1
|
Pulvirenti L, Lombardo C, Salmeri M, Bongiorno C, Mannino G, Lo Presti F, Cambria MT, Condorelli GG. Self-assembled BiFeO 3@MIL-101 nanocomposite for antimicrobial applications under natural sunlight. DISCOVER NANO 2023; 18:113. [PMID: 37697156 PMCID: PMC10495303 DOI: 10.1186/s11671-023-03883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023]
Abstract
In this paper, we report on the synthesis of a new hybrid photocatalytic material activated by natural sunlight irradiation. The material consists of multiferroic nanoparticles of bismuth ferrite (BFO) modified through the growth of the Fe-based MIL-101 framework. Material characterization, conducted using various techniques (X-ray diffraction, transmission electron microscopy, FTIR, and X-ray photoelectron spectroscopies), confirmed the growth of the MIL-101 metal-organic framework on the BFO surface. The obtained system possesses the intrinsic photo-degradative properties of BFO nanoparticles significantly enhanced by the presence of MIL-101. The photocatalytic activity of this material was tested in antibacterial experiments conducted under natural sunlight exposure within the nanocomposite concentration range of 100-0.20 µg/ml. The MIL-modified BFO showed a significant decrease in both Minimum Inhibiting Concentration and Minimum Bactericide Concentration values compared to bare nanoparticles. This confirms the photo-activating effect of the MIL-101 modification. In particular, they show an increased antimicrobial activity against the tested Gram-positive species and the ability to begin to inhibit the growth of the four Escherichia coli strains, although at the maximum concentration tested. These results suggest that the new nanocomposite BiFeO3@MOF has been successfully developed and has proven to be an effective antibacterial agent against a wide range of microorganisms and a potential candidate in disinfection processes.
Collapse
Affiliation(s)
- Luca Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cinzia Lombardo
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | - Mario Salmeri
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy
| | | | | | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Maria Teresa Cambria
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Via S. Sofia 97, 95125, Catania, Italy.
| | - Guglielmo Guido Condorelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio INSTM UdR di Catania, Catania, Italy.
| |
Collapse
|
2
|
Wang J, Dai D, Xie H, Li D, Xiong G, Zhang C. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials. Int J Nanomedicine 2022; 17:6791-6819. [PMID: 36600880 PMCID: PMC9807071 DOI: 10.2147/ijn.s393207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Polyurethane (PU) has wide application and popularity as medical apparatus due to its unique structural properties relationship. However, there are still some problems with medical PUs, such as a lack of functionality, insufficient long-term implantation safety, undesired stability, etc. With the rapid development of nanotechnology, the nanomodification of medical PU provides new solutions to these clinical problems. The introduction of nanomaterials could optimize the biocompatibility, antibacterial effect, mechanical strength, and degradation of PUs via blending or surface modification, therefore expanding the application range of medical PUs. This review summarizes the current applications of nano-modified medical PUs in diverse fields. Furthermore, the underlying mechanisms in efficiency optimization are analyzed in terms of the enhanced biological and mechanical properties critical for medical use. We also conclude the preparation schemes and related parameters of nano-modified medical PUs, with discussions about the limitations and prospects. This review indicates the current status of nano-modified medical PUs and contributes to inspiring novel and appropriate designing of PUs for desired clinical requirements.
Collapse
Affiliation(s)
- Jianrong Wang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Hanshu Xie
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, People’s Republic of China
| |
Collapse
|
3
|
Versace DL, Breloy L, Palierse E, Coradin T. Contributions of photochemistry to bio-based antibacterial polymer materials. J Mater Chem B 2021; 9:9624-9641. [PMID: 34807217 DOI: 10.1039/d1tb01801a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical site infections constitute a major health concern that may be addressed by conferring antibacterial properties to surgical tools and medical devices via functional coatings. Bio-sourced polymers are particularly well-suited to prepare such coatings as they are usually safe and can exhibit intrinsic antibacterial properties or serve as hosts for bactericidal agents. The goal of this Review is to highlight the unique contribution of photochemistry as a green and mild methodology for the development of such bio-based antibacterial materials. Photo-generation and photo-activation of bactericidal materials are illustrated. Recent efforts and current challenges to optimize the sustainability of the process, improve the safety of the materials and extend these strategies to 3D biomaterials are also emphasized.
Collapse
Affiliation(s)
- Davy-Louis Versace
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Louise Breloy
- Institut de Chimie et des Matériaux Paris-Est (ICMPE, UMR-CNRS 7182), 2-8 rue Henri Dunant, 94320 Thiais, France.
| | - Estelle Palierse
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France. .,Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), UMR 7197, 4 place Jussieu, 75005 Paris, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, 4 place Jussieu, 75005 Paris, France.
| |
Collapse
|
4
|
Khin MM, Bao Y, Liang YN, Setyawati MI, Gnayem H, Ng KW, Sasson Y, Hu X. BiOClBr-coated fabrics with enhanced antimicrobial properties under ambient light. J Mater Chem B 2021; 9:3079-3087. [PMID: 33885669 DOI: 10.1039/d0tb02835e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study demonstrates the fabrication of ambient light enabled antimicrobial functional fabrics by coating flower-like bismuth oxyhalide i.e. BiOCl0.875Br0.125, with the use of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) as binders for improved coating robustness and durability. The uniformity of the microparticles was ensured with simultaneous probe sonication during the stages of crystal nucleation and growth. The polymeric binders not only strongly anchor the particle on the fabric, but also serve as an ultra-thin protective layer on the BiOClBr that mitigates bismuth leaching. The efficacy of inhibiting bacteria was investigated over the BiOClBr-coated fabrics i.e. cotton and polyester, and the results showed that the coated fabrics could effectively inhibit both Gram-positive and Gram-negative bacteria, i.e. S. aureus and E. coli. In comparison with fabrics coated with other photocatalytic materials including bismuth oxide (Bi2O3) and zinc oxide (ZnO), an exceptionally better antimicrobial efficacy was observed for BiOClBr-coated fabrics. The BiOClBr-coated cotton showed ∼5.0 and ∼6.8 times higher disinfection efficacy towards E. coli compared to that of ZnO and Bi2O3-coated cotton with the same particle weight percentage, respectively. Further elucidation of the probable mechanism by BiOClBr-coated fabrics is related to the excess amount of reactive oxygen species (ROS). Overall, BiOClBr has been shown to be a promising material to fabricate cost-effective antimicrobial functional surfaces for both environmental and biomedical applications e.g. protective laboratory and factory clothing.
Collapse
Affiliation(s)
- Mya Mya Khin
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141 Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Patir A, Hwang GB, Lourenco C, Nair SP, Carmalt CJ, Parkin IP. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5478-5485. [PMID: 33492929 DOI: 10.1021/acsami.0c17915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biofilms which are self-organized communities can contaminate various infrastructural systems. Preventing bacterial adhesion on surfaces is more desirable than cleaning or disinfection of bacteria-contaminated surfaces. In this study, a 24 h bacterial adhesion test showed that "slippery surfaces" had increased resistance to bacterial contamination compared to polydimethylsiloxane and superhydrophobic surfaces. However, it did not completely inhibit bacterial attachment, indicating that it only retards surface contamination by bacteria. Hence, a strategy of killing bacteria with minimal bacterial adhesion was developed. A crystal violet-impregnated slippery (CVIS) surface with bactericidal and slippery features was produced through a simple dipping process. The CVIS surface had a very smooth and lubricated surface that was highly repellent to water and blood contamination. Bactericidal tests against Escherichia coli and Staphylococcus aureus showed that the CVIS surface exhibited bactericidal activity in dark and also showed significantly enhanced bactericidal activity (>3 log reduction in bacteria number) in white light.
Collapse
Affiliation(s)
- Adnan Patir
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Claudio Lourenco
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Sean P Nair
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, Rowland Hill Street, London NW3 2PF, U.K
| | - Claire J Carmalt
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K
| |
Collapse
|
6
|
Wylie MP, Irwin NJ, Howard D, Heydon K, McCoy CP. Hot-melt extrusion of photodynamic antimicrobial polymers for prevention of microbial contamination. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 214:112098. [PMID: 33276276 DOI: 10.1016/j.jphotobiol.2020.112098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/31/2023]
Abstract
Infectious disease outbreaks within healthcare facilities can exacerbate patient illness and, in some cases, can be fatal. Contaminated surfaces and medical devices can act as a reservoir for transmission of pathogens and have been linked to the rising incidence of healthcare-acquired infections. Antimicrobial surfaces can reduce microbial contamination and transmission and have emerged as a crucial component in healthcare infection control in recent years. The aim of this study was to manufacture antimicrobial polymer surfaces containing the photosensitiser, toluidine blue O (TBO), using hot-melt extrusion (HME). Several concentrations of TBO were combined with a range of medically relevant polymers via HME. TBO-polymer extrudates displayed no significant differences in thermal properties and surface wettability relative to non-loaded polymers. Minimal leaching of TBO from the surface was confirmed through in vitro release studies. Antibacterial activity was observed to vary according to the polymer and concentration of incorporated TBO, with PEBAX® polymers modified with 0.1% w/w TBO demonstrating promising reductions of >99.9% in viable bacterial adherence of a range of common nosocomial pathogens, including Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Escherichia coli. This study demonstrates the use of HME as a facile alternative method to common encapsulation strategies for the production of light-activated antimicrobial polymer surfaces. This method can be easily translated to large-scale manufacture and, in addition, the polymers constitute promising antimicrobial base materials for the rapidly growing additive manufacturing industries.
Collapse
Affiliation(s)
- Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicola J Irwin
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - David Howard
- IPC - Innovative Polymer Compounds, Midlands Gateway Business Park, Streamstown Road, Kilbeggan, Co. Westmeath, Ireland
| | - Katie Heydon
- IPC - Innovative Polymer Compounds, Midlands Gateway Business Park, Streamstown Road, Kilbeggan, Co. Westmeath, Ireland
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Hwang GB, Wu G, Shin J, Panariello L, Sebastian V, Karu K, Allan E, Gavriilidis A, Parkin IP. Continuous Single-Phase Synthesis of [Au 25(Cys) 18] Nanoclusters and their Photobactericidal Enhancement. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49021-49029. [PMID: 33073567 DOI: 10.1021/acsami.0c07691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thiolate-gold nanoclusters have various applications. However, most of the synthesis methods require prolonged synthesis times from several hours to days. In the present study, we report a rapid synthesis method for [Au25(Cys)18] nanoclusters and their application for photobactericidal enhancement. For [Au25(Cys)18] synthesis, we employed a tube-in-tube membrane reactor using CO as a reducing agent at elevated temperatures. This approach allows continuous generation of high-quality [Au25(Cys)18] within 3 min. Photobactericidal tests against Staphylococcus aureus showed that crystal violet-treated polymer did not have photobactericidal activity, but addition of [Au25(Cys)18] in the treated polymer demonstrated a potent photobactericidal activity at a low white light flux, resulting in >4.29 log reduction in viable bacteria numbers. Steady-state and time-resolved photoluminescence spectroscopies demonstrated that after light irradiation, photoexcited electrons in crystal violet flowed to [Au25(Cys)18] in the silicone, suggesting that redox reaction from [Au25(Cys)18] enhanced the photobactericidal activity. Stability tests revealed that leaching of crystal violet and [Au25(Cys)18] from the treated silicone was negligible and cyclic testing showed that the silicone maintained a strong photobactericidal activity after repeated use.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Gaowei Wu
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Juhun Shin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Luca Panariello
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Victor Sebastian
- Nanoscience Institute of Aragon, Aragón Materials Science Institute, ICMA, CSIC and Chemical and Environmental Engineering Department, University of Zaragoza, 50018 Zaragoza, Spain
| | - Kersti Karu
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Campus, University College London, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
8
|
Owusu EGA, Yaghini E, Naasani I, Parkin IP, Allan E, MacRobert AJ. Synergistic interactions of cadmium-free quantum dots embedded in a photosensitised polymer surface: efficient killing of multidrug-resistant strains at low ambient light levels. NANOSCALE 2020; 12:10609-10622. [PMID: 32373810 PMCID: PMC7497474 DOI: 10.1039/c9nr10421f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium-free quantum dots (QD) were combined with crystal violet photosensitising dye and incorporated into medical grade polyurethane via a non-covalent dipping process known as 'swell-encapsulation-shrink'. The antibacterial efficacy of the prepared quantum dot-crystal violet polyurethane substrates (QD + CV PU) was investigated under low power visible light illumination at similar intensities (500 lux) to those present in clinical settings. The antibacterial performance of QD + CV PU was superior to the constituent polymer substrates, eliminating ∼99.9% of an environmental P. aeruginosa strain, a clinical P. aeruginosa strain from a cystic fibrosis patient and a clinical E. coli strain. The nature of the reactive oxygen species (ROS) involved in antibacterial activity of the QD + CV PU surface was investigated using ROS inhibitors and time-resolved optical spectroscopy. The photo-physical interactions of the green-emitting QDs with CV lead to a combination of Type I and II electron transfer and energy transfer processes, with the highly potent ROS singlet oxygen playing a dominant role. This study is the first to demonstrate highly efficient synergistic killing of clinical and environmental strains of intrinsically resistant and multi-drug resistant Gram-negative bacteria using light-activated surfaces containing biocompatible cadmium-free QDs and crystal violet dye at ambient light levels.
Collapse
Affiliation(s)
- Ethel G. A. Owusu
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Elnaz Yaghini
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| | - Imad Naasani
- Nanoco Technologies Ltd
,
46 Grafton Street
, Manchester M13 9NT
, UK
| | - Ivan P. Parkin
- Materials Chemistry Research Centre
, Department of Chemistry
, University College London
,
20 Gordon Street
, London WC1H 0AJ
, UK
| | - Elaine Allan
- Department of Microbial Diseases
, UCL Eastman Dental Institute
, University College London
,
256 Gray's Inn Road
, London WC1X 8LD
, UK
| | - Alexander J. MacRobert
- UCL Division of Surgery and Interventional Science
, University College London
,
Charles Bell House
, 43-45 Foley Street
, London W1 W 7TS
, UK
.
| |
Collapse
|
9
|
Hwang GB, Huang H, Wu G, Shin J, Kafizas A, Karu K, Toit HD, Alotaibi AM, Mohammad-Hadi L, Allan E, MacRobert AJ, Gavriilidis A, Parkin IP. Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light. Nat Commun 2020; 11:1207. [PMID: 32139700 PMCID: PMC7057968 DOI: 10.1038/s41467-020-15004-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 02/11/2020] [Indexed: 12/29/2022] Open
Abstract
The emergence of antibiotic resistant bacteria is a major threat to the practice of modern medicine. Photobactericidal agents have obtained significant attention as promising candidates to kill bacteria, and they have been extensively studied. However, to obtain photobactericidal activity, an intense white light source or UV-activation is usually required. Here we report a photobactericidal polymer containing crystal violet (CV) and thiolated gold nanocluster ([Au25(Cys)18]) activated at a low flux levels of white light. It was shown that the polymer encapsulated with CV do not have photobactericidal activity under white light illumination of an average 312 lux. However, encapsulation of [Au25(Cys)18] and CV into the polymer activates potent photobactericidal activity. The study of the photobactericidal mechanism shows that additional encapsulation of [Au25(Cys)18] into the CV treated polymer promotes redox reactions through generation of alternative electron transfer pathways, while it reduces photochemical reaction type-ІІ pathways resulting in promotion of hydrogen peroxide (H2O2) production.
Collapse
Affiliation(s)
- Gi Byoung Hwang
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - He Huang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Gaowei Wu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Juhun Shin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Andreas Kafizas
- Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, 80 Wood Lane, London, W12 OBZ, UK
- Grantham Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kersti Karu
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hendrik Du Toit
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Abdullah M Alotaibi
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Layla Mohammad-Hadi
- UCL Division of Surgery and Interventional Science, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Elaine Allan
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Grays Inn Road, London, WC1X 8LD, UK
| | - Alexander J MacRobert
- UCL Division of Surgery and Interventional Science, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
10
|
Optimization of hydrogel containing toluidine blue O for photodynamic therapy in treating acne. Lasers Med Sci 2019; 34:1535-1545. [PMID: 30825010 DOI: 10.1007/s10103-019-02727-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/17/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics and photodynamic therapy (PDT) are widely employed in curing acne. However, antibiotics as an effective treatment would lead to bacterial resistance and severe side effects. In this study, we aimed to develop a novel TBO hydrogel, which could prolong the retention time of photosensitizer (TBO) at the lesion site and improve therapeutic effect. In vitro antibacterial experiments (against Staphylococcus aureus and Escherichia coli), the response surface methodology was used to optimize the formulation of TBO hydrogel. The results indicated that the optimal formulation was 0.5% (v/v) carbomer, 0.01 mg/mL TBO, 0.5% (v/v) ethanol concentration, 0.5% (v/v) Tween 80, the mass ratio of NaOH to carbomer of 0.4 (w/w). The TBO hydrogel formulation showed the strong antibacterial activity for Propionibacterium acnes. The stability, pH, and antibacterial activity of TBO hydrogel did not significantly change under 4 °C, 25 °C, and 40 °C during 6-week storage. Furthermore, TBO combined with carbomer hydrogel showed the 51.28% (4 h) and 69.80% (24 h) release. In summary, the hydrogel TBO might be a vital therapeutic strategy to promote the PDT applied in the topical therapy of acne. Graphical abstract A TBO hydrogel for photodynamic therapy in the treatment of acne.
Collapse
|
11
|
Patir A, Hwang GB, Nair SP, Allan E, Parkin IP. Photobactericidal Activity of Dual Dyes Encapsulated in Silicone Enhanced by Silver Nanoparticles. ACS OMEGA 2018; 3:6779-6786. [PMID: 30023960 PMCID: PMC6045333 DOI: 10.1021/acsomega.8b00552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Crystal violet (CV) and methylene blue (MB) dyes with silver (Ag) nanoparticles (NPs) were encapsulated into silicone to produce light-activated antimicrobial surfaces. Optical microscopy and X-ray photoelectron spectroscopy showed that CV and MB were diffused throughout the silicone samples and that Ag NPs were successfully encapsulated by the swell-encapsulation-shrink process. Antimicrobial tests on Staphylococcus aureus and Escherichia coli showed that CV/MB-encapsulated silicone samples have stronger photobactericidal activity than CV or MB samples and the addition of Ag NPs significantly enhanced the antimicrobial activity under white light. The number of viable bacteria decreased below the detection limit (below <103 CFU) on the silicone-incorporating CV/MB/Ag NPs within 3 h for S. aureus and within 5 h for E. coli. In leaching tests over 216 h, the amount of dye leaching from the samples was barely detectable (<0.02 ppm). These surfaces have a potential for use in healthcare settings to decrease hospital-associated infections.
Collapse
Affiliation(s)
- Adnan Patir
- Materials
Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Gi Byoung Hwang
- Materials
Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Sean P. Nair
- Department
of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
| | - Elaine Allan
- Department
of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London WC1X 8LD, United Kingdom
| | - Ivan P. Parkin
- Materials
Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| |
Collapse
|
12
|
Yang MY, Chang KC, Chen LY, Wang PC, Chou CC, Wu ZB, Hu A. Blue light irradiation triggers the antimicrobial potential of ZnO nanoparticles on drug-resistant Acinetobacter baumannii. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:235-242. [PMID: 29475122 DOI: 10.1016/j.jphotobiol.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 01/19/2023]
Abstract
Photodynamic inactivation (PDI) is a non-invasive and safe therapeutic method for microbial infections. Bacterial antibiotic resistance is caused by antibiotics abuse. Drug-resistant Acinetobacter spp. is a serious problem in hospitals around the world. These pathogens from nosocomial infections have high mortality rates in frailer people, and Acinetobacter spp. is commonly found in immunocompromised patients. Visible light is safer than ultraviolet light (UV) for PDI of nosocomial pathogens with mammalian cells. Zinc oxide nanoparticles (ZnO-NPs) were used in this study as an antimicrobial agent and a photosensitizer. ZnO is recognized as safe and has extensive usage in food additives, medical and cosmetic products. In this study, we used 0.125 mg/ml ZnO-NPs combined with 10.8 J/cm2 blue light (BL) on Acinetobacter baumannii (A. baumannii) that could significantly reduce microbial survival. However, individual exposure to ZnO-NPs does not affect the viability of A. baumannii. BL irradiation could trigger the antimicrobial ability of ZnO nanoparticles on A. baumannii. The mechanism of photocatalytic ZnO-NPs treatment for sterilization occurs through bacterial membrane disruptions. Otherwise, the photocatalytic ZnO-NPs treatment showed high microbial eradication in nosocomial pathogens, including colistin-resistant and imipenem-resistant A. baumannii and Klebsiella pneumoniae. Based on our results, the photocatalytic ZnO-NPs treatment could support hygiene control and clinical therapies without antibiotics to nosocomial bacterial infections.
Collapse
Affiliation(s)
- Ming-Yeh Yang
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien 970, Taiwan; Department of Laboratory Medicine, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan
| | - Liang-Yu Chen
- Department of Biotechnology, Ming-Chuan University, Taoyuan 333, Taiwan
| | - Po-Ching Wang
- Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien 970, Taiwan
| | - Chih-Chiang Chou
- Center for General Education, National Quemoy University, Kinmen, 892, Taiwan
| | - Zhong-Bin Wu
- National Taitung Jr. College, Taitung 950, Taiwan
| | - Anren Hu
- Department of Laboratory Medicine and Biotechnology, Tzu-Chi University, Hualien 970, Taiwan.
| |
Collapse
|
13
|
Surface modifications for antimicrobial effects in the healthcare setting: a critical overview. J Hosp Infect 2018; 99:239-249. [PMID: 29410096 DOI: 10.1016/j.jhin.2018.01.018] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 12/30/2022]
Abstract
The spread of infections in healthcare environments is a persistent and growing problem in most countries, aggravated by the development of microbial resistance to antibiotics and disinfectants. In addition to indwelling medical devices (e.g. implants, catheters), such infections may also result from adhesion of microbes either to external solid-water interfaces such as shower caps, taps, drains, etc., or to external solid-gas interfaces such as door handles, clothes, curtains, computer keyboards, etc. The latter are the main focus of the present work, where an overview of antimicrobial coatings for such applications is presented. This review addresses well-established and novel methodologies, including chemical and physical functional modification of surfaces to reduce microbial contamination, as well as the potential risks associated with the implementation of such anticontamination measures. Different chemistry-based approaches are discussed, for instance anti-adhesive surfaces (e.g. superhydrophobic, zwitterions), contact-killing surfaces (e.g. polymer brushes, phages), and biocide-releasing surfaces (e.g. triggered release, quorum sensing-based systems). The review also assesses the impact of topographical modifications at distinct dimensions (micrometre and nanometre orders of magnitude) and the importance of applying safe-by-design criteria (e.g. toxicity, contribution for unwanted acquisition of antimicrobial resistance, long-term stability) when developing and implementing antimicrobial surfaces.
Collapse
|
14
|
Méndez-Albores A, González-Arellano SG, Reyes-Vidal Y, Torres J, Ţălu Ş, Cercado B, Trejo G. Electrodeposited chrome/silver nanoparticle (Cr/AgNPs) composite coatings: Characterization and antibacterial activity. JOURNAL OF ALLOYS AND COMPOUNDS 2017. [DOI: 10.1016/j.jallcom.2017.03.226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Kumari M, Shukla S, Pandey S, Giri VP, Bhatia A, Tripathi T, Kakkar P, Nautiyal CS, Mishra A. Enhanced Cellular Internalization: A Bactericidal Mechanism More Relative to Biogenic Nanoparticles than Chemical Counterparts. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4519-4533. [PMID: 28051856 DOI: 10.1021/acsami.6b15473] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biogenic synthesis of silver nanoparticles for enhanced antimicrobial activity has gained a lot of momentum making it an urgent need to search for a suitable biocandidate which could be utilized for efficient capping and shaping of silver nanoparticles with enhanced bactericidal activity utilizing its secondary metabolites. Current work illustrates the enhancement of antimicrobial efficacy of silver nanoparticles by reducing and modifying their surface with antimicrobial metabolites of cell free filtrate of Trichoderma viride (MTCC 5661) in comparison to citrate stabilized silver nanoparticles. Nanoparticles were characterized by visual observations, UV-visible spectroscopy, zetasizer, and transmission electron microscopy (TEM). Synthesized particles were monodispersed, spherical in shape and 10-20 nm in size. Presence of metabolites on surface of biosynthesized silver nanoparticles was observed by gas chromatography-mass spectroscopy (GC-MS), energy dispersive X-ray analysis (EDAX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of both silver nanoparticles was tested against Shigella sonnei, Pseudomonas aeruginosa (Gram-negative) and Staphylococcus aureus (Gram-positive) by growth inhibition curve analysis and colony formation unit assay. Further, it was noted that internalization of biosynthesized nanoparticles inside the bacterial cell was much higher as compared to citrate stabilized particles which in turn lead to higher production of reactive oxygen species. Increase in oxidative stress caused severe damage to bacterial membrane enhancing further uptake of particles and revoking other pathways for bacterial disintegration resulting in complete and rapid death of pathogens as evidenced by fluorescein diacetate/propidium iodide dual staining and TEM. Thus, study reveals that biologically synthesized silver nanoarchitecture coated with antimicrobial metabolites of T. viride was more potent than their chemical counterpart in killing of pathogenic bacteria.
Collapse
Affiliation(s)
- Madhuree Kumari
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Shatrunajay Shukla
- CSIR-Indian Institute of Toxicology Research , Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Shipra Pandey
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Ved P Giri
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Anil Bhatia
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Tusha Tripathi
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Poonam Kakkar
- CSIR-Indian Institute of Toxicology Research , Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, India
| | - Chandra S Nautiyal
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| | - Aradhana Mishra
- CSIR-National Botanical Research Institute , Rana Pratap Marg, Lucknow, 226 001, India
| |
Collapse
|