1
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
2
|
Wang S, Chu X, Liu Z, Wang C, Fan Z, Chen Y, Zhang Z. Extracellular matrix stiffness facilitates neurite outgrowth by reprogramming the fatty acid oxidation-dependent macrophage polarization. Biochim Biophys Acta Gen Subj 2025; 1869:130731. [PMID: 39581511 DOI: 10.1016/j.bbagen.2024.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The extracellular matrix (ECM) is involved in various of pathophysiology processes, such as wound healing and neurogenesis. During tissue injury, the recruited bone marrow-derived monocytes in the impaired site undergo functional and phenotypic changes and participate in the initiation, maintenance, and resolution phases of tissue repair. However, the effects of ECM stiffness on monocyte differentiation and function remain largely unknown. Herein, we developed a gelatin-hydroxyphenylpropionic acid-based hydrogel with different substrate stiffnesses by varying hydrogen peroxide concentrations, which demonstrated good biocompatibility. Furthermore, the high substrate stiffness hydrogel could polarize macrophage into immunosuppressive phenotype with increased expression of interleukin 10, transforming growth factor β, CD206, and CD163. Twenty three differentially expressed metabolites were identified in stiff hydrogel-cultured macrophages in comparison with soft hydrogel cultured macrophages via metabolite analysis. In addition, 4-hydroxybenzoic acid was the most upregulated metabolite, which could confer protection against neuronal and acute inflammation. Mechanistically, the high substrate stiffness induced macrophage immunosuppressive differentiation by upregulating the expression of the fatty acid oxidation (FAO)-related proteins peroxisome proliferator-activated receptor (PPAR)-γ and PPAR-δ. Consistently, the FAO inhibitor etomoxir reversed the high substrate stiffness mediated macrophage immunosuppressive polarization and neurite outgrowth. Therefore, the alteration in macrophage phenotype induced by increased substrate stiffness can promote tissue repair in clinical applications.
Collapse
Affiliation(s)
- Shan Wang
- Department of Urology, The First Affiliated Hospital of ZhengZhou University, Zheng Zhou 450052, China; Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xu Chu
- The First Affiliated Hospital of Henan University of Science and Technology, Luo Yang 471003, China
| | - Zhaoyang Liu
- Department of Urology, The First Affiliated Hospital of ZhengZhou University, Zheng Zhou 450052, China
| | - Congwei Wang
- Department of Urology, The First Affiliated Hospital of ZhengZhou University, Zheng Zhou 450052, China
| | - Zhongyu Fan
- Department of Urology, The First Affiliated Hospital of ZhengZhou University, Zheng Zhou 450052, China
| | - Yazhou Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zheng Zhou 450052, China; Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zheng Zhou 450052, China.
| | - Zhengguo Zhang
- Department of Urology, The First Affiliated Hospital of ZhengZhou University, Zheng Zhou 450052, China.
| |
Collapse
|
3
|
Wang X, Xu K, Ma L, Sun R, Wang K, Wang R, Zhang J, Tao W, Linghu K, Yu S, Zhou J. Diffusion model assisted designing self-assembling collagen mimetic peptides as biocompatible materials. Brief Bioinform 2024; 26:bbae622. [PMID: 39688478 DOI: 10.1093/bib/bbae622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Collagen self-assembly supports its mechanical function, but controlling collagen mimetic peptides (CMPs) to self-assemble into higher-order oligomers with numerous functions remains challenging due to the vast potential amino acid sequence space. Herein, we developed a diffusion model to learn features from different types of human collagens and generate CMPs; obtaining 66% of synthetic CMPs could self-assemble into triple helices. Triple-helical and untwisting states were probed by melting temperature (Tm); hence, we developed a model to predict collagen Tm, achieving a state-of-art Pearson's correlation (PC) of 0.95 by cross-validation and a PC of 0.8 for predicting Tm values of synthetic CMPs. Our chemically synthesized short CMPs and recombinantly expressed long CMPs could self-assemble, with the lowest requirement for hydrogel formation at a concentration of 0.08% (w/v). Five CMPs could promote osteoblast differentiation. Our results demonstrated the potential for using computer-aided methods to design functional self-assembling CMPs.
Collapse
Affiliation(s)
- Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Lingling Ma
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Kun Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Ruiyan Wang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Road, Jinan, Shandong 250104, China
| | - Junli Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Road, Jinan, Shandong 250104, China
| | - Wenwen Tao
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Road, Jinan, Shandong 250104, China
| | - Kai Linghu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Shuyao Yu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214222, China
| |
Collapse
|
4
|
Di Nubila A, Dilella G, Simone R, Barbieri SS. Vascular Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2024; 25:12017. [PMID: 39596083 PMCID: PMC11594217 DOI: 10.3390/ijms252212017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The extracellular matrix (ECM) plays a central role in the structural integrity and functionality of the cardiovascular system. Moreover, the ECM is involved in atherosclerotic plaque formation and stability. In fact, ECM remodeling affects plaque stability, cellular migration, and inflammatory responses. Collagens, fibronectin, laminin, elastin, and proteoglycans are crucial proteins during atherosclerosis development. This dynamic remodeling is driven by proteolytic enzymes such as matrix metalloproteinases (MMPs), cathepsins, and serine proteases. Exploring and investigating ECM dynamics is an important step to designing innovative therapeutic strategies targeting ECM remodeling mechanisms, thus offering significant advantages in the management of cardiovascular diseases. This review illustrates the structure and role of vascular ECM, presenting a new perspective on ECM remodeling and its potential as a therapeutic target in atherosclerosis treatments.
Collapse
Affiliation(s)
| | | | | | - Silvia S. Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, via Parea 4, 20138 Milan, Italy; (A.D.N.); (G.D.); (R.S.)
| |
Collapse
|
5
|
Braz EMA, Silva SCCC, Alves MMM, Carvalho FAA, Magalhães R, Osajima JA, Silva DA, Oliveira AL, Muniz EC, Silva-Filho EC. Chitosan/collagen biomembrane loaded with 2,3-dihydrobenzofuran for the treatment of cutaneous Leishmaniasis. Int J Biol Macromol 2024; 280:135995. [PMID: 39326592 DOI: 10.1016/j.ijbiomac.2024.135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
In this work, chitosan/collagen-based membranes loaded with 2,3-dihydrobenzofuran (2,3-DHB) were developed through a simple solvent-casting procedure for use in the treatment of cutaneous Leishmaniasis. The obtained membranes were characterized by elemental analysis, FTIR, TG, DSC, and XRD. Porosity, swelling, mechanical properties, hydrophilicity, and antioxidant activity were analyzed. In addition, assessment to the biocompatibility, through fibroblasts/keratinocytes and in vitro wound healing essays were performed. The obtained results show that the new 2,3-DHB loaded chitosan/collagen membrane presented high porosity and swelling capacity as well as maximum strength, hydrophilicity, and antioxidant activity higher in relation to the control. The tests of antileishmanial activity and the AFM images demonstrate great efficacy of inhibition growth of the parasite, superior to those from the standard therapeutic agent that is currently used: Amphotericin B. The new membranes are biocompatible and stimulated the proliferation of keratinocytes. SEM images clearly demonstrate that fibroblasts were able to adhere, maintained their characteristic morphology. The healing test evidenced that the membranes have adequate environment for promoting cell proliferation and growth. As the conventional treatments often use drugs with high toxicity, the as-developed new membranes proved to be excellent candidate to treat cutaneous Leishmaniasis and can be clearly indicated for further advanced studies in vivo.
Collapse
Affiliation(s)
- Elton Marks Araujo Braz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Solranny Carla Cavalcante Costa Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual do Piauí, Campus Professor Ariston Dias Lima, São Raimundo Nonato, PI 64770-000, Brazil
| | - Michel Muálem Moraes Alves
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Fernando Aécio Amorim Carvalho
- Núcleo de Pesquisa em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Josy Anteveli Osajima
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Durcilene Alves Silva
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil
| | - Ana Leite Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto 4169-005, Portugal
| | - Edvani Curti Muniz
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil; Universidade Estadual de Maringá, Departamento de Química, Maringá, PR 87020-970, Brazil
| | - Edson Cavalcanti Silva-Filho
- Laboratório Interdisciplinar de Materiais Avançados-LIMAV, Universidade Federal do Piauí, Campus Ministro Petrônio Portella, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
6
|
Sun W, Taylor CS, Gao Z, Gregory DA, Haycock JW, Zhao X. Co-assembling bioactive short peptide nanofibers coated silk scaffolds induce neurite outgrowth of PC12 cells. Int J Biol Macromol 2024; 278:134774. [PMID: 39154681 DOI: 10.1016/j.ijbiomac.2024.134774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Controlling biomolecular-cell interactions is crucial for the design of scaffolds for tissue engineering (TE). Regenerated silk fibroin (RSF) has been extensively used as TE scaffolds, however, RSF showed poor attachment of neuronal cells, such as rat pheochromocytoma (PC12) cells. In this work, amphiphilic peptides containing a hydrophobic isoleucine tail (I3) and laminin or fibronectin derived peptides (IKVAV, PDSGR, YIGSR, RGDS and PHSRN) were designed for promoting scaffold-cell interaction. Three of them (I3KVAV, I3RGDS and I3YIGSR) can self-assemble into nanofibers, therefore, were used to enhance the application of RSF in neuron TE. Live / dead assays revealed that the peptides exhibited negligible cytotoxicity against PC12 cells. The specific interaction between PC12 cells and the peptides were investigate using atomic force microscopy (AFM). The results indicated a synergistic effect in the designed peptides, promoting cellular attachment, proliferation and morphology changes. In addition, AFM results showed that co-assembling peptides I3KVAV and I3YIGSR possesses the best regulation of proliferation and attachment of PC12 cells, consistent with immunofluorescence staining results. Moreover, cell culture with hydrogels revealed that a mixture of peptides I3KVAV and I3YIGSR can also promote 3D neurites outgrowth. The approach of combining two different self-assembling peptides shows great potential for nerve regeneration applications.
Collapse
Affiliation(s)
- Weizhen Sun
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Caroline S Taylor
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Zijian Gao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - David A Gregory
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - John W Haycock
- Department of Materials Science & Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
7
|
Kou H, Han Q, Zhang H, Xu C, Liao L, Hou Y, Wang H, Zhang J. Impact of changes in collagen construction and molecular state on integrin - binding properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1523-1536. [PMID: 38574261 DOI: 10.1080/09205063.2024.2338004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2β1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2β1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2β1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.
Collapse
Affiliation(s)
- Huizhi Kou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qingqiu Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huihui Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Lixia Liao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuanjing Hou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibo Wang
- College of Life Science and Technology, Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan, China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
8
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key mediator of cell traction force generation in hyaluronic acid-rich extracellular matrices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563860. [PMID: 37961689 PMCID: PMC10634813 DOI: 10.1101/2023.10.24.563860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via integrin cell surface adhesion receptors. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA, an unsulfated GAG) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface adhesion receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
|
9
|
Shi L, Ura K, Takagi Y. Effects of self-assembled type II collagen fibrils on the morphology and growth of pre-chondrogenic ATDC5 cells. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100450. [PMID: 38444516 PMCID: PMC10914481 DOI: 10.1016/j.ocarto.2024.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/22/2024] [Indexed: 03/07/2024] Open
Abstract
Objective Although type II collagen could have marked potential for developing cartilage tissue engineering (CTE) scaffolds, its erratic supply and viscous nature have limited these studies, and there are no studies on the use of marine-derived type II collagen fibrils for CTE scaffold materials. In this study, we aimed to generate a fibril-based, thin-layered scaffold from marine-derived type II collagen and investigate its chondrogenic potential. Methods Time-lapse observations revealed the cell adhesion process. The Cell Counting Kit-8 (CCK-8) assay, light microscopy, and scanning electron microscopy were performed to detect proliferation and filopodium morphology. Alcian blue staining was used to show the deposition of extracellular secretions, and qRT-PCR was performed to reveal the expression levels of chondrogenesis-related genes. Results The cell adhesion speed was similar in both fibril-coated and control molecule-coated groups, but the cellular morphology, proliferation, and chondrogenesis activity differed. On fibrils, more elongated finer filopodia showed inter-cell communications, whereas the slower proliferation suggested an altered cell cycle. Extracellular secretions occurred before day 14 and continued until day 28 on fibrils, and on fibrils, the expression of the chondrogenesis-related genes Sox9 (p < 0.001), Col10a1 (p < 0.001), Acan (p < 0.001), and Col2a1 (p = 0.0049) was significantly upregulated on day 21. Conclusion Marine-derived type II collagen was, for the first time, fabricated into a fibril state. It showed rapid cellular affinity and induced chondrogenesis with extracellular secretions. We presented a new model for studying chondrogenesis in vitro and a potential alternative material for cell-laden CTE research.
Collapse
Affiliation(s)
- Linyan Shi
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-Cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
10
|
Sharma S, Kishen A. Bioarchitectural Design of Bioactive Biopolymers: Structure-Function Paradigm for Diabetic Wound Healing. Biomimetics (Basel) 2024; 9:275. [PMID: 38786486 PMCID: PMC11117869 DOI: 10.3390/biomimetics9050275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic wounds such as diabetic ulcers are a major complication in diabetes caused by hyperglycemia, prolonged inflammation, high oxidative stress, and bacterial bioburden. Bioactive biopolymers have been found to have a biological response in wound tissue microenvironments and are used for developing advanced tissue engineering strategies to enhance wound healing. These biopolymers possess innate bioactivity and are biodegradable, with favourable mechanical properties. However, their bioactivity is highly dependent on their structural properties, which need to be carefully considered while developing wound healing strategies. Biopolymers such as alginate, chitosan, hyaluronic acid, and collagen have previously been used in wound healing solutions but the modulation of structural/physico-chemical properties for differential bioactivity have not been the prime focus. Factors such as molecular weight, degree of polymerization, amino acid sequences, and hierarchical structures can have a spectrum of immunomodulatory, anti-bacterial, and anti-oxidant properties that could determine the fate of the wound. The current narrative review addresses the structure-function relationship in bioactive biopolymers for promoting healing in chronic wounds with emphasis on diabetic ulcers. This review highlights the need for characterization of the biopolymers under research while designing biomaterials to maximize the inherent bioactive potency for better tissue regeneration outcomes, especially in the context of diabetic ulcers.
Collapse
Affiliation(s)
- Shivam Sharma
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
| | - Anil Kishen
- The Kishen Lab, Dental Research Institute, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| |
Collapse
|
11
|
Pamplona R, González-Lana S, Ochoa I, Martín-Rapún R, Sánchez-Somolinos C. Evaluation of gelatin-based hydrogels for colon and pancreas studies using 3D in vitro cell culture. J Mater Chem B 2024; 12:3144-3160. [PMID: 38456751 DOI: 10.1039/d3tb02640j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Biomimetic 3D models emerged some decades ago to address 2D cell culture limitations in the field of replicating biological phenomena, structures or functions found in nature. The fabrication of hydrogels for cancer disease research enables the study of cell processes including growth, proliferation and migration and their 3D design is based on the encapsulation of tumoral cells within a tunable matrix. In this work, a platform of gelatin methacrylamide (GelMA)-based photocrosslinked scaffolds with embedded colorectal (HCT-116) or pancreatic (MIA PaCa-2) cancer cells is presented. Prior to cell culture, the mechanical characterization of hydrogels was assessed in terms of stiffness and swelling behavior. Modifications of the UV curing time enabled a fine tuning of the mechanical properties, which at the same time, showed susceptibility to the chemical composition and crosslinking mechanism. All scaffolds displayed excellent cytocompatibility with both tumoral cells while eliciting various cell responses depending on the microenvironment features. Individual and collective cell migration were observed for HCT-116 and MIA PaCa-2 cell lines, highlighting the ability of the colorectal cancer cells to cluster into aggregates of different sizes governed by the surrounding matrix. Additionally, metabolic activity results pointed out to the development of a more proliferative phenotype within stiffer networks. These findings confirm the suitability of the presented platform of GelMA-based hydrogels to conduct 3D cell culture experiments and explore biological processes associated with colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Regina Pamplona
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | - Sandra González-Lana
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - Rafael Martín-Rapún
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Organic Chemistry, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Universidad de Zaragoza, Facultad de Ciencias, Departamento de Química Orgánica, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), CSIC-University of Zaragoza, Department of Condensed Matter Physics (Faculty of Science), C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| |
Collapse
|
12
|
Salinas-Fernandez S, Garcia O, Kelly DJ, Buckley CT. The influence of pH and salt concentration on the microstructure and mechanical properties of meniscus extracellular matrix-derived implants. J Biomed Mater Res A 2024; 112:359-372. [PMID: 37921203 DOI: 10.1002/jbm.a.37634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Meniscus-related injuries are a common orthopedic challenge with an increasing incidence in the population. While the preservation of viable meniscal tissue is the preferred approach in repair strategies, complex or total traumatic lesions may require alternative therapeutic approaches such as meniscal reconstruction using allografts or engineered equivalents. Although clinical studies suggest promising outcomes with the use of acellular implants, further development is needed to improve their biological and mechanical requirements. Decellularized extracellular matrix (dECM) derived from menisci is a promising biomaterial for meniscus tissue engineering due to its recapitulation of the native tissue environment and the maintenance of tissue-specific cues. However, the associated mechanical limitations of dECM-derived scaffolds frequently impedes their adoption, requiring additional reinforcement or combining with stiffer biomaterials to increase their load-bearing properties. In this study, decellularized extracellular matrix was extracted and its fibrillation was controlled by adjusting both pH and salt concentrations to fabricate mechanically functional meniscal tissue equivalents. The effect of collagen fibrillation on the mechanical properties of the dECM constructs was assessed, and porcine-derived fibrochondrocytes were used to evaluate in vitro biocompatibility. It was also possible to fabricate meniscus-shaped implants by casting of the dECM and to render the implants suitable for off-the-shelf use by adopting a freeze-drying preservation method. Suture pull-out tests were also performed to assess the feasibility of using existing surgical methods to fix such implants within a damaged meniscus. This study highlights the potential of utilizing ECM-derived materials for meniscal tissue substitutes that closely mimic the mechanical and biological properties of native tissue.
Collapse
Affiliation(s)
- Soraya Salinas-Fernandez
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Orquidea Garcia
- Johnson & Johnson 3D Printing Innovation & Customer Solutions, Johnson & Johnson Services, Inc., Irvine, California, USA
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor T Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland & Trinity College Dublin, The University of Dublin, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
13
|
Becht A, Frączyk J, Waśko J, Menaszek E, Kajdanek J, Miłowska K, Kolesinska B. Selection of collagen IV fragments forming the outer sphere of the native protein: Assessment of biological activity for regenerative medicine. J Pept Sci 2024; 30:e3537. [PMID: 37607826 DOI: 10.1002/psc.3537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023]
Abstract
The aim of this research was to select the fragments that make up the outer layer of the collagen IV (COL4A6) protein and to assess their potential usefulness for regenerative medicine. It was expected that because protein-protein interactions take place via contact between external domains, the set of peptides forming the outer sphere of collagen IV will determine its interaction with other proteins. Cellulose-immobilized protein fragment libraries treated with polyclonal anti-collagen IV antibodies were used to select the peptides forming the outer sphere of collagen IV. In the first test, 33 peptides that strongly interacted with the polyclonal anti-collagen IV antibodies were selected from a library of non-overlapping fragments of collagen IV. The selected fragments of collagen IV (cleaved from the cellulose matrix) were tested for their cytotoxicity, their effects on cell viability and proliferation, and their impact on the formation of reactive oxygen species (ROS). The studies used RAW 264.7 mouse macrophage cells and Hs 680.Tr human fibroblasts. PrestoBlue, ToxiLight™, and ToxiLight 100% Lysis Control assays were conducted. The viability of fibroblasts cultured with the addition of increasing concentrations of the peptide mix did not show statistically significant differences from the control. Fragments 161-170, 221-230, 721-730, 1331-1340, 1521-1530, and 1661-1670 of COL4A6 were examined for cytotoxicity against BJ normal human foreskin fibroblasts. None of the collagen fragments were found to be cytotoxic. Further research is underway on the potential uses of collagen IV fragments in regenerative medicine.
Collapse
Affiliation(s)
- Angelika Becht
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Justyna Frączyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Joanna Waśko
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - Elżbieta Menaszek
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
| | - Jakub Kajdanek
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
14
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
15
|
Tanrikulu IC, Dang L, Nelavelli L, Ellison AJ, Olsen BD, Jin S, Raines RT. Synthetic Collagen Hydrogels through Symmetric Self-Assembly of Small Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303228. [PMID: 37997193 PMCID: PMC10797479 DOI: 10.1002/advs.202303228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Animal-sourced hydrogels, such as collagen, are widely used as extracellular-matrix (ECM) mimics in tissue engineering but are plagued with problems of reproducibility, immunogenicity, and contamination. Synthetic, chemically defined hydrogels can avoid such issues. Despite the abundance of collagen in the ECM, synthetic collagen hydrogels are extremely rare due to design challenges brought on by the triple-helical structure of collagen. Sticky-ended symmetric self-assembly (SESSA) overcomes these challenges by maximizing interactions between the strands of the triple helix, allowing the assembly of collagen-mimetic peptides (CMPs) into robust synthetic collagen nanofibers. This optimization, however, also minimizes interfiber contacts. In this work, symmetric association states for the SESSA of short CMPs to probe their increased propensity for interfiber association are modelled. It is found that 33-residue CMPs not only self-assemble through sticky ends, but also form hydrogels. These self-assemblies behave with remarkable consistency across multiple scales and present a clear link between their triple-helical architecture and the properties of their hydrogels. The results show that SESSA is an effective and robust design methodology that enables the rational design of synthetic collagen hydrogels.
Collapse
Affiliation(s)
- I. Caglar Tanrikulu
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Lianna Dang
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Lekha Nelavelli
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Aubrey J. Ellison
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Bradley D. Olsen
- Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Song Jin
- Department of ChemistryUniversity of Wisconsin–MadisonMadisonWI53706USA
| | - Ronald T. Raines
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
16
|
Patra S, Basak P, Das P, Paul S. A novel observation: effect of anionic gelatin nanoparticle on stromal cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:2483-2497. [PMID: 37768865 DOI: 10.1080/09205063.2023.2265129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Biocompatible nanoparticles are very popular in health science research. Biomolecule carriers for wound healing and tissue engineering are two main applications among many others. In many instances, these structures come in direct vicinity of cells and govern cell behaviour and responses. In this study, gelatin nano/submicron structures were synthesized by binary nonsolvent aided coacervation (BNAC) method at pH ranging from 3 to 11 with an intention to employ in skin tissue regeneration. Effect of pH over morphology and the surface composition with respect to its ionic composition were studied. Further, the initial toxicity was assessed against peripheral blood mononuclear cells (PBMC). pH 7 was found to be the optimum for synthesis of gelatin nanoparticles (GNPs) with minimum particle size. Positive cell viability of 103.14% for GNPs synthesized at pH 7 was observed. It may be due to the minimum difference between cumulative negative and positive charge (CNCP) ratio of 1.19. Finally, effect of the gelatin nanoparticles over L929 mouse fibroblast cells was assessed through MTT assay. It has resulted in 122.77% cell viability.
Collapse
Affiliation(s)
- Shamayita Patra
- Shri Vaishnav Institute of Textile Technology, SVVV, Indore, MP, India
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Piyali Basak
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Pratik Das
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| | - Samrat Paul
- School of Bioscience and Engineering, Jadavpur University, Kolkata, India
| |
Collapse
|
17
|
Cyr JA, Colzani M, Bayraktar S, Köhne M, Bax DV, Graup V, Farndale R, Sinha S, Best SM, Cameron RE. Extracellular macrostructure anisotropy improves cardiac tissue-like construct function and phenotypic cellular maturation. BIOMATERIALS ADVANCES 2023; 155:213680. [PMID: 37944449 DOI: 10.1016/j.bioadv.2023.213680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Regenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order. The complexity of scaffold fabrication, however, limits isolated variation of individual structural and mechanical characteristics. Thus, the isolated impact of scaffold macroarchitecture on tissue function is poorly understood. Here, we produce isotropic and aligned collagen scaffolds seeded with embryonic stem cell derived cardiomyocytes (hESC-CM) while conserving all confounding physio-mechanical features to independently assess the effects of macroarchitecture on tissue function. We quantified spatiotemporal tissue function through calcium signaling and contractile strain. We further examined intercellular organization and intracellular development. Aligned tissue constructs facilitated improved signaling synchronicity and directional contractility as well as dictated uniform cellular alignment. Cells on aligned constructs also displayed phenotypic and genetic markers of increased maturity. Our results isolate the influence of scaffold macrostructure on tissue function and inform the design of optimized cardiac tissue for regenerative and model medical systems.
Collapse
Affiliation(s)
- Jamie A Cyr
- Department of Materials Science & Metallurgy, Cambridge University, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Maria Colzani
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Maria Köhne
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Daniel V Bax
- Department of Materials Science & Metallurgy, Cambridge University, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Vera Graup
- Department of Materials Science & Metallurgy, Cambridge University, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Richard Farndale
- Department of Biochemistry, Cambridge University, Hopkins Building Tennis Court Road, Cambridge CB2 1QW, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK.
| | - Serena M Best
- Department of Materials Science & Metallurgy, Cambridge University, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Ruth E Cameron
- Department of Materials Science & Metallurgy, Cambridge University, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| |
Collapse
|
18
|
Wang W, Chu L, Chen L, Yang R, Zhu S, Zhang Y, Yang H. Authentication of Asini Corii Colla and Taurus Corii Colla based on UPLC-MS/MS and the discovery of antioxidant peptides associated with the PI3K-AKT pathway. Nat Prod Res 2023; 37:3971-3976. [PMID: 36600488 DOI: 10.1080/14786419.2023.2164855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
Asini Corii Colla (ACC) and Taurus Corii Colla (TCC) are well-known for their high nutritional value, especially for medicinal purposes. However, the aforementioned are also potential candidates for adulteration because of their low yield and high price. A UPLC-MS/MS approach based on the specific peptide was proposed to detect adulterated gelatin with possible mixed animal species. To explore the antioxidant activity, the peptides were separated to evaluate their effect on ·OH radical and DPPH· scavenging activity, together with PI3K-AKT pathway activation. The results showed that the peptides had excellent DPPH· and ·OH radical scavenging effects, and could alleviate H2O2-induced oxidative stress by promoting the phosphorylation of PI3K and AKT. According to the results of MALDI-TOF/MS, the shared mass-to-charge ratio (m/z) 1466, 1744 and 2382 may serve as a material basis for the antioxidant activity of both ACC and TCC, and contribute to their traditional tonic effects.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Lin Chu
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Liqun Chen
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Rong Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Shaoqing Zhu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang, China
| | - Yuanbin Zhang
- Department of Pharmacy, Ningbo First Hospital, Ningbo, China
| | - Huan Yang
- Department of Chinese Medicine and Pharmacy, School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
19
|
Binlateh T, Hutamekalin P, Yongsawatdigul J, Yamabhai M, Jitprasertwong P. Effects of collagen, chitosan and mixture on fibroblast responses and angiogenic activities in 2D and 3D in vitro models. J Biomed Mater Res A 2023; 111:1642-1655. [PMID: 37222462 DOI: 10.1002/jbm.a.37561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/25/2023]
Abstract
Despite accumulating evidences have demonstrated the potential of collagen and chitosan on tissue repair, it remains unclear on their combination effects. Here, we examined the regenerative effects of single collagen, chitosan and their mixture on fibroblasts and endothelial cells at cellular levels. The results showed that fibroblast responses, as indicated by high proliferative rate, increased spheroid diameter and migrated area existing from spheroid edge, and decreased wound area, were significantly promoted by either collagen or chitosan stimulation. Similarly, both collagen and chitosan resulted in increased endothelial cell proliferation and migration with accelerated tube-like network formation and upregulated VE-cadherin expression, although collagen strongly provided this effect. While the 1:1 mixture (100:100 μg/mL of chitosan to collagen) treatment caused a reduction in fibroblast viability, the lower ratio of chitosan (1:10 mixture; 10:100 μg/mL) did not produce any impact on both fibroblast and endothelial cell viabilities. The 1:10 mixture also significantly enhanced the additional effects on fibroblast responses and angiogenic activities as shown by higher endothelial growth, proliferation and migration with accelerated capillary-like network formation than those treated with the single substance. Further investigation of signaling proteins found that collagen significantly increased expressions of p-Fak, p-Akt and Cdk5 whereas chitosan upregulated p-Fak and Cdk5 expressions. Comparing to the single treatments, p-Fak, p-Akt and Cdk5 were higher expressed in the 1:10 mixture. These observations indicate that proper collagen-chitosan mixture provides the combination effects on fibroblast responses and angiogenic activities when a high concentration of collagen is used, possibly through Fak/Akt and Cdk5 signaling pathways. Therefore, this study helps to define the clinical use of collagen and chitosan as promising biomaterials for tissue repair.
Collapse
Affiliation(s)
- Thunwa Binlateh
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Jirawat Yongsawatdigul
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Montarop Yamabhai
- Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | |
Collapse
|
20
|
Houshmand B, Nejad AE, Safari F. Evaluation of bioactivity and biodegradability of a biomimetic soft tissue scaffold for clinical use: An in vitro study. J Indian Soc Periodontol 2023; 27:471-478. [PMID: 37781337 PMCID: PMC10538513 DOI: 10.4103/jisp.jisp_555_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
Background Autogenous soft-tissue graft is the gold-standard approach to augment oral soft tissues. However, tissue engineering is increasingly surveyed to overcome its substantial drawbacks, including the secondary site of operation, patient's pain and discomfort, limited tissue of donor site, and so on. Chitosan and gelatin have been utilized in this field over the years due to their great biological virtues. Zeolite, another remarkable candidate for tissue engineering, possesses outstanding biological and mechanical properties, thanks to its nanostructure. Therefore, this study aimed to investigate the biodegradability and DNA content of seeded human gingival fibroblasts on a New Chitosan-Gelatin-Zeolite Scaffold for the perspective of oral and mucosal soft tissue augmentation. Materials and Methods DNA contents of the human gingival fibroblast cell line (HGF.1) seeded on the chitosan-gelatin (CG) and CGZ scaffolds were evaluated by propidium iodide staining on days 1, 5, and 8. Scaffolds' biodegradations were investigated on days 1, 7, 14, 28, 42, and 60. Results Although both scaffolds provided appropriate substrates for HGF.1 growth, significantly higher DNA contents were recorded for the CGZ scaffold. Among experimental groups, the highest mean value was recorded in the CGZ on day 8. CGZ showed a significantly lower biodegradation percentage at all time points. Conclusions The incorporation of zeolite into the CG scaffold at a ratio of 1:10 improved the cell proliferation and stability of the composite scaffold. CGZ scaffold may offer a promising alternative to soft-tissue grafts due to its suitable biological features.
Collapse
Affiliation(s)
- Behzad Houshmand
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Esmaeil Nejad
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Safari
- Department of Orthodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Nayak VV, Tovar N, Khan D, Pereira AC, Mijares DQ, Weck M, Durand A, Smay JE, Torroni A, Coelho PG, Witek L. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Gels 2023; 9:637. [PMID: 37623094 PMCID: PMC10454336 DOI: 10.3390/gels9080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
| | - Nick Tovar
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| | - Doha Khan
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA;
| | - Alejandro Durand
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA;
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
22
|
Kubota R, Fujimoto I. Synthesis, Characterization, and Potential Application of Cyclodextrin-Based Polyrotaxanes for Reinforced Atelocollagen Threads. Polymers (Basel) 2023; 15:3325. [PMID: 37571219 PMCID: PMC10422439 DOI: 10.3390/polym15153325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Preparing strong and flexible atelocollagen-based materials for biomedical applications is still a challenging task. To address this challenge, this study describes the synthesis and characterization of water-soluble polyrotaxanes (PRs) with different coverage ratios and molecular weights of axle polymers, and their potential applications for PR-reinforced atelocollagen threads (PRATs). A novel method was established for the syntheses of PRs with relatively low coverage ratio at the sub-gram scale, in which the aldehyde groups were employed as crosslinking sites for preparing the PRATs via reductive amination. The aldehyde groups were successfully quantified by 1H nuclear magnetic resonance spectroscopy using 1,1-dimethylhydrazine as an aldehyde marker. Fourier-transform infrared and thermogravimetric analysis measurements supported the characterization of the PRs. Interestingly, tensile testing demonstrated that coverage ratio affected the mechanical properties of the PRATs more strongly than molecular weight. The insights obtained in this study would facilitate the development of soft materials based on atelocollagens and PRs.
Collapse
Affiliation(s)
- Riku Kubota
- Koken Research Institute, Koken Co., Ltd., 1-18-36 Takarada, Tsuruoka-shi, Yamagata 997-0011, Japan
| | | |
Collapse
|
23
|
Terzi A, Gallo N, Sibillano T, Altamura D, Masi A, Lassandro R, Sannino A, Salvatore L, Bunk O, Giannini C, De Caro L. Travelling through the Natural Hierarchies of Type I Collagen with X-rays: From Tendons of Cattle, Horses, Sheep and Pigs. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4753. [PMID: 37445069 DOI: 10.3390/ma16134753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Type I collagen physiological scaffold for tissue regeneration is considered one of the widely used biomaterials for tissue engineering and medical applications. It is hierarchically organized: five laterally staggered molecules are packed within fibrils, arranged into fascicles and bundles. The structural organization is correlated to the direction and intensity of the forces which can be loaded onto the tissue. For a tissue-specific regeneration, the required macro- and microstructure of a suitable biomaterial has been largely investigated. Conversely, the function of multiscale structural integrity has been much less explored but is crucial for scaffold design and application. In this work, collagen was extracted from different animal sources with protocols that alter its structure. Collagen of tendon shreds excised from cattle, horse, sheep and pig was structurally investigated by wide- and small-angle X-ray scattering techniques, at both molecular and supramolecular scales, and thermo-mechanically with thermal and load-bearing tests. Tendons were selected because of their resistance to chemical degradation and mechanical stresses. The multiscale structural integrity of tendons' collagen was studied in relation to the animal source, anatomic location and source for collagen extraction.
Collapse
Affiliation(s)
- Alberta Terzi
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Teresa Sibillano
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Rocco Lassandro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 167, 73021 Calimera, Italy
| | - Oliver Bunk
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| | - Liberato De Caro
- Institute of Crystallography, National Research Council, 70125 Bari, Italy
| |
Collapse
|
24
|
Kaczmarek-Szczepańska B, Polkowska I, Małek M, Kluczyński J, Paździor-Czapula K, Wekwejt M, Michno A, Ronowska A, Pałubicka A, Nowicka B, Otrocka-Domagała I. The characterization of collagen-based scaffolds modified with phenolic acids for tissue engineering application. Sci Rep 2023; 13:9966. [PMID: 37340023 DOI: 10.1038/s41598-023-37161-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023] Open
Abstract
The aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic stability compared to scaffolds based on pure collagen, and the radical scavenging activity was in the range 85-91%. All scaffolds were non-hemolytic and compatible with surrounding tissues. Collagen modified by ferulic acid showed potentially negative effects on hFOB cells as a significantly increased LDH release was found, but all of the studied materials had antimicrobial activity against Staphylococcus aureus and Escherichia coli. It may be assumed that phenolic acids, such as caffeic, ferulic, and gallic acid, are modifiers and provide novel biological properties of collagen-based scaffolds. This paper provides the summarization and comparison of the biological properties of scaffolds based on collagen modified with three different phenolic acids.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland.
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| | - Janusz Kluczyński
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908, Warsaw, Poland
| | - Katarzyna Paździor-Czapula
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229, Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology With Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400, Kościerzyna, Poland
| | - Beata Nowicka
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
25
|
Tian B, Liu J, Guo S, Li A, Wan JB. Macromolecule-based hydrogels nanoarchitectonics with mesenchymal stem cells for regenerative medicine: A review. Int J Biol Macromol 2023:125161. [PMID: 37270118 DOI: 10.1016/j.ijbiomac.2023.125161] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
The role of regenerative medicine in clinical therapies is becoming increasingly vital. Under specific conditions, mesenchymal stem cells (MSCs) are capable of differentiating into mesoblastema (i.e., adipocytes, chondrocytes, and osteocytes) and other embryonic lineages. Their application in regenerative medicine has attracted a great deal of interest among researchers. To maximize the potential applications of MSCs, materials science could provide natural extracellular matrices and provide an effective means to understand the various mechanisms of differentiation for the growth of MSCs. Pharmaceutical fields are represented among the research on biomaterials by macromolecule-based hydrogel nanoarchitectonics. Various biomaterials have been used to prepare hydrogels with their unique chemical and physical properties to provide a controlled microenvironment for the culture of MSCs, laying the groundwork for future practical applications in regenerative medicine. This article currently describes and summarizes the sources, characteristics, and clinical trials of MSCs. In addition, it describes the differentiation of MSCs in various macromolecule-based hydrogel nanoarchitectonics and highlights the preclinical studies of MSCs-loaded hydrogel materials in regenerative medicine conducted over the past few years. Finally, the challenges and prospects of MSC-loaded hydrogels are discussed, and the future development of macromolecule-based hydrogel nanoarchitectonics is outlined by comparing the current literature.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Aiqin Li
- Department of Day-care Unit, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
26
|
Rezabeigi E, Griffanti G, Nazhat SN. Effect of Fibrillization pH on Gelation Viscoelasticity and Properties of Biofabricated Dense Collagen Matrices via Gel Aspiration-Ejection. Int J Mol Sci 2023; 24:ijms24043889. [PMID: 36835306 PMCID: PMC9967780 DOI: 10.3390/ijms24043889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Reconstituted hydrogels based on the self-assembly of acid-solubilized collagen molecules have been extensively used as in vitro models and precursors in biofabrication processes. This study investigated the effect of fibrillization pH-ranging from 4 to 11-on real-time rheological property changes during the gelation of collagen hydrogels and its interplay with the properties of subsequently biofabricated dense collagen matrices generated via automated gel aspiration-ejection (GAE). A contactless, nondestructive technique was used to characterize the temporal progression in shear storage modulus (G', or stiffness) during collagen gelation. There was a relative increase in G' of the hydrogels from 36 to 900 Pa with an increase in gelation pH. Automated GAE, which simultaneously imparts collagen fibrillar compaction and alignment, was then applied to these precursor collagen hydrogels to biofabricate native extracellular matrix-like densified gels. In line with viscoelastic properties, only hydrogels fibrillized in the 6.5 < pH ≤ 10 range could be densified via GAE. There was an increase in both fibrillar density and alignment in the GAE-derived matrices with an increase in gelation pH. These factors, combined with a higher G' in the alkaline precursor hydrogels, led to a significant increase in the micro-compressive modulus of GAE-densified gels of pH 9 and 10. Furthermore, NIH/3T3 fibroblast-seeded GAE-derived matrices densified from gels fibrillized in the pH range of 7 to 10 exhibited low cell mortality with >80% viability. It is anticipated that the results of this study can be potentially applicable to other hydrogel systems, as well as biofabrication techniques involving needles or nozzles, such as injection and bioprinting.
Collapse
|
27
|
Liao W, Yang D, Xu Z, Zhao L, Mu C, Li D, Ge L. Antibacterial Collagen-Based Nanocomposite Dressings for Promoting Infected Wound Healing. Adv Healthc Mater 2023:e2203054. [PMID: 36745877 DOI: 10.1002/adhm.202203054] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Pathogenic bacterial infection is the most frequent wound complication, which has become a major clinical and healthcare challenge in wound management worldwide, leading to impaired healing processes, the risk of amputation, and even death. Here, collagen-based nanocomposite dressings (APZC) with broad-spectrum antibacterial activity are developed to promote the infected full-thickness wound healing. Short rod-like shaped ZnO NPs are synthesized and then coated with polydopamine (PDA) to obtain PDA coated ZnO NPs (PDA@ZnO NPs). Afterward, PDA@ZnO NPs are conjugated on the backbone of a collagen chain, and the obtained collagen-PDA@ZnO NPs conjugate is crosslinked by dialdehyde sodium alginate to fabricate APZC dressings. PDA@ZnO NPs show well dispersibility and are uniformly incorporated into the collagen matrix. APZC dressings have interconnected microporous structure and great physicochemical properties, besides good blood coagulation performance and well cytocompatibility. APZC dressings demonstrate long-lasting and excellently broad-spectrum antimicrobial activity, which can relieve the inflammatory reaction by killing pathogenic bacteria and induce the generation of blood vessels and the orderly deposition of collagen in the wound site, thus promoting infected full-thickness wound healing without obvious scar formation. Overall, the functionalized collagen-based nanocomposite dressings have great potential in the clinical treatment against bacteria-associated wound infection.
Collapse
Affiliation(s)
- Weidong Liao
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Die Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhilang Xu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lei Zhao
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
28
|
Cutting Edge Aquatic-Based Collagens in Tissue Engineering. Mar Drugs 2023; 21:md21020087. [PMID: 36827128 PMCID: PMC9959471 DOI: 10.3390/md21020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Aquatic-based collagens have attracted much interest due to their great potential application for biomedical sectors, including the tissue engineering sector, as a major component of the extracellular matrix in humans. Their physical and biochemical characteristics offer advantages over mammalian-based collagen; for example, they have excellent biocompatibility and biodegradability, are easy to extract, and pose a relatively low immunological risk to mammalian products. The utilization of aquatic-based collagen also has fewer religious restrictions and lower production costs. Aquatic-based collagen also creates high-added value and good environmental sustainability by aquatic waste utilization. Thus, this study aims to overview aquatic collagen's characteristics, extraction, and fabrication. It also highlights its potential application for tissue engineering and the regeneration of bone, cartilage, dental, skin, and vascular tissue. Moreover, this review highlights the recent research in aquatic collagen, future prospects, and challenges for it as an alternative biomaterial for tissue engineering and regenerative medicines.
Collapse
|
29
|
Elgadir MA, Mariod AA. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2022; 12:60. [PMID: 36613275 PMCID: PMC9818858 DOI: 10.3390/foods12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from slaughtered mammals. Innovative solutions are very important to achieving sustainability and obtaining the added value of meat by-products with the least impact on the environment. Gelatin, which is obtained from products high in collagen, such as dried skin and bones, is used in food processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan has attracted researchers' interests due to its biological activities, including antimicrobial, antitumor, and antioxidant properties. In this review, article, we highlighted the recent available information on the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.
Collapse
Affiliation(s)
- M. Abd Elgadir
- Department of Food Science & Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdalbasit Adam Mariod
- Department of Biology, College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, Ghibaish P.O. Box 100, Sudan
| |
Collapse
|
30
|
Abourehab MAS, Baisakhiya S, Aggarwal A, Singh A, Abdelgawad MA, Deepak A, Ansari MJ, Pramanik S. Chondroitin sulfate-based composites: a tour d'horizon of their biomedical applications. J Mater Chem B 2022; 10:9125-9178. [PMID: 36342328 DOI: 10.1039/d2tb01514e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chondroitin sulfate (CS), a natural anionic mucopolysaccharide, belonging to the glycosaminoglycan family, acts as the primary element of the extracellular matrix (ECM) of diverse organisms. It comprises repeating units of disaccharides possessing β-1,3-linked N-acetyl galactosamine (GalNAc), and β-1,4-linked D-glucuronic acid (GlcA), and exhibits antitumor, anti-inflammatory, anti-coagulant, anti-oxidant, and anti-thrombogenic activities. It is a naturally acquired bio-macromolecule with beneficial properties, such as biocompatibility, biodegradability, and immensely low toxicity, making it the center of attention in developing biomaterials for various biomedical applications. The authors have discussed the structure, unique properties, and extraction source of CS in the initial section of this review. Further, the current investigations on applications of CS-based composites in various biomedical fields, focusing on delivering active pharmaceutical compounds, tissue engineering, and wound healing, are discussed critically. In addition, the manuscript throws light on preclinical and clinical studies associated with CS composites. A short section on Chondroitinase ABC has also been canvassed. Finally, this review emphasizes the current challenges and prospects of CS in various biomedical fields.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al Qura University, Makkah 21955, Saudi Arabia. .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 11566, Egypt
| | - Shreya Baisakhiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Sector 1, Rourkela, Odisha 769008, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Anshul Singh
- Department of Chemistry, Baba Mastnath University, Rohtak-124021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - A Deepak
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600128, Tamil Nadu, India.
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
31
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
32
|
Tailored Polyelectrolyte Multilayer Systems by Variation of Polyelectrolyte Composition and EDC/NHS Cross-Linking: Controlled Drug Release vs. Drug Reservoir Capabilities and Cellular Response for Improved Osseointegration. Polymers (Basel) 2022; 14:polym14204315. [PMID: 36297892 PMCID: PMC9609345 DOI: 10.3390/polym14204315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Polyelectrolyte multilayers (PEM) are versatile tools used to investigate fundamental interactions between material-related parameters and the resulting performance in stem cell differentiation, respectively, in bone tissue engineering. In the present study, we investigate the suitability of PEMs with a varying collagen content for use as drug carriers for the human bone morphogenetic protein 2 (rhBMP-2). We use three different PEM systems consisting either of the positively charged poly-L-lysine or the glycoprotein collagen type I and the negatively charged glycosaminoglycan heparin. For a specific modification of the loading capacity and the release kinetics, the PEMs were stepwise cross-linked before loading with cytokine. We demonstrate the possibility of immobilizing significant amounts of rhBMP-2 in all multilayer systems and to specifically tune its release via cross-linking. Furthermore, we prove that the drug release of rhBMP-2 plays only a minor role in the differentiation of osteoprogenitor cells. We find a significantly higher influence of the immobilized rhBMP-2 within the collagen-rich coatings that obviously represent an excellent mimicry of the native extracellular matrix. The cytokine immobilized in its bioactive form was able to achieve an increase in orders of magnitude both in the early stages of differentiation and in late calcification compared to the unloaded layers.
Collapse
|
33
|
Guimarães CF, Marques AP, Reis RL. Pushing the Natural Frontier: Progress on the Integration of Biomaterial Cues toward Combinatorial Biofabrication and Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105645. [PMID: 35419887 DOI: 10.1002/adma.202105645] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The engineering of fully functional, biological-like tissues requires biomaterials to direct cellular events to a near-native, 3D niche extent. Natural biomaterials are generally seen as a safe option for cell support, but their biocompatibility and biodegradability can be just as limited as their bioactive/biomimetic performance. Furthermore, integrating different biomaterial cues and their final impact on cellular behavior is a complex equation where the outcome might be very different from the sum of individual parts. This review critically analyses recent progress on biomaterial-induced cellular responses, from simple adhesion to more complex stem cell differentiation, looking at the ever-growing possibilities of natural materials modification. Starting with a discussion on native material formulation and the inclusion of cell-instructive cues, the roles of shape and mechanical stimuli, the susceptibility to cellular remodeling, and the often-overlooked impact of cellular density and cell-cell interactions within constructs, are delved into. Along the way, synergistic and antagonistic combinations reported in vitro and in vivo are singled out, identifying needs and current lessons on the development of natural biomaterial libraries to solve the cell-material puzzle efficiently. This review brings together knowledge from different fields envisioning next-generation, combinatorial biomaterial development toward complex tissue engineering.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
34
|
Vijayan V, Lakra R, Korrapati PS, Kiran MS. Lanthanum oxide nanoparticle-collagen bio matrix induced endothelial cell activation for sustained angiogenic response for biomaterial integration. Colloids Surf B Biointerfaces 2022; 216:112589. [PMID: 35660195 DOI: 10.1016/j.colsurfb.2022.112589] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Rare earth lanthanum oxide nanoparticle reinforced collagen biomatrix that elicited the endothelial cell activation to promote angiogenesis for biomaterial integration was developed and evaluated in the present study. The structural integrity of collagen was not compromised on crosslinking of lanthanum oxide nanoparticle to collagen biomolecule. As-synthesised collagen biomatrix was shown to have improved mechanical strength, a lesser susceptibility to proteolytic degradation and good swelling properties. Superior cytocompatibility, hemocompatibility and minimal ROS generation was observed with Lanthanum oxide nanoparticle reinforced collagen bio matrix. The Lanthanum oxide nanoparticle reinforced collagen bio matrix elicited endothelial cell activation eliciting pro-angiogensis as observed in tube formation and aortic arch assays. The bio-matrix promoted the infiltration and proliferation of endothelial cells which is an unexplored domain in the area of tissue engineering that is very essential for biomaterial integration into host tissue. The wound healing effect of Lanthanum oxide nanoparticle stabilized collagen showed enhanced cell migration in vitro in cells maintained in Lanthanum oxide nanoparticle reinforced collagen bio matrix. The study paves the way for developing rare earth-based dressing materials which promoted biomatrix integration by enhancing vascularisation for tissue regenerative applications in comparison with traditional biomaterials.
Collapse
Affiliation(s)
- Vinu Vijayan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; University of Madras, Chennai, Tamil Nadu 600005, India
| | - Rachita Lakra
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Purna Sai Korrapati
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai, Tamil Nadu 600020, India
| | - Manikantan Syamala Kiran
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Chennai, Tamil Nadu 600020, India; University of Madras, Chennai, Tamil Nadu 600005, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research, Central Leather Research Institute, Chennai, Tamil Nadu 600020, India.
| |
Collapse
|
35
|
The efficacy of a paeoniflorin-sodium alginate-gelatin skin scaffold for the treatment of diabetic wound: An in vivo study in a rat model. Biomed Pharmacother 2022; 151:113165. [PMID: 35609370 DOI: 10.1016/j.biopha.2022.113165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the efficacy of a paeoniflorin-sodium alginate (SA)-gelatin skin scaffold for treating diabetic wound in a rat model. METHODS Bioinks were prepared using various percentages of paeoniflorin in the total weight of a solution containing SA and gelatin. Skin scaffolds containing 0%, 1%, 3%, 5%, and 10% paeoniflorin were printed using 3D bioprinting technology, and scaffold microstructure was observed with scanning electron microscopy. Skin scaffolds were then used in rats with diabetic wounds. H&E staining, Masson staining, and immunohistochemical staining for IL-1β and CD31 were performed on days 7 and 14. RESULTS All skin scaffolds had a mesh-like structure with uniform pore distribution. Wounds healed well in each group, with the 1% and 3% groups demonstrating the most complete healing. H&E staining showed that skin accessory organs had appeared in each group. On day 7, collagen deposition in the 3% group was higher than in the other groups (P<0.05), and IL-1β infiltration was lower in the 10% group than in the 3% group (P = 0.002). On day 14, IL-1β infiltration was not significantly different between the 10% and 3% groups (P = 0.078). The CD31 level was higher in the 3% group than in the other groups on days 7 and 14 (P<0.05). CONCLUSION A 3% paeoniflorin-SA-gelatin skin scaffold promoted the healing of diabetic wounds in rats. This scaffold promoted collagen deposition and microvascular regeneration and demonstrated anti-inflammatory properties, suggesting that this scaffold type could be used to treat diabetic wounds.
Collapse
|
36
|
Malcor JD, Mallein-Gerin F. Biomaterial functionalization with triple-helical peptides for tissue engineering. Acta Biomater 2022; 148:1-21. [PMID: 35675889 DOI: 10.1016/j.actbio.2022.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
In the growing field of tissue engineering, providing cells in biomaterials with the adequate biological cues represents an increasingly important challenge. Yet, biomaterials with excellent mechanical properties often are often biologically inert to many cell types. To address this issue, researchers resort to functionalization, i.e. the surface modification of a biomaterial with active molecules or substances. Functionalization notably aims to replicate the native cellular microenvironment provided by the extracellular matrix, and in particular by collagen, its major component. As our understanding of biological processes regulating cell behaviour increases, functionalization with biomolecules binding cell surface receptors constitutes a promising strategy. Amongst these, triple-helical peptides (THPs) that reproduce the architectural and biological properties of collagen are especially attractive. Indeed, THPs containing binding sites from the native collagen sequence have successfully been used to guide cell response by establishing cell-biomaterial interactions. Notably, the GFOGER motif recognising the collagen-binding integrins is extensively employed as a cell adhesive peptide. In biomaterials, THPs efficiently improved cell adhesion, differentiation and function on biomaterials designed for tissue repair (especially for bone, cartilage, tendon and heart), vascular graft fabrication, wound dressing, drug delivery or immunomodulation. This review describes the key characteristics of THPs, their effect on cells when combined to biomaterials and their strong potential as biomimetic tools for regenerative medicine. STATEMENT OF SIGNIFICANCE: This review article describes how triple-helical peptides constitute efficient tools to improve cell-biomaterial interactions in tissue engineering. Triple helical peptides are bioactive molecules that mimic the architectural and biological properties of collagen. They have been successfully used to specifically recognize cell-surface receptors and provide cells seeded on biomaterials with controlled biological cues. Functionalization with triple-helical peptides has enabled researchers to improve cell function for regenerative medicine applications, such as tissue repair. However, despite encouraging results, this approach remains limited and under-exploited, and most functionalization strategies reported in the literature rely on biomolecules that are unable to address collagen-binding receptors. This review will assist researchers in selecting the correct tools to functionalize biomaterials in efforts to guide cellular response.
Collapse
Affiliation(s)
- Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France.
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, Cedex 07, Lyon 69367, France
| |
Collapse
|
37
|
Wang L, Li W, Qu Y, Wang K, Lv K, He X, Qin S. Preparation of Super Absorbent and Highly Active Fish Collagen Sponge and its Hemostatic Effect in vivo and in vitro. Front Bioeng Biotechnol 2022; 10:862532. [PMID: 35360390 PMCID: PMC8960441 DOI: 10.3389/fbioe.2022.862532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
Effective control of acute wound hemorrhage caused by battlefields, car accidents, natural disasters can highly improve patients’ survival rates. Nevertheless, hemostatic materials on present market have various defects and limitations. This study utilizes tilapia to extract macromolecular type I collagen to prepare a new hemostatic sponge for controlling acute wound bleeding. The extracted fish collagen has high purity, uniform molecular size and high hydroxyproline content. The peptide chain structure and natural high-level structure are intactly preserved. The infrared absorption spectrum showcases that it preserves all the characteristic absorption bands of type I collagen. The developed hemostatic sponge has a uniform honeycomb-shaped porous structure and high water absorption capacity. The biological safety test illustrates that the sponge cell has good compatibility and it will not trigger any inflammatory reaction or immune rejection reactions in the body. The sponge cell could be degraded gradually and completely, which has good biocompatibility and degradation performance. The result of in vitro experiments shows that certain groups or structures in fish collagen molecules can combine specific sites on the surface of blood cells and platelets, which can quickly activate platelets and coagulation system to obtain better coagulation function. The result of In vivo experiments further shows that the fish collagen sponge has fast coagulation speed and low bleeding during the hemostasis process of rabbit ear arteries and rat liver wounds, which proves that it has excellent coagulation performance.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenjun Li
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yan Qu
- Department of Dermatology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kai Wang
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Weifang, China
| | | | | | - Song Qin
- Key Laboratory of Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- *Correspondence: Song Qin,
| |
Collapse
|
38
|
Kumar K S, S D, P S, A A, Ganesan N, C SK, Madhan B. Fabrication of hybrid povidone-iodine impregnated collagen-hydroxypropyl methylcellulose composite scaffolds for wound-healing application. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Liang W, Zhao E, Li G, Bi H, Zhao Z. Suture Cells in a Mechanical Stretching Niche: Critical Contributors to Trans-sutural Distraction Osteogenesis. Calcif Tissue Int 2022; 110:285-293. [PMID: 34802070 DOI: 10.1007/s00223-021-00927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023]
Abstract
Trans-sutural distraction osteogenesis has been proposed as an alternative technique of craniofacial remodelling surgery for craniosynostosis correction. Many studies have defined the contribution of a series of biological events to distraction osteogenesis, such as changes in gene expression, changes in suture cell behaviour and changes in suture collagen fibre characteristics. However, few studies have elucidated the systematic molecular and cellular mechanisms of trans-sutural distraction osteogenesis, and no study has highlighted the contribution of cell-cell or cell-matrix interactions with respect to the whole expansion process to date. Therefore, it is difficult to translate largely primary mechanistic insights into clinical applications and optimize the clinical outcome of trans-sutural distraction osteogenesis. In this review, we carefully summarize in detail the literature related to the effects of mechanical stretching on osteoblasts, endothelial cells, fibroblasts, immune cells (macrophages and T cells), mesenchymal stem cells and collagen fibres in sutures during the distraction osteogenesis process. We also briefly review the contribution of cell-cell or cell-matrix interactions to bone regeneration at the osteogenic suture front from a comprehensive viewpoint.
Collapse
Affiliation(s)
- Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Enzhe Zhao
- Department of Orthopedics, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Guan Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
40
|
Lei M, Qu X, Wan H, Jin D, Wang S, Zhao Z, Yin M, Payne GF, Liu C. Electro-assembly of a dynamically adaptive molten fibril state for collagen. SCIENCE ADVANCES 2022; 8:eabl7506. [PMID: 35108048 PMCID: PMC8809537 DOI: 10.1126/sciadv.abl7506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/08/2021] [Indexed: 05/25/2023]
Abstract
Collagen is a biological building block that is hierarchically assembled into diverse morphological structures that, in some cases, is dynamically adaptive in response to external cues and in other cases forms static terminal structures. Technically, there is limited capabilities to guide the emergence of collagen's hierarchical organization to recapitulate the richness of biological structure and function. Here, we report an electro-assembly pathway to create a dynamically adaptive intermediate molten fibril state for collagen. Structurally, this intermediate state is composed of partially aligned and reversibly associating fibrils with limited hierarchical structure. These molten fibrils can be reversibly reconfigured to offer dynamic properties such as stimuli-stiffening, stimuli-contracting, self-healing, and self-shaping. Also, molten fibrils can be guided to further assemble to recapitulate the characteristic hierarchical structural features of native collagen (e.g., aligned fibers with D-banding). We envision that the electro-assembly of collagen fibrils will provide previously unidentified opportunities for tailored collagen-based biomedical materials.
Collapse
Affiliation(s)
- Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Haoran Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Shijia Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiling Zhao
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Biomedical Device Institute, 5118 A. James Clark Hall, College Park, MD 20742, USA
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
41
|
Calori IR, Alves SR, Bi H, Tedesco AC. Type-I Collagen/Collagenase Modulates the 3D Structure and Behavior of Glioblastoma Spheroid Models. ACS APPLIED BIO MATERIALS 2022; 5:723-733. [PMID: 35068151 DOI: 10.1021/acsabm.1c01138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicellular tumor spheroids have emerged as well-structured, three-dimensional culture models that resemble and mimic the complexity of the dense and hypoxic cancer microenvironment. However, in brain tumor studies, a variety of glioblastoma multiforme (GBM) cell lines only self-assemble into loose cellular aggregates, lacking the properties of actual glioma tumors in humans. In this study, we used type-I collagen as an extracellular matrix component to promote the compaction of GBM aggregates forming tight spheroids to understand how collagen influences the properties of tumors, such as their growth, proliferation, and invasion, and collagenase to promote collagen degradation. The GBM cell lines U87MG, T98G, and A172, as well as the medulloblastoma cell line UW473, were used as standard cell lines that do not spontaneously self-assemble into spheroids, and GBM U251 was used as a self-assembling cell line. According to the findings, all cell lines formed tight spheroids at collagen concentrations higher than 15.0 μg mL-1. Collagen was distributed along the spheroid, similarly to that observed in invasive GBM tumors, and decreased cell migration with no effect on the cellular uptake of small active molecules, as demonstrated by uptake studies using the photosensitizer verteporfin. The enzymatic cleavage of collagen affected spheroid morphology and increased cell migration while maintaining cell viability. Such behaviors are relevant to the physiological models of GBM tumors and are useful for better understanding cell migration and the in vivo infiltration path, drug screening, and kinetics of progression of GBM tumors.
Collapse
Affiliation(s)
- Italo Rodrigo Calori
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Samara Rodrigues Alves
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.,School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China
| |
Collapse
|
42
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
43
|
Spiaggia G, Taladriz-Blanco P, Septiadi D, Ortuso RD, Lee A, Trappe V, Rothen-Rutishauser B, Petri-Fink A. Aligned and Oriented Collagen Nanocomposite Fibers as Substrates to Activate Fibroblasts. ACS APPLIED BIO MATERIALS 2021; 4:8316-8324. [PMID: 35005948 DOI: 10.1021/acsabm.1c00844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purified collagen possesses weak mechanical properties, hindering its broad application in tissue engineering. Strategies based on manipulating the hydrogel to induce fiber formation or incorporate nanomaterials have been proposed to overcome this issue. Herein, we use a microfluidic device to fabricate, for the first time, collagen hydrogels with aligned and oriented fibers doped with gold nanoparticles and carbon nanotubes. Results based on rheology, atomic force microscopy, and scanning electron microscopy reveal the formation of aligned and oriented collagen fibers possessing greater rigidity and stiffness on the doped hydrogels in comparison with native collagen. The mechanical properties of the hydrogels increased with the nanomaterial loading percentage and the stiffest formulations were those prepared in the presence of carbon nanotubes. We further evaluate the in vitro response of NIH-3T3 fibroblasts to the change in stiffness. The cells were found to be viable on all substrates with directional cell growth observed for the carbon nanotube-doped collagen fibers. No significant differences in the cell area, aspect ratio, and intensification of focal adhesions driven by the increase in stiffness were noted. Nonetheless, fibroblast proliferation and secretion of TGF-β1 were greater on the hydrogels doped with carbon nanotubes. This nanomaterial-collagen composite provides unique features for cell and tissue substrate applications.
Collapse
Affiliation(s)
- Giovanni Spiaggia
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Patricia Taladriz-Blanco
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Dedy Septiadi
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Roberto Diego Ortuso
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Aaron Lee
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Veronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, Université de Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.,Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| |
Collapse
|
44
|
Kolasa M, Galita G, Majsterek I, Kucharska E, Czerczak K, Wasko J, Becht A, Fraczyk J, Gajda A, Pietrzak L, Szymanski L, Krakowiak A, Draczynski Z, Kolesinska B. Screening of Self-Assembling of Collagen IV Fragments into Stable Structures Potentially Useful in Regenerative Medicine. Int J Mol Sci 2021; 22:13584. [PMID: 34948383 PMCID: PMC8708666 DOI: 10.3390/ijms222413584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1β1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.
Collapse
Affiliation(s)
- Marcin Kolasa
- General Command of the Polish Armed Forces, Medical Division, Zwirki i Wigury 103/105, 00-912 Warsaw, Poland;
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (G.G.); (I.M.)
| | - Ewa Kucharska
- Department Geriatrics and Social Work, Jesuit University Ignatianum in Cracow, Kopernika 26, 31-501 Krakow, Poland;
| | - Katarzyna Czerczak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Joanna Wasko
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Angelika Becht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Anna Gajda
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| | - Lukasz Pietrzak
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Lukasz Szymanski
- Institute of Mechatronics and Information Systems, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, Stefanowskiego 18/22, 90-924 Lodz, Poland; (L.P.); (L.S.)
| | - Agnieszka Krakowiak
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Department of Bioorganic Chemistry, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Zbigniew Draczynski
- Institute of Material Sciences of Textiles and Polymer Composites, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland;
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.); (J.W.); (A.B.); (J.F.); (A.G.)
| |
Collapse
|
45
|
Hu C, Liu W, Long L, Wang Z, Yuan Y, Zhang W, He S, Wang J, Yang L, Lu L, Wang Y. Microenvironment-responsive multifunctional hydrogels with spatiotemporal sequential release of tailored recombinant human collagen type III for the rapid repair of infected chronic diabetic wounds. J Mater Chem B 2021; 9:9684-9699. [PMID: 34821252 DOI: 10.1039/d1tb02170b] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recently, the incidence of chronic diabetic wounds increases continuously, and the existing clinical treatment is less effective. Thus, it is an urgent need to solve these problems for better clinical treatment effects. Herein, we prepared a brand-new tailored recombinant human collagen type III (rhCol III) and constructed a multifunctional microenvironment-responsive hydrogel carrier based on multifunctional antibacterial nanoparticles (PDA@Ag NPs) and our tailored rhCol III. The multifunctional smart hydrogel disintegrated quickly at the chronic diabetic wound sites and achieved the programed on-demand release of different therapeutic substances. The first released PDA@Ag NPs showed great antibacterial properties against S. aureus and E. coli. They could kill bacteria rapidly, and also showed antioxidant and anti-inflammatory effects at the wound site. The subsequent release of our tailored rhCol III could promote the proliferation and migration of mouse fibroblasts and endothelial cells during the proliferation and remodeling process of wound healing. Relevant results showed that the multifunctional smart hydrogel could promote the expression levels of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), decrease the inflammatory response, accelerate the deposition of collagen and increase cell proliferation and angiogenesis, thereby speeding up the healing of infected chronic wounds. In a word, the hydrogel, which took into consideration the complex microenvironment at the wound site and multi-stage healing process, could achieve programmed and responsive release of different therapeutic substances to meet the treatment needs in different wound healing stages. More importantly, our work illustrated the great application potential of our brand-new rhCol III in promoting chronic wound repair and regeneration.
Collapse
Affiliation(s)
- Cheng Hu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Wenqi Liu
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Linyu Long
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Yihui Yuan
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Wen Zhang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - ShuYi He
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Jian Wang
- Shanxi Jinbo Biomedicine Co., Ltd, Taiyuan 030000, People's Republic of China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan-Jinbo Joint Research Center, Fudan University, Shanghai 200302, People's Republic of China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu 610064, People's Republic of China.
| |
Collapse
|
46
|
Meng Z, Wang L, Shen L, Li Z, Zhao Z, Wang X. Supercritical carbon dioxide assisted fabrication of biomimetic sodium alginate/silk fibroin nanofibrous scaffolds. J Appl Polym Sci 2021. [DOI: 10.1002/app.51421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhi‐Yuan Meng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Lin‐Yi Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Ze‐Hao Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| | - Xin‐Yu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan China
- Biomedical Materials and Engineering Research Center of Hubei Province Wuhan University of Technology Wuhan China
| |
Collapse
|
47
|
Pien N, Pezzoli D, Van Hoorick J, Copes F, Vansteenland M, Albu M, De Meulenaer B, Mantovani D, Van Vlierberghe S, Dubruel P. Development of photo-crosslinkable collagen hydrogel building blocks for vascular tissue engineering applications: A superior alternative to methacrylated gelatin? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112460. [PMID: 34702535 DOI: 10.1016/j.msec.2021.112460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
The present work targets the development of collagen-based hydrogel precursors, functionalized with photo-crosslinkable methacrylamide moieties (COL-MA), for vascular tissue engineering (vTE) applications. The developed materials were physico-chemically characterized in terms of crosslinking kinetics, degree of modification/conversion, swelling behavior, mechanical properties and in vitro cytocompatibility. The collagen derivatives were benchmarked to methacrylamide-modified gelatin (GEL-MA), due to its proven track record in the field of tissue engineering. To the best of our knowledge, this is the first paper in its kind comparing these two methacrylated biopolymers for vTE applications. For both gelatin and collagen, two derivatives with varying degrees of substitutions (DS) were developed by altering the added amount of methacrylic anhydride (MeAnH). This led to photo-crosslinkable derivatives with a DS of 74 and 96% for collagen, and a DS of 73 and 99% for gelatin. The developed derivatives showed high gel fractions (i.e. 74% and 84%, for the gelatin derivatives; 87 and 83%, for the collagen derivatives) and an excellent crosslinking efficiency. Furthermore, the results indicated that the functionalization of collagen led to hydrogels with tunable mechanical properties (i.e. storage moduli of [4.8-9.4 kPa] for the developed COL-MAs versus [3.9-8.4 kPa] for the developed GEL-MAs) along with superior cell-biomaterial interactions when compared to GEL-MA. Moreover, the developed photo-crosslinkable collagens showed superior mechanical properties compared to extracted native collagen. Therefore, the developed photo-crosslinkable collagens demonstrate great potential as biomaterials for vTE applications.
Collapse
Affiliation(s)
- Nele Pien
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium; Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Francesco Copes
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Margot Vansteenland
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Madalina Albu
- Department of Collagen Research, National Research & Development Institute for Textiles and Leather, Str. Patrascanu Lucretiu, 16, Bucuresti-Sector 3, Bucuresti 030508, București, Romania
| | - Bruno De Meulenaer
- Research Group Food Chemistry and Human Nutrition, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, Block B, 9000 Gent, Belgium
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, CRC-I, Laval University, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Ghent University, Krijgslaan 281 S4bis, 9000 Gent, Belgium.
| |
Collapse
|
48
|
Priyadarshini P, Samuel S, Kurkalli BG, Kumar C, Kumar BM, Shetty N, Shetty V, Vishwanath K. In vitro Comparison of Adipogenic Differentiation in Human Adipose-Derived Stem Cells Cultured with Collagen Gel and Platelet-Rich Fibrin. Indian J Plast Surg 2021; 54:278-283. [PMID: 34667511 PMCID: PMC8515341 DOI: 10.1055/s-0041-1733810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background:
Adipose-derived stem cells (ADSCs) are the most preferred cell type, based on their phenotypic characteristics, plasticity, and favorable immunological properties for applications in soft-tissue augmentation. Hence, the present in vitro study was aimed to evaluate the adipogenic differentiation potential of human ADSCs upon culturing individually with collagen gel and platelet-rich fibrin (PRF).
Materials and methods:
The collected lipoaspirate was used for establishing ADSCs using enzymatic digestion method. Then, the cells were analyzed for their morphology, viability, proliferation rate, population doubling time (PDT), colony-forming ability, cell surface markers expression, and osteogenic differentiation as biological properties. Further, ADSCs were evaluated for their adipogenicity using induction media alone, and by culturing with collagen gel and PRF individually for prospective tissue augmentation.
Results:
ADSCs were successfully established in vitro and exhibited a fibroblast-like morphology throughout the culture period. Cells had higher viability, proliferation potential and showed their ability to form colonies. The positive expression of cell surface markers and osteogenic ability confirmed the potency of ADSCs. The ADSCs cultured on collagen gel and PRF, individually, showed higher number of differentiated adipocytes than ADSCs grown with adipogenic induction medium alone.
Conclusion:
The extent of lipid accumulation by ADSCs was slightly higher when cultured on collagen gel than on PRF. Additional experiments are required to confirm better suitability of scaffold materials for soft-tissue regeneration.
Collapse
Affiliation(s)
- Pallavi Priyadarshini
- Department of Oral and Maxillofacial Surgery, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Nitte University (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Soumi Samuel
- Department of Oral and Maxillofacial Surgery, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Nitte University (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Basan Gowda Kurkalli
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Chethan Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Basavarajappa Mohana Kumar
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Nikhil Shetty
- Department of Plastic Surgery, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Veena Shetty
- Nitte University Centre for Stem Cell Research and Regenerative Medicine, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| | - Karthik Vishwanath
- Department of Plastic Surgery, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Deralakatte-575018, Mangaluru, India
| |
Collapse
|
49
|
Guizzardi R, Zamuner A, Brun P, Dettin M, Natalello A, Cipolla L. Thymosin‐β4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Guizzardi
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
- Present address: Tecnoservizi ambientali s.r.l
| | - Annj Zamuner
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Paola Brun
- Dept. of Molecular Medicine University of Padova Via Gabelli, 63 35121 Padova Italy
| | - Monica Dettin
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Antonino Natalello
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| | - Laura Cipolla
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| |
Collapse
|
50
|
Guo L, Liang Z, Yang L, Du W, Yu T, Tang H, Li C, Qiu H. The role of natural polymers in bone tissue engineering. J Control Release 2021; 338:571-582. [PMID: 34481026 DOI: 10.1016/j.jconrel.2021.08.055] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/31/2022]
Abstract
Bone is a dynamic self-healing organ and a continuous remodeling ensures the restoration of the bone structure and function over time. However, bone remodeling is not able to repair large traumatic injuries. Therefore, surgical interventions and bone substitutes are required. The aim of bone tissue engineering is to repair and regenerate tissues and engineered a bone graft as a bone substitute. To met this goal, several natural or synthetic polymers have been used to develop a biocompatible and biodegradable polymeric construct. Among the polymers, natural polymers have higher biocompatibility, excellent biodegradability, and no toxicity. So far, collagen, chitosan, gelatin, silk fibroin, alginate, cellulose, and starch, alone or in combination, have been widely used in bone tissue engineering. These polymers have been used as scaffolds, hydrogels, and micro-nanospheres. The functionalization of the polymer with growth factors and bioactive glasses increases the potential use of polymers for bone regeneration. As bone is a dynamic highly vascularized tissue, the vascularization of the polymeric scaffolds is vital for successful bone regeneration. Several in vivo and in vitro strategies have been used to vascularize the polymeric scaffolds. In this review, the application of the most commonly used natural polymers is discussed.
Collapse
Affiliation(s)
- Linqi Guo
- Department of General Surgery, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Zhihui Liang
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi 154000, China
| | - Liang Yang
- Department of Orthopaedics, The People's Hospital of Daqing, Daqing 163000, China
| | - Wenyan Du
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Tao Yu
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Huayu Tang
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Changde Li
- Department of Orthopaedics, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, China
| | - Hongbin Qiu
- Department of Public Health, Jiamusi University, Jiamusi, 154000, China.
| |
Collapse
|