ethylene), and iridium(i) carbonyl derivatives that highlight important periodic trends by comparison to rhodium counterparts. Reaction of [Ir(PNP-14)H2(H2)][BArF4] with 3,3-dimethylbutene induced triple C-H bond activation of the methylene chain, yielding an iridium(iii) allyl hydride derivative [Ir(PNP-14*)H][BArF4], whilst catalytic homocoupling of 3,3-dimethylbutyne into Z-tBuC[triple bond, length as m-dash]CCHCHtBu could be promoted at RT by [Ir(PNP-14)(η2:η2-cyclooctadiene)][BArF4] (TOFinitial = 28 h-1). The mechanism of the latter is proposed to involve formation and direct reaction of a vinylidene derivative with HC[triple bond, length as m-dash]CtBu outside of the macrocyclic ring and this suggestion is supported experimentally by isolation and crystallographic characterisation of a catalyst deactivation product.
Collapse
Affiliation(s)
- Thomas M Hood
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Adrian B Chaplin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
15
|
Li J, Liu J, Liu S, Li J. Uranyl-MOF for Thioether Oxidation Processes Under Visible Light Conditions. Catal Letters 2021. [DOI: 10.1007/s10562-021-03544-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Abstract
Metal–organic frameworks (MOFs) are a valuable group of porous crystalline solids with inorganic and organic parts that can be used in dual catalysis.
Collapse
Affiliation(s)
- Kayhaneh Berijani
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| |
Collapse
|
17
|
Hicks KE, Rosen AS, Syed ZH, Snurr RQ, Farha OK, Notestein JM. Zr 6O 8 Node-Catalyzed Butene Hydrogenation and Isomerization in the Metal–Organic Framework NU-1000. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenton E. Hicks
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Andrew S. Rosen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
18
|
Nagatomi H, Gallington LC, Goswami S, Duan J, Chapman KW, Yanai N, Kimizuka N, Farha OK, Hupp JT. Regioselective Functionalization of the Mesoporous Metal-Organic Framework, NU-1000, with Photo-Active Tris-(2,2'-bipyridine)ruthenium(II). ACS OMEGA 2020; 5:30299-30305. [PMID: 33251464 PMCID: PMC7689908 DOI: 10.1021/acsomega.0c04823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
Solvent-assisted ligand incorporation is an excellent method for the post-synthetic functionalization of Zr-based metal-organic frameworks (MOFs), as carboxylate-derivative functionalities readily coordinate to the Zr6 nodes by displacing node-based aqua and terminal hydroxo ligands. In this study, a photocatalytically active ruthenium complex RuII(bpy)2(dcbpy), that is, bis-(2,2'-bipyridine)-(4,4'-dicarboxy-2,2'-bipyridine)ruthenium, was installed in the mono-protonated (carboxylic acid) form within NU-1000 via SALI. Crystallographic information regarding the siting of the ruthenium complex within the MOF pores is obtained by difference envelope density analysis. The ruthenium-functionalized MOF, termed Ru-NU-1000, shows excellent heterogeneous photocatalytic activity for an oxidative amine coupling reaction.
Collapse
Affiliation(s)
- Hisanori Nagatomi
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Leighanne C. Gallington
- X-ray
Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4858, United States
| | - Subhadip Goswami
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jiaxin Duan
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Karena W. Chapman
- Department
of Chemistry, Stony Brook University, 100 Nichols Rd, Stony Brook, New York 11794-3400, United States
| | - Nobuhiro Yanai
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- JST-PRESTO, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| | - Nobuo Kimizuka
- Department
of Chemistry and Biochemistry, Graduate School of Engineering, Center
for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Omar K. Farha
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Joseph T. Hupp
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
19
|
König M, Rigo M, Chaoui N, Tran Ngoc T, Epping JD, Schmidt J, Pachfule P, Ye M, Trunk M, Teichert JF, Drieß M, Thomas A. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Michaela König
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Massimo Rigo
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Nicolas Chaoui
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Trung Tran Ngoc
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Jan Dirk Epping
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Johannes Schmidt
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Pradip Pachfule
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Meng‐Yang Ye
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Matthias Trunk
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| | - Johannes F. Teichert
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Matthias Drieß
- Institut für Chemie Technische Universität Berlin Straße des 17. Juni 115 10623 Berlin Germany
| | - Arne Thomas
- Institut für Chemie Technische Universität Berlin Hardenbergstrasse 40 10623 Berlin Germany
| |
Collapse
|
20
|
König M, Rigo M, Chaoui N, Tran Ngoc T, Epping JD, Schmidt J, Pachfule P, Ye M, Trunk M, Teichert JF, Drieß M, Thomas A. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room-Temperature Gas Phase Catalysis. Angew Chem Int Ed Engl 2020; 59:19830-19834. [PMID: 32614513 PMCID: PMC7692909 DOI: 10.1002/anie.202004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022]
Abstract
An iridium dihydride pincer complex [IrH2 (POCOP)] is immobilized in a hydroxy-functionalized microporous polymer network using the concepts of surface organometallic chemistry. The introduction of this novel, truly innocent support with remote OH-groups enables the formation of isolated active metal sites embedded in a chemically robust and highly inert environment. The catalyst maintained high porosity and without prior activation exhibited efficacy in the gas phase hydrogenation of ethene and propene at room temperature and low pressure. The catalyst can be recycled for at least four times.
Collapse
Affiliation(s)
- Michaela König
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Massimo Rigo
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Nicolas Chaoui
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Trung Tran Ngoc
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Jan Dirk Epping
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Johannes Schmidt
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Pradip Pachfule
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Meng‐Yang Ye
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Matthias Trunk
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| | - Johannes F. Teichert
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Matthias Drieß
- Institut für ChemieTechnische Universität BerlinStraße des 17. Juni 11510623BerlinGermany
| | - Arne Thomas
- Institut für ChemieTechnische Universität BerlinHardenbergstrasse 4010623BerlinGermany
| |
Collapse
|
21
|
Sheludko B, Castro CF, Goldman AS, Celik FE. Poison or Promoter? Investigating the Dual-Role of Carbon Monoxide in Pincer-Iridium-Based Alkane Dehydrogenation Systems via Operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Syed ZH, Sha F, Zhang X, Kaphan DM, Delferro M, Farha OK. Metal–Organic Framework Nodes as a Supporting Platform for Tailoring the Activity of Metal Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03056] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zoha H. Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Affiliation(s)
- Abebu A. Kassie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Etaiw SEH, Abd El‐Aziz DM, Shalaby EM, Elzeny I. X‐ray structure of host‐guest nanosized organotin supramolecular coordination polymer based on cobalt cyanide and quinoxaline as an efficient catalyst for treatment of waste water. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Elsayed M. Shalaby
- X‐Ray Crystallography Lab, Physics Division, National Research Center Cairo Egypt
| | - Islam Elzeny
- Chemistry Department, Faculty of ScienceTanta University Tanta 31527 Egypt
| |
Collapse
|
26
|
Ha J, Lee JH, Moon HR. Alterations to secondary building units of metal–organic frameworks for the development of new functions. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01119f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Post-synthetic modification methods for the secondary building units in MOFs facilitate unique structures and properties that are impossible to access via direct syntheses, which can be classified as four categories.
Collapse
Affiliation(s)
- Junsu Ha
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Jae Hwa Lee
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| | - Hoi Ri Moon
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
| |
Collapse
|
27
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
28
|
Liu Y, Zhang L, Gao S, Shi B, Yu H, Huang K. Hollow porous organic nanospheres for anchoring Pd(PPh 3) 4 through a co-hyper-crosslinking mediated self-assembly strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj00385a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A facile synthesis of Pd(PPh3)4-functionalized hollow porous organic nanospheres with excellent catalytic activity is reported for the first time.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Li Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Shengguang Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Buyin Shi
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Haitao Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Kun Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
29
|
Bairagya MD, Bujol RJ, Elgrishi N. Fighting Deactivation: Classical and Emerging Strategies for Efficient Stabilization of Molecular Electrocatalysts. Chemistry 2019; 26:3991-4000. [PMID: 31710129 DOI: 10.1002/chem.201904499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/12/2022]
Abstract
Development of highly active molecular electrocatalysts for fuel-forming reactions has relied heavily on understanding mechanistic aspects of the electrochemical transformations. Careful fine-tuning of the ligand environment oriented mechanistic pathways towards higher activity and optimal product distribution for several catalysts. Unfortunately, many catalysts deactivate in bulk electrolysis conditions, diminishing the impact of the plethora of highly tuned molecular electrocatalytic systems. This Minireview covers classical and emerging methods developed to circumvent catalyst deactivation and degradation, with an emphasis on successes with molecular electrocatalysts.
Collapse
Affiliation(s)
- Monojit Das Bairagya
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Ryan J Bujol
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA, 70803, USA
| |
Collapse
|
30
|
Wei LQ, Ye BH. Cyclometalated Ir-Zr Metal-Organic Frameworks as Recyclable Visible-Light Photocatalysts for Sulfide Oxidation into Sulfoxide in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41448-41457. [PMID: 31604013 DOI: 10.1021/acsami.9b15646] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aerobic photo-oxidation of sulfide into sulfoxide in water is of great interest in green chemistry. In this study, three highly stable Ir(III)-Zr(IV) metal-organic frameworks (Ir-Zr MOFs), namely Zr6-Irbpy (bpy is 2,2'-bipyridine), Zr6-IrbpyOMe (bpyOMe is 4,4'-dimethoxy-2,2'-bipyridine), and Zr6-Irphen (phen is 1,10-phenanthroline), are constructed by using [Ir(pqc)2(L)2]Cl complexes (where pqc is 2-phenylquinoline-4-carboxylic acid and L is an ancillary ligand bpy, bpyOMe, or phen) as linkers and Zr6 cluster as nodes. The constructed Ir-Zr MOFs present high catalytic activity on aerobic photo-oxidation of sulfide into sulfoxide under visible light irradiation in water at room temperature. Moreover, the reaction is high chemoselectivity and functional group tolerance. The catalyst can be readily recycled and reused at least 10 times without loss of catalytic activity. Mechanism studies demonstrate that superoxide radical is the reactive oxygen species in the sulfoxidation, which is generated by electron transfer from the excited triplet photosensitizer 3[Ir-Zr-MOF]* to O2. The high activity of photocatalytic sulfoxidation in water may be attributed to the stabilization of the persulfoxide intermediate by hydrogen bond formation with water solvent, which accelerates the conversion of persulfoxide into sulfoxide and prevents further oxidation of sulfoxide into sulfone. This work provides a new strategy for the green synthesis of sulfoxides under ambient conditions.
Collapse
Affiliation(s)
- Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
- College of Chemistry and Bioengineering , Hechi University , Yizhou , 546300 , China
| | - Bao-Hui Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
31
|
Cu3(BTC)2 metal organic framework as heterogeneous solid catalyst for the reduction of styrenes with silane as reducing agent. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Kassie AA, Duan P, Gray MB, Schmidt-Rohr K, Woodward PM, Wade CR. Synthesis and Reactivity of Zr MOFs Assembled from PNNNP-Ru Pincer Complexes. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Abebu A. Kassie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew B. Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Patrick M. Woodward
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Casey R. Wade
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Joksch M, Spannenberg A, Beweries T. Inter-molecular hydrogen bonding in isostructural pincer complexes [OH-( t-BuPOCOP t-Bu) MCl] ( M = Pd and Pt). Acta Crystallogr E Crystallogr Commun 2019; 75:1011-1014. [PMID: 31392015 PMCID: PMC6659334 DOI: 10.1107/s2056989019008491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 11/10/2022]
Abstract
In the crystal structure of the isostructural title compounds, namely {2,6-bis-[(di-tert-butyl-phosphan-yl)-oxy]-4-hy-droxy-phen-yl}chlorido-palladium(II), [Pd(C22H39O3P2)Cl], 1, and {2,6-bis-[(di-tert-butyl-phosphan-yl)-oxy]-4-hy-droxy-phen-yl}chlorido-platinum(II), [Pt(C22H39O3P2)Cl], 2, the metal centres are coordinated in a distorted square-planar fashion by the POCOP pincer fragment and the chloride ligand. Both complexes form strong hydrogen-bonded chain structures through an inter-action of the OH group in the 4-position of the aromatic POCOP backbone with the halide ligand.
Collapse
Affiliation(s)
- Markus Joksch
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Torsten Beweries
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
34
|
Baa E, Watkins GM, Krause RW, Tantoh DN. Current Trend in Synthesis, Post‐Synthetic Modifications and Biological Applications of Nanometal‐Organic Frameworks (NMOFs). CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ebenezer Baa
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Gary M. Watkins
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Rui W. Krause
- Department of ChemistryRhodes University PO Box 94 Grahamstown, 6140 South Africa
| | - Derek N. Tantoh
- Department of Applied ChemistryUniversity of Johannesburg PO Box 524 Auckland Park, 2006 South Africa
| |
Collapse
|
35
|
Das K, Kumar A. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2019. [DOI: 10.1016/bs.adomc.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
36
|
Zhang Y, Li J, Yang X, Zhang P, Pang J, Li B, Zhou HC. A mesoporous NNN-pincer-based metal–organic framework scaffold for the preparation of noble-metal-free catalysts. Chem Commun (Camb) 2019; 55:2023-2026. [DOI: 10.1039/c8cc09491h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A terpyridine-based mesoporous 3D MOF was synthesized as a general scaffold for catalyst preparation.
Collapse
Affiliation(s)
- Yingmu Zhang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Jialuo Li
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Xinyu Yang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Peng Zhang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Jiandong Pang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan
- P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
37
|
Wang X, Ling EAP, Guan C, Zhang Q, Wu W, Liu P, Zheng N, Zhang D, Lopatin S, Lai Z, Huang KW. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. CHEMSUSCHEM 2018; 11:3591-3598. [PMID: 30207639 DOI: 10.1002/cssc.201801980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Owing to its capacity for reversible hydrogen storage, formic acid (FA) holds great promise as an alternative energy carrier to conventional fossil fuel systems. Whereas the decomposition of FA to hydrogen (H2 ) and carbon dioxide (CO2 ) through homogeneous catalysis is well established, the selective and efficient dehydrogenation of FA by a robust heterogeneous catalyst remains a challenge. A new heterogeneous ruthenium pincer framework with single-atomic sites was prepared in one step by the direct knitting of a phosphorus-nitrogen PN3 P-pincer ruthenium complex in a porous organic polymer. The heterogeneous ruthenium complex efficiently dehydrogenates formic acid in both organic and aqueous media with remarkably enhanced stability. Notably, no detectable CO was generated and a turnover number (TON) of 145 300 was attained in a continuous experiment with no significant decline in catalytic activity (in sharp contrast, a total TON of only 5600 was obtained with the homogeneous analog under the same conditions). The single-atomic sites in the porous framework combined the desirable attributes of high reactivity and selectivity of a homogeneous catalyst with the significantly enhanced catalyst stability and reusability benefits of heterogeneous catalysis.
Collapse
Affiliation(s)
- Xinbo Wang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Eleanor Ang Pei Ling
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Chao Guan
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Qinggang Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P.R. China
| | - Pengxin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Nanfeng Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P.R. China
| | - Daliang Zhang
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Kuo-Wei Huang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Xu W, Thapa KB, Ju Q, Fang Z, Huang W. Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.10.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Sheludko B, Cunningham MT, Goldman AS, Celik FE. Continuous-Flow Alkane Dehydrogenation by Supported Pincer-Ligated Iridium Catalysts at Elevated Temperatures. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01497] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Yuan N, Pascanu V, Huang Z, Valiente A, Heidenreich N, Leubner S, Inge AK, Gaar J, Stock N, Persson I, Martín-Matute B, Zou X. Probing the Evolution of Palladium Species in Pd@MOF Catalysts during the Heck Coupling Reaction: An Operando X-ray Absorption Spectroscopy Study. J Am Chem Soc 2018; 140:8206-8217. [PMID: 29890070 DOI: 10.1021/jacs.8b03505] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (1H NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl- ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.
Collapse
Affiliation(s)
- Ning Yuan
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Molecular Sciences , Swedish University of Agricultural Sciences , P.O. Box 7015, SE-750 07 Uppsala , Sweden
| | - Vlad Pascanu
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Zhehao Huang
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Alejandro Valiente
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Niclas Heidenreich
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , DE-24118 Kiel , Germany
| | - Sebastian Leubner
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , DE-24118 Kiel , Germany
| | - A Ken Inge
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Jakob Gaar
- Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel , DE-24118 Kiel , Germany
| | - Ingmar Persson
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , P.O. Box 7015, SE-750 07 Uppsala , Sweden
| | - Belén Martín-Matute
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Organic Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Xiaodong Zou
- Berzelii Center EXSELENT on Porous Materials , Stockholm University , SE-106 91 Stockholm , Sweden.,Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| |
Collapse
|
41
|
Palmer RH, Liu J, Kung CW, Hod I, Farha OK, Hupp JT. Electroactive Ferrocene at or near the Surface of Metal-Organic Framework UiO-66. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4707-4714. [PMID: 29652507 DOI: 10.1021/acs.langmuir.7b03846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we describe the installation of a ferrocene derivative on and within the archetypal metal-organic framework (MOF), UiO-66, by solvent-assisted ligand incorporation. Thin films of the resulting material show a redox peak characteristic of the Fc/Fc+ couple, as measured by cyclic voltammetry. Consistent with restriction of redox reactivity solely to Fc molecules sited at or near the external surfaces of MOF crystallites, chronoamperometry measurements indicate that less than 20% of the installed Fc molecules are electrochemically active. Charge-transport diffusion coefficients, DCT, of 6.1 ± 0.8 × 10-11 and 2.6 ± 0.2 × 10-9 cm2/s were determined from potential step measurements, stepping oxidatively and reductively, respectively. The 40-fold difference in DCT values contrasts with the expectation, for simple systems, of identical values for oxidation-driven versus reduction-driven charge transport. The findings have implications for the design of MOFs suitable for delivery of redox equivalents to framework-immobilized electrocatalysts and/or delivery of charges from a chromophoric MOF film to an underlying electrode, processes that may be central to MOF-facilitated conversion of solar energy to chemical or electrical energy.
Collapse
Affiliation(s)
| | | | | | - Idan Hod
- Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva 8410501 , Israel
| | - Omar K Farha
- Department of Chemistry, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | | |
Collapse
|
42
|
Grigoropoulos A, McKay AI, Katsoulidis AP, Davies RP, Haynes A, Brammer L, Xiao J, Weller AS, Rosseinsky MJ. Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angew Chem Int Ed Engl 2018; 57:4532-4537. [PMID: 29377466 PMCID: PMC5947555 DOI: 10.1002/anie.201710091] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Crabtree's catalyst was encapsulated inside the pores of the sulfonated MIL-101(Cr) metal-organic framework (MOF) by cation exchange. This hybrid catalyst is active for the heterogeneous hydrogenation of non-functionalized alkenes either in solution or in the gas phase. Moreover, encapsulation inside a well-defined hydrophilic microenvironment enhances catalyst stability and selectivity to hydrogenation over isomerization for substrates bearing ligating functionalities. Accordingly, the encapsulated catalyst significantly outperforms its homogeneous counterpart in the hydrogenation of olefinic alcohols in terms of overall conversion and selectivity, with the chemical microenvironment of the MOF host favouring one out of two competing reaction pathways.
Collapse
Affiliation(s)
| | - Alasdair I. McKay
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoriesOxfordOX1 3TAUK
| | | | - Robert P. Davies
- Department of ChemistryImperial College LondonSouth KensingtonLondonSW7 2AZUK
| | - Anthony Haynes
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Lee Brammer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Jianliang Xiao
- Department of ChemistryUniversity of LiverpoolLiverpoolL69 7ZDUK
| | - Andrew S. Weller
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoriesOxfordOX1 3TAUK
| | | |
Collapse
|
43
|
Grigoropoulos A, McKay AI, Katsoulidis AP, Davies RP, Haynes A, Brammer L, Xiao J, Weller AS, Rosseinsky MJ. Encapsulation of Crabtree's Catalyst in Sulfonated MIL‐101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Alasdair I. McKay
- Department of Chemistry University of Oxford Chemistry Research Laboratories Oxford OX1 3TA UK
| | | | - Robert P. Davies
- Department of Chemistry Imperial College London South Kensington London SW7 2AZ UK
| | - Anthony Haynes
- Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Lee Brammer
- Department of Chemistry University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Jianliang Xiao
- Department of Chemistry University of Liverpool Liverpool L69 7ZD UK
| | - Andrew S. Weller
- Department of Chemistry University of Oxford Chemistry Research Laboratories Oxford OX1 3TA UK
| | | |
Collapse
|
44
|
Reiner BR, Mucha NT, Rothstein A, Temme JS, Duan P, Schmidt-Rohr K, Foxman BM, Wade CR. Zirconium Metal–Organic Frameworks Assembled from Pd and Pt PNNNP Pincer Complexes: Synthesis, Postsynthetic Modification, and Lewis Acid Catalysis. Inorg Chem 2018; 57:2663-2672. [DOI: 10.1021/acs.inorgchem.7b03063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Casey R. Wade
- Department of Chemistry, Brandeis University, 415 South Street MS 015, Waltham, Massachusetts 02453, United States
| |
Collapse
|
45
|
Tan YX, Yang X, Li BB, Yuan D. Rational design of a flu-type heterometallic cluster-based Zr-MOF. Chem Commun (Camb) 2018; 52:13671-13674. [PMID: 27812573 DOI: 10.1039/c6cc08191f] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following the HSAB principle, the cooperative assembly of tetrahedral [Cu4I4(Ina)4]4- metalloligands and 8-connecting [Zr6(μ3-OH)8(OH)8]8+ building units leads to the first heterometallic cluster-based Zr-MOF (1). The results provide a successful strategy for rational design of heterometallic cluster-based Zr-MOFs.
Collapse
Affiliation(s)
- Yan-Xi Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
| | - Xue Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China. and University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China. and University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
46
|
Bernales V, Ortuño MA, Truhlar DG, Cramer CJ, Gagliardi L. Computational Design of Functionalized Metal-Organic Framework Nodes for Catalysis. ACS CENTRAL SCIENCE 2018; 4:5-19. [PMID: 29392172 PMCID: PMC5785762 DOI: 10.1021/acscentsci.7b00500] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 05/29/2023]
Abstract
Recent progress in the synthesis and characterization of metal-organic frameworks (MOFs) has opened the door to an increasing number of possible catalytic applications. The great versatility of MOFs creates a large chemical space, whose thorough experimental examination becomes practically impossible. Therefore, computational modeling is a key tool to support, rationalize, and guide experimental efforts. In this outlook we survey the main methodologies employed to model MOFs for catalysis, and we review selected recent studies on the functionalization of their nodes. We pay special attention to catalytic applications involving natural gas conversion.
Collapse
|
47
|
Mohammadi E, Movassagh B. A polystyrene supported [PdCl–(SeCSe)] complex: a novel, reusable and robust heterogeneous catalyst for the Sonogashira synthesis of 1,2-disubstituted alkynes and 1,3-enynes. NEW J CHEM 2018. [DOI: 10.1039/c8nj01042k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PS-[PdCl–(SeCSe)] has been introduced as a novel and heterogeneous catalyst, which exhibits outstanding catalytic activity in the Sonogashira cross-coupling reactions.
Collapse
Affiliation(s)
- Elmira Mohammadi
- Department of Chemistry
- K. N. Toosi University of Technology
- Tehran
- Iran
| | | |
Collapse
|
48
|
Qin JS, Yuan S, Lollar C, Pang J, Alsalme A, Zhou HC. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun (Camb) 2018; 54:4231-4249. [DOI: 10.1039/c7cc09173g] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent years have witnessed the exploration and synthesis of an increasing number of metal–organic frameworks (MOFs). The utilization of stable MOFs as a platform for catalysis and biomimetics is discussed.
Collapse
Affiliation(s)
- Jun-Sheng Qin
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Shuai Yuan
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | | | - Jiandong Pang
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Ali Alsalme
- Chemistry Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Hong-Cai Zhou
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Chemistry Department
| |
Collapse
|
49
|
Webber TE, Liu WG, Desai SP, Lu CC, Truhlar DG, Penn RL. Role of a Modulator in the Synthesis of Phase-Pure NU-1000. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39342-39346. [PMID: 29090902 DOI: 10.1021/acsami.7b11348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
NU-1000 is a robust, mesoporous metal-organic framework (MOF) with hexazirconium nodes ([Zr6O16H16]8+, referred to as oxo-Zr6 nodes) that can be synthesized by combining a solution of ZrOCl2·8H2O and a benzoic acid modulator in N,N-dimethylformamide with a solution of linker (1,3,6,8-tetrakis(p-benzoic acid)pyrene, referred to as H4TBAPy) and by aging at an elevated temperature. Typically, the resulting crystals are primarily composed of NU-1000 domains that crystallize with a more dense phase that shares structural similarity with NU-901, which is an MOF composed of the same linker molecules and nodes. Density differences between the two polymorphs arise from the differences in the node orientation: in NU-1000, the oxo-Zr6 nodes rotate 120° from node to node, whereas in NU-901, all nodes are aligned in parallel. Considering this structural difference leads to the hypothesis that changing the modulator from benzoic acid to a larger and more rigid biphenyl-4-carboxylic acid might lead to a stronger steric interaction between the modulator coordinating on the oxo-Zr6 node and misaligned nodes or linkers in the large pore and inhibit the growth of the more dense NU-901-like material, resulting in phase-pure NU-1000. Side-by-side reactions comparing the products of synthesis using benzoic acid or biphenyl-4-carboxylic acid as a modulator produce structurally heterogeneous crystals and phase-pure NU-1000 crystals. It can be concluded that the larger and more rigid biphenyl-4-carboxylate inhibits the incorporation of nodes with an alignment parallel to the neighboring nodes already residing in the crystal.
Collapse
Affiliation(s)
- Thomas E Webber
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Wei-Guang Liu
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sai Puneet Desai
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Connie C Lu
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
- Chemical Theory Center and Minnesota Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
50
|
Joharian M, Abedi S, Morsali A. Sonochemical synthesis and structural characterization of a new nanostructured Co(II) supramolecular coordination polymer with Lewis base sites as a new catalyst for Knoevenagel condensation. ULTRASONICS SONOCHEMISTRY 2017; 39:897-907. [PMID: 28733021 DOI: 10.1016/j.ultsonch.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
A new Co(II) mixed-ligand coordination supramolecular polymer with composition [Co2(ppda)(4-bpdh)2(NO3)2]n (1) (where, ppda=p-phenylenediacrylic acid, 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene) was synthesized using solvothermal, mechanochemical and sonochemical methods. Compound 1 and the new nanostructure have been characterized by single-crystal X-ray, infrared spectroscopy (IR), powder X-ray diffraction (PXRD) analysis and scanning electron microscopy (SEM). The thermal stability of compound 1 was also studied by thermal gravimetric analysis (TGA). The surface area of these compounds was determined by BET. The single-crystal X-ray data shows a new interesting two-dimensional coordination polymer (CP). In addition, the effect of various sonication concentrations of initial reagents, power of ultrasound irradiation and also the time on the size and morphology of nano-structured coordination polymer 1 were evaluated. Moreover, it has been demonstrated that the nanostructure of the CP1 can be used as a catalyst in Knoevenagel condensation reaction.
Collapse
Affiliation(s)
- Monika Joharian
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran
| | - Sedigheh Abedi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran.
| |
Collapse
|