1
|
Huang H, Li M, Gu J, Roy S, Jin J, Kuang T, Zhang Y, Hu G, Guo B. Bright NIR-II emissive cyanine dye-loaded lipoprotein-mimicking nanoparticles for fluorescence imaging-guided and targeted NIR-II photothermal therapy of subcutaneous glioblastoma. J Nanobiotechnology 2024; 22:788. [PMID: 39710705 DOI: 10.1186/s12951-024-03074-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Cyanine dye-containing nanoparticles have widely been used in "all-in-one" NIR fluorescence imaging (FI)-guided photothermal therapy (PTT) because of their intrinsically large extinction coefficient and available physical and chemical modulation methods to tune absorption and emission wavelengths. The combination of good brightness and excellent tumor-targeting capacity is the key to realize efficient NIR-II FI-guided PTT. In this study, by covalently decorating NIR-II absorptive cyanine dyes with bulky AIE motify, we demonstrate how steric hindrance suppresses π-π stacking-induced fluorescence quenching and contributes to the good brightness of NIR-II FI of subcutaneous glioblastoma. The resulting cyanine dye (C12-TPAE) is 5 times brighter than the original cyanine dye in the formulated liposomal nanoparticles and C12-TPAE-AL has a high photothermal conversion efficiency of 62.4%, with good colloidal and light stability. Importantly, the ApoE peptide is absorbed on the liposomal surface, yielding lipoprotein-mimicking nanoparticles, which achieve active targeting of glioblastoma and efficient FI-guided PTT without tumor recurrence without any side effects on normal organs (heart, kidneys, liver, spleen, or lung). This research highlights a facile design route for bright NIR-II emissive and NIR-II photothermal cyanine dyes and indicates that cyanine dye-containing biomimetic theranostic nanoplatforms are promising candidates for future precision therapy.
Collapse
Affiliation(s)
- Haiyan Huang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Menlong Li
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jingsi Gu
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Shubham Roy
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Jian Jin
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ting Kuang
- Education Center and Experiments and Innovations, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Yinghe Zhang
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2024; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
3
|
Wang X, Zhang X, Zheng G, Dong M, Huang Z, Lin L, Yan K, Zheng J, Wang J. Mitochondria-targeted pentacyclic triterpene NIR-AIE derivatives for enhanced chemotherapeutic and chemo-photodynamic combined therapy. Eur J Med Chem 2024; 264:115975. [PMID: 38039788 DOI: 10.1016/j.ejmech.2023.115975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Complexes formed by combining pentacyclic triterpenes (PTs) with Aggregation-Induced Emission luminogens (AIEgens), termed pentacyclic triterpene-aggregation induced emission (PT-AIEgen) complexes, merge the chemotherapeutic properties of PTs with the photocytotoxicity of AIEgens. In this study, we synthesized derivatives by connecting three types of triphenylamine (TPA) pyridinium derivatives with three common pentacyclic triterpenes. Altering the connecting group between the electron donor TPA and the electron acceptor pyridinium resulted in increased production of reactive oxygen species (ROS) by PT-AIEgens and a red-shift in their fluorescence emission spectra. Importantly, the fluorescence emission spectra of BA-3, OA-3, and UA-3 extended into the near-infrared (NIR) range, enabling NIR-AIE imaging of the sites where the derivatives aggregated. The incorporation of the pyridinium structure improved the mitochondrial targeting of PT-AIEgens, enhancing mitochondrial pathway-mediated cell apoptosis and improving the efficiency of chemotherapy (CT) and chemo-photodynamic combined therapy (CPCT) both in vivo and in vitro. Cellular fluorescence imaging demonstrated rapid cellular uptake and mitochondrial accumulation of BA-1 (-2, -3). Cell viability experiments revealed that BA-1 (-2), OA-1 (-2), and UA-1 (-2) exhibited superior CT cytotoxicity compared to their parent drugs, with BA-1 showing the most potent inhibitory effect on HeLa cells (IC50 = 1.19 μM). Furthermore, HeLa cells treated with BA-1 (1 μM), BA-2 (1.25 μM), and BA-3 (1 μM) exhibited survival rates of 2.99 % ± 0.05 % μM, 5.92 % ± 2.04 % μM, and 2.53 % ± 0.73 % μM, respectively, under white light irradiation. Mechanistic experiments revealed that derivatives induced cell apoptosis via the mitochondrial apoptosis pathway during both CT and CPCT. Remarkably, BA-1 and BA-3 in CPCT inhibited cancer cell proliferation in an in vivo melanoma mouse xenograft model. These results collectively encourage further research of PT-AIEgens as potential anticancer agents.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Xuewei Zhang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Guoxing Zheng
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Mingming Dong
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Zhaopeng Huang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Liyin Lin
- Central Laboratory, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Kang Yan
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Jinhong Zheng
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China
| | - Jinzhi Wang
- Department of Chemistry, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, PR China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, PR China.
| |
Collapse
|
4
|
Zhu W, Huang L, Wu C, Liu L, Li H. Reviewing the evolutive ACQ-to-AIE transformation of photosensitizers for phototheranostics. LUMINESCENCE 2023. [PMID: 38148620 DOI: 10.1002/bio.4655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Photodynamic therapy (PDT) represents an emerging noninvasive treatment technique for cancers and various nonmalignant diseases, including infections. During the process of PDT, the physical and chemical properties of photosensitizers (PSs) critically determine the effectiveness of PDT. Traditional PSs have made great progress in clinical applications. One of the challenges is that traditional PSs suffer from aggregation-caused quenching (ACQ) due to their discotic structures. Recently, aggregation-induced emission PSs (AIE-PSs) with a twisted propeller-shaped conformation have been widely concerned because of high reactive oxygen species (ROS) generation efficiency, strong fluorescence efficiency, and resistance to photobleaching. However, AIE-PSs also have some disadvantages, such as short absorption wavelengths and insufficient molar absorption coefficient. When the advantages and disadvantages of AIE-PSs and ACQ-PSs are complementary, combining ACQ-PSs and AIE-PSs is a "win-to-win" strategy. As far as we know, the conversion of traditional representative ACQ-PSs to AIE-PSs for phototheranostics has not been reviewed. In the review, we summarize the recent progress on the ACQ-to-AIE transformation of PSs and the strategies to achieve desirable theranostic applications. The review would be helpful to design more efficient ACQ-AIE-PSs in the future and to accelerate the development and clinical application of PDT.
Collapse
Affiliation(s)
- Wei Zhu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
- Zhejiang Shengfa Textiles Printing and Dyeing Co., Ltd., Huzhou, China
| | - Lin Huang
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chao Wu
- College of Textiles Science and Engineering (International Silk Institute), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lingli Liu
- Transfar Zhilian Co. Ltd., Hangzhou, China
| | - Haoxuan Li
- Key Laboratory of Eco-Textiles (Ministry of Education), Nonwoven Technology Laboratory, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
6
|
Yu L, Lee KW, Zhao YQ, Xu Y, Zhou Y, Li M, Kim JS. Metal Modulation: An Effortless Tactic for Refining Photoredox Catalysis in Living Cells. Inorg Chem 2023; 62:18767-18778. [PMID: 37905835 DOI: 10.1021/acs.inorgchem.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The remarkable impact of photoredox catalytic chemistries has sparked a wave of innovation, opening doors to novel biotechnologies in the realm of catalytic antitumor therapy. Yet, the quest for novel photoredox catalysts (PCs) suitable for living systems, or the enhancement of catalytic efficacy in existing biocompatible PC systems, persists as a formidable challenge. Within this context, we introduce a readily applicable metal modulation strategy that significantly augments photoredox catalysis within living cells, exemplified by a set of metalloporphyrin complexes termed M-TCPPs (M = Zn, Mn, Ni, Co, Cu). Among these complexes, Zn-TCPP emerges as an exceptional catalyst, displaying remarkable photocatalytic activity in the oxidation of nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADPH), and specific amino acids. Notably, comprehensive investigations reveal that Zn-TCPP's superior catalytic prowess primarily arises from the establishment of an efficient oxidative cycle for PC, in contrast to previously reported PCs engaged in reductive cycles. Moreover, theoretical calculations illuminate that amplified intersystem crossing rates and geometry alterations in Zn-TCPP contribute to its heightened photocatalytic performance. In vitro studies demonstrated that Zn-TCPP exhibits therapeutic potential and is found to be effective for photocatalytic antitumor therapy in both glioblastoma G98T cells and 3D multicellular spheroids. This study underscores the transformative role of "metal modulation" in advancing high-performance PCs for catalytic antitumor therapy, marking a significant stride toward the realization of this innovative therapeutic approach.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Kyung-Woo Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Yu-Qiang Zhao
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yunjie Xu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Ying Zhou
- College of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Mingle Li
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02856, Republic of Korea
| |
Collapse
|
7
|
Gikonyo B, Liu F, Hawila S, Demessence A, Baldovi HG, Navalón S, Marichy C, Fateeva A. Porphyrin-Based MOF Thin Film on Transparent Conducting Oxide: Investigation of Growth, Porosity and Photoelectrochemical Properties. Molecules 2023; 28:5876. [PMID: 37570847 PMCID: PMC10421013 DOI: 10.3390/molecules28155876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Synthesizing metal-organic frameworks (MOFs) composites with a controlled morphology is an important requirement to access materials of desired patterning and composition. Since the last decade, MOF growth from sacrificial metal oxide layer is increasingly developed as it represents an efficient pathway to functionalize a large number of substrates. In this study, porphyrin-based Al-PMOF thin films were grown on conductive transparent oxide substrates from sacrificial layers of ALD-deposited alumina oxide. The control of the solvent composition and the number of atomic layer deposition (ALD) cycles allow us to tune the crystallinity, morphology and thickness of the produced thin films. Photophysical studies evidence that Al-PMOF thin films present light absorption and emission properties governed by the porphyrinic linker, without any quenching upon increasing the film thickness. Al-PMOF thin films obtained through this methodology present a remarkably high optical quality both in terms of transparency and coverage. The porosity of the samples is demonstrated by ellipsometry and used for Zn(II) insertion inside the MOF thin film. The multifunctional transparent, porous and luminescent thin film grown on fluorine-doped tin oxide (FTO) is used as an electrode capable of photoinduced charge separation upon simulated sunlight irradiation.
Collapse
Affiliation(s)
- Ben Gikonyo
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Fangbing Liu
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Saly Hawila
- Université Lyon, Université Claude Bernard Lyon 1, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR CNRS 5256, F-69626 Villeurbanne, France (A.D.)
| | - Aude Demessence
- Université Lyon, Université Claude Bernard Lyon 1, Institut de Recherches sur la Catalyse et l’Environnement de Lyon (IRCELYON), UMR CNRS 5256, F-69626 Villeurbanne, France (A.D.)
| | - Herme G. Baldovi
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; (H.G.B.); (S.N.)
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, 46022 Valencia, Spain; (H.G.B.); (S.N.)
| | - Catherine Marichy
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, F-69622 Villeurbanne, France
| | - Alexandra Fateeva
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Kumar A, Mondal A, Douglass ME, Francis DJ, Garren MR, Estes Bright LM, Ghalei S, Xie J, Brisbois EJ, Handa H. Nanoarchitectonics of nitric oxide releasing supramolecular structures for enhanced antibacterial efficacy under visible light irradiation. J Colloid Interface Sci 2023; 640:144-161. [PMID: 36842420 PMCID: PMC10081829 DOI: 10.1016/j.jcis.2023.02.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Light-controlled therapies offer a promising strategy to prevent and suppress infections caused by numerous bacterial pathogens. Excitation of exogenously supplied photosensitizers (PS) at specific wavelengths elicits levels of reactive oxygen intermediates toxic to bacteria. Porphyrin-based supramolecular nanostructure frameworks (SNF) are effective PS with unique physicochemical properties that have led to their widespread use in photomedicine. Herein, we developed a nitric oxide (NO) releasing, biocompatible, and stable porphyrin-based SNF (SNF-NO), which was achieved through a confined noncovalent self-assembly process based on π-π stacking. Characterization of the SNFs via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showed the formation of three-dimensional, well-defined octahedral structures. These SNF-NO were shown to exhibit a red shift due to the noncovalent self-assembly of porphyrins, which also show extended light absorption to broadly cover the entire visible light spectrum to enhance photodynamic therapy (PDT). Under visible light irradiation (46 J cm-2), the SNF generates high yields of singlet oxygen (1O2) radicals, hydroxyl radicals (HO), superoxide radicals (O2), and peroxynitrite (ONOO-) radicals that have shown potential to enhance antimicrobial photodynamic therapy (APDT) against Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli (E. coli). The resulting SNFs also exhibit significant biofilm dispersion and a decrease in biomass production. The combination of robust photosensitizer SNFs with nitric oxide-releasing capabilities is dynamic in its ability to target pathogenic infections while remaining nontoxic to mammalian cells. The engineered SNFs have enormous potential for treating and managing microbial infections.
Collapse
Affiliation(s)
- Anil Kumar
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Arnab Mondal
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Megan E Douglass
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Divine J Francis
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Mark R Garren
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Lori M Estes Bright
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Sama Ghalei
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States
| | - Hitesh Handa
- School of Chemical Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
9
|
Hu X, Wu X, Xiong Z, Wang XT, Wang AJ, Yuan PX, Zhao T, Feng JJ. In situ electrostatic assembly of porphyrin as enhanced PEC photosensitizer for bioassay of single HCT-116 cells via competitive reaction. Biosens Bioelectron 2023; 236:115405. [PMID: 37267689 DOI: 10.1016/j.bios.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Nowadays, synthesis of novel organic photosensitizer is imperative but challenging for photoelectrochemical (PEC) assay in analytical and biomedical fields. In this work, the PEC responses enhanced about 4.3 folds after in situ electrostatic assembly of 1-butyl-3-methylimidazole tetrafluoroborate ([BIm][BF4]) on meso-tetra (4-carboxyphenyl) porphine (TP), which was first covalently linked with NH2 modified indium tin oxide electrode ([BIm]+--TP-NH2-ITO). Moreover, the [BIm]+--TP-NH2-ITO showed a much larger photocurrent in a water/dimethyl sulfoxide (DMSO) binary solvent with a water fraction (fw) of 90%, which displayed 6.7-fold increase over that in pure DMSO, coupled by discussing the PEC enhanced mechanism in detail. Then, the PEC signals were sharply quenched via a competitive reaction between magnetic bead linked dsDNA (i.e., initial hybridization of aptamer DNA with linking DNA) and HCT-116 cells (closely associated with CRC), where the liberated L-DNA stripped the [BIm]+ from [BIm]+--TP-NH2-ITO. The PEC detection strategy exhibited a wider linear range (30 ∼ 3 × 105 cells mL-1) and a lower limit of detection (6 cells mL-1), achieving single-cell bioanalysis even in diluted human serum sample. The in situ assembly strategy offers a valuable biosensing platform to amplify the PEC signals with advanced organic photosensitizer for early diagnosis of tumors.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiajunpeng Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin-Tao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tiejun Zhao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
10
|
Tian Y, Zhang R, Guan B, Zhu Y, Chen L. Oxydextran-based photodynamic antibacterial nanoplatform with broad-Spectrum antibacterial activity. Int J Biol Macromol 2023; 236:123917. [PMID: 36871681 DOI: 10.1016/j.ijbiomac.2023.123917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
The compounding of polysaccharide macromolecules and antibacterial agents always has been the preferred strategy to prepare antibacterial products, attracting increasing interest. Herein, a novel acid-responsive oxidized dextran-based nanoplatform (OTP NP) has been fabricated for photodynamic antibacterial therapy by combing photosensitizer monoaminoporphyrin (TPP-NH2) with oxidized dextran (ODex) via the Schiff Base reaction. OTP NP of about 100 nm is composed of an inner hydrophobic core of 30 nm and peripheral polysaccharide macromolecules. The OTP NP killed 99.9 % of E. coli and S. aureus within 1.5 light cycles at a concentration of 200 μg/mL. Concurrently, OTP NP exhibited excellent cytocompatibility at a concentration of 1 mg/mL (about 5 folds bactericidal concentration). Particularly, except for the recognized antibacterial mechanism of photodynamic therapy, a novel mechanism of bacterial membrane damage was discovered: the bacterial cell membrane was peeled off and formed spherical particles that aggregated around the bacteria to accelerate bacterial apoptosis under the combined action of ROS and nanomaterials. Moreover, the slightly soluble drug levofloxacin (Lev) as a model drug was loaded into OTP NP to test its carrier function, providing a practicable strategy to design multifunctional polysaccharide-based photodynamic antibacterial materials.
Collapse
Affiliation(s)
- Yongchang Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Rong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Binbin Guan
- Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Yaowei Zhu
- Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China.
| |
Collapse
|
11
|
Zhang S, Wang T, Wang X, Liao W, Wang X, Yuan Y, Chen G, Jia X. A novel aggregation-induced emission fluorescent probe with large Stokes shift for sensitive detection of pH changes in live cells. LUMINESCENCE 2022; 37:2139-2144. [PMID: 36367244 DOI: 10.1002/bio.4407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The detection of intracellular pH is crucial for elucidating the pathological process of cancers, as well as for medical diagnostic applications. Here, we developed an aggregation-induced emission active pH-responsive fluorescent probe (TPE-DCP) for sensitively detecting cell pH changes. The probe shows obvious pH-sensing properties at ~615 nm, with a pKa value of 6.82 and a good linear pH response ranging from 8.5 to 4.5. TPE-DCP holds advantages such as excellent anti-interference performance, good photostability, and low cytotoxicity, and has been successfully used to image intracellular pH changes in cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Wei W, Qiu Z. Diagnostics and theranostics of central nervous system diseases based on aggregation-induced emission luminogens. Biosens Bioelectron 2022; 217:114670. [PMID: 36126555 DOI: 10.1016/j.bios.2022.114670] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Central nervous system (CNS) diseases include Alzheimer's disease (AD), Parkinson's disease (PD), brain tumors, strokes, and other important diseases that are harmful and fatal to human beings. CNS diseases have the characteristics of high fatality rates, difficult diagnosis, and costly treatment. The diagnosis and treatment of CNS diseases by molecular imaging are usually limited by the depth of tissue penetration and the blood-brain barrier (BBB). Therefore, it is still a huge challenge to distinguish between the lesion and the surrounding parenchymal boundary with high sensitivity and specificity. Compared with traditional fluorophores with aggregation-caused quenching effect, luminogens with aggregation-induced emission (AIE) characteristics have strong near-infrared deep penetration, large Stokes shift, excellent biocompatibility, light stability, and desirable BBB permeability. In view of this, developing novel AIE-based materials for diagnostics and theranostics of CNS diseases is promising and of great significance. Herein, we highlight the recent research progress in this field with a special focus on near-infrared imaging and AIE nanorobots for CNS diseases. The design principle of AIE probes is discussed in detail, and the outlook is presented as well.
Collapse
Affiliation(s)
- Weichen Wei
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, United States
| | - Zijie Qiu
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China; Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
13
|
Fareeha Ashfaq H, Ahmad K, Tariq M, Muhammad Asif H, Akram B, Mahboob Ahmed M, Khan R, Rani S, Saleem U. Synthesis of α-Anderson Polyoxometalates-Porphyrin Polymeric Hybrid as an Efficient Photosensitizer. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Qin Z, Gao C, Gao H, Wang T, Dong H, Hu W. Molecular doped, color-tunable, high-mobility, emissive, organic semiconductors for light-emitting transistors. SCIENCE ADVANCES 2022; 8:eabp8775. [PMID: 35857474 PMCID: PMC9269892 DOI: 10.1126/sciadv.abp8775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Developing high-mobility emissive organic semiconductors with tunable colors is crucial for organic light-emitting transistors (OLETs), a pivotal component of integrated optoelectronic devices, but remains a great challenge. Here, we demonstrate a series of color-tunable, high-mobility, emissive, organic semiconductors via molecular doping with a high-mobility organic semiconductor, 2,6-diphenylanthracene, as the host. The well-matched molecular structures and sizes with efficient energy transfer between the host and guest enable the intrinsically high charge transport with tunable colors. High mobility with the highest value >2 cm2 V-1 s-1 and strong emission with photoluminescence quantum yield >15.8% are obtained for these molecular-doped organic semiconductors. Last, a large color gamut for constructed OLETs is up to 59% National Television System Committee standard, meanwhile with an extremely high current density approaching 326.4 kA cm-2, showing great potential for full-color smart display, organic electrically pumped lasers and other related logic circuitries.
Collapse
Affiliation(s)
- Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haikuo Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
15
|
Facile construction of luminescent silicone elastomers from the compatibilization of porphyrins via the Piers-Rubinsztajn reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
17
|
Long-Term Fluorescent Tissue Marking Using Tissue-Adhesive Porphyrin with Polycations Consisting of Quaternary Ammonium Salt Groups. Int J Mol Sci 2022; 23:ijms23084218. [PMID: 35457034 PMCID: PMC9029083 DOI: 10.3390/ijms23084218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Localization of tumors during laparoscopic surgery is generally performed by locally injecting India ink into the submucosal layer of the gastrointestinal tract using endoscopy. However, the location of the tumor is obscured because of the black-stained surgical field and the blurring caused by India ink. To solve this problem, in this study, we developed a tissue-adhesive porphyrin with polycations consisting of quaternary ammonium salt groups. To evaluate the ability of tissue-adhesive porphyrin in vivo, low-molecular-weight hematoporphyrin and tissue-adhesive porphyrin were injected into the anterior wall of the exposed stomach in rats. Local injection of low-molecular-weight hematoporphyrin into the anterior wall of the stomach was not visible even after 1 day because of its rapid diffusion. In contrast, the red fluorescence of the tissue-adhesive porphyrin was visible even after 7 days due to the electrostatic interactions between the positively-charged moieties of the polycation in the tissue-adhesive porphyrin and the negatively-charged molecules in the tissue. In addition, intraperitoneal injection of tissue-adhesive porphyrin in rats did not cause adverse effects such as weight loss, hepatic or renal dysfunction, or organ adhesion in the abdominal cavity. These results indicate that tissue-adhesive porphyrin is a promising fluorescent tissue-marking agent.
Collapse
|
18
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
19
|
Li Y, Yuan J, Fang Y. Iron(II) Immobilized within a Metal-Organic Framework Mixed-Matrix Membrane as a H 2O 2 Turn-On Sensor. Inorg Chem 2022; 61:3103-3110. [PMID: 35132853 DOI: 10.1021/acs.inorgchem.1c03339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
H2O2 detection is closely relevant to human health; however, most of the H2O2 probes suffer from low accuracy and sensitivity because of the aggregating nature of solid sensors. In contrast, a mixed-matrix membrane (MMM) with high processability and flexibility is a suitable H2O2 probe to overcome these drawbacks. Herein, we fabricated MOF-based MMMs by using a robust UiO-66-(COOH)2 with carboxylate-chelating moieties, which were utilized for binding Fe (II) metal centers. The Fe (II)-immobilized MOF-MMM involved in a Fenton reaction when treated with H2O2, exhibiting a fluorescence turn-on property. Compared to the bulk-state MOF powder, the MOF-MMM sensor showed much-improved sensitivity (detection limit down to 0.0215 μM) because of the uniform dispersion of the probe and a sufficient contact with the analyte. This MOF-MMM sensor combinedly exhibited a turn-on fluorescence response and outstanding sensing properties with flexibility and processability, providing a novel platform suitable for practical sensing applications.
Collapse
Affiliation(s)
- Yanping Li
- College of Information Science and Engineering, Changsha Normal University, Changsha 410100, Hunan, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
- Engineering Research Center of Advanced Catalysis, Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Jiangpei Yuan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
- Engineering Research Center of Advanced Catalysis, Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| | - Yu Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, China
- Engineering Research Center of Advanced Catalysis, Ministry of Education, Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
20
|
Manav N, Singh R, Janaagal A, Yadav AKS, Pandey V, Gupta I. Synthesis, computational and optical studies of tetraphenylethene-linked Pd( ii)dipyrrinato complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02719d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Pd(ii)dipyrrinato complexes are synthesized and characterized. Their DFT and aggregation studies and photo-catalytic applications are reported.
Collapse
Affiliation(s)
- Neha Manav
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Rajvir Singh
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Anu Janaagal
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Amit Kumar Singh Yadav
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Vijayalakshmi Pandey
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj Campus, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
21
|
Wang X, Lin X, Li R, Wang Z, Liu W, Chen L, Chen N, Dai T, Sun S, Li Z, Hao J, Lin B, Xie L. Achieving Molecular Fluorescent Conversion from Aggregation-Caused Quenching to Aggregation-Induced Emission by Positional Isomerization. Molecules 2021; 27:193. [PMID: 35011426 PMCID: PMC8747061 DOI: 10.3390/molecules27010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, we synthesized a pair of positional isomers by attaching a small electron-donating pyrrolidinyl group at ortho- and para-positions of a conjugated core. These isomers exhibited totally different fluorescent properties. PDB2 exhibited obvious aggregation-induced emission properties. In contrast, PDB4 showed the traditional aggregation-caused quenching effect. Their different fluorescent properties were investigated by absorption spectroscopy, fluorescence spectroscopy, density functional theory calculations and single-crystal structural analysis. These results indicated that the substituent position of the pyrrolidinyl groups affects the twisted degree of the isomers, which further induces different molecular packing modes, thus resulting in different fluorescent properties of these two isomers. This molecular design concept provided a new accurate strategy for designing new aggregation-induced emission luminogens.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiang Lin
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Zexin Wang
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Wei Liu
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Liwei Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Nannan Chen
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| | - Tao Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
| | - Shitao Sun
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Jinle Hao
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.S.); (Z.L.); (J.H.)
| | - Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou 350007, China; (X.L.); (Z.W.); (W.L.); (L.C.); (N.C.)
| |
Collapse
|
22
|
Gong Y, Zhang M, Jia X, Yue B, Zhu L. Rigid Polymer Network-Based Autonomous Photoswitches Working in the Solid State Encoded by Room-Temperature Phosphorescence. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14398-14406. [PMID: 34851633 DOI: 10.1021/acs.langmuir.1c02347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autonomous molecular switches with self-recoverability are of great theoretical and experimental interest since they can avoid additional chemical or energy imposition during the working process. Due to the high energy barrier, however, the solid state is generally unfavorable for materials to exhibit the autonomous switch behavior. To promote the practical usage of the autonomous molecular switch, herein, we propose a prototype of an autonomous photoswitch that can work in the solid state based on a rigid polymer network. A hexacarboxylic sodium-modified hexathiobenzene compound was employed as a photoexcitation-driven unit, which can undergo molecular aggregation upon irradiation because of the distinct conformational difference between the ground state and the photoexcited state. Then, we selected a relatively rigid polymer named poly(dimethyldiallylammonium)chloride (PDDA) to complex with the hexacarboxylic sodium-modified hexathiobenzene through electrostatic coupling. Through optimization, the photoexcitation-controlled molecular aggregation and its self-recovery can work well in the solid matrix of PDDA under rhythmical photoirradiation. This process can be easily encoded by a self-recoverable room-temperature phosphorescence, featuring an excellent performance of the autonomous switch.
Collapse
Affiliation(s)
- Yifan Gong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaoyong Jia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, 475004 Kaifeng, P. R. China
| | - Bingbing Yue
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
23
|
Zhang Z, Sun Y, Zhao X, Jin N, Xi G, Zhang X, Cao J, Wu J, Fan X, Qin W. Novel isoindigo compound with aggregation-induced emission: Br-Br bonding joint restriction of intramolecular motion and cell imaging properties. SOFT MATTER 2021; 17:9866-9870. [PMID: 34724018 DOI: 10.1039/d1sm00935d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
6,6'-Dibromided tert-butyloxycarbonyl isoindigo (Br-TBOCII) has intense fluorescence in the solid state via excitation with aggregation-induced emission (AIE), contrary to the classic heavy-atom effect. The unique AIE mechanism is attributed to the Br-Br bonding joint restricting intramolecular motion. Furthermore, the water-soluble nanoparticles Br-TBOCII/Pluronic® 127, possess robust photostability, low toxicity and good cell imaging performance.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Taiyuan University of Technology, Taiyuan, Shanxi Province, 030024, P. R. China
- State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi Province, 030012, P. R. China
| | - Yu Sun
- Henan Cigarette Industry Tobacco Sheet Co., Ltd., Xuchang, Henan Province, 461000, P. R. China
| | - Xu Zhao
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan Province, 450000, P. R. China
| | - Nanxi Jin
- Sungkyunkwan University, Seoul City, Korea
| | - Gaolei Xi
- Technology Center for China Tobacco Henan Industrial Limited Company, Zhengzhou, Henan Province, 450000, P. R. China
| | - Xuedong Zhang
- State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi Province, 030012, P. R. China
| | - Jingjin Cao
- State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi Province, 030012, P. R. China
| | - Jia Wu
- State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi Province, 030012, P. R. China
| | - Xia Fan
- State Grid Shanxi Electric Power Research Institute, Taiyuan, Shanxi Province, 030012, P. R. China
| | - Wenping Qin
- Taiyuan University of Technology, Taiyuan, Shanxi Province, 030024, P. R. China
| |
Collapse
|
24
|
Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-Pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Ye YX, Chen XY, Yu YW, Zhang Q, Wei XW, Wang ZC, Wang BZ, Jiao QC, Zhu HL. A novel fast-response and highly selective AIEgen fluorescent probe for visualizing peroxynitrite in living cells, C. elegans and inflammatory mice. Analyst 2021; 146:6556-6565. [PMID: 34585179 DOI: 10.1039/d1an01374b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most of the ONOO- fluorescent probes have restricted applications because of their aggregation-caused quenching (ACQ) effect, long response time and low fluorescence enhancement. Herein, we developed a novel AIEgen fluorescent probe (PE-XY) based on a benzothiazole and quinolin scaffold with high sensitivity and selectivity for imaging of ONOO-. The results indicated that probe PE-XY exhibited fast response towards ONOO- with 2000-fold enhancement of fluorescence intensity ratio in vitro. Moreover, PE-XY exhibited a relatively high sensitivity (limit of detection: 8.58 nM), rapid response (<50 s), high fluorescence quantum yield (δ = 0.81) and excellent selectivity over other analytes towards ONOO-in vitro. Furthermore, PE-XY was successfully applied to detect endogenous ONOO- levels in living HeLa cells, C. elegans and inflammatory mice with low cytotoxicity. Overall, this work provided a novel fast-response and highly selective AIEgen fluorescent probe for real-time monitoring ONOO- fluctuations in living systems.
Collapse
Affiliation(s)
- Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Xin-Yue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Ya-Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Xiao-Wen Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Bao-Zhong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
26
|
Teixeira R, Serra VV, Botequim D, Paulo PMR, Andrade SM, Costa SMB. Fluorescence Spectroscopy of Porphyrins and Phthalocyanines: Some Insights into Supramolecular Self-Assembly, Microencapsulation, and Imaging Microscopy. Molecules 2021; 26:4264. [PMID: 34299539 PMCID: PMC8306603 DOI: 10.3390/molecules26144264] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
The molecular interactions of anionic tetrasulfonate phenyl porphyrin (TPPS) with poly(amido amine) (PAMAM) dendrimers of generation 2.0 and 4.0 (G2 and G4, respectively) forming H- or J-aggregates, as well as with human and bovine serum albumin proteins (HSA and BSA), were reviewed in the context of self-assembly molecular complementarity. The spectroscopic studies were extended to the association of aluminum phthtalocyanine (AlPCS4) detected with a PAMAM G4 dendrimer with fluorescence studies in both steady state and dynamic state, as well as due to the fluorescence quenching associated to electron-transfer with a distribution of lifetimes. The functionalization of TPPS with peripheral substituents enables the assignment of spontaneous pH-induced aggregates with different and well-defined morphologies. Other work reported in the literature, in particular with soft self-assembly materials, fall in the same area with particular interest for the environment. The microencapsulation of TPPS studies into polyelectrolyte capsules was developed quite recently and aroused much interest, which is well supported and complemented by the extensive data reported on the Imaging Microscopy section of the Luminescence of Porphyrins and Phthalocyanines included in the present review.
Collapse
Affiliation(s)
- Raquel Teixeira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Vanda Vaz Serra
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - David Botequim
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Pedro M R Paulo
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Suzana M Andrade
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Sílvia M B Costa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
27
|
Zhou T, Yin Y, Cai W, Wang H, Fan L, He G, Zhang J, Jiang M, Liu J. A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity. Carbohydr Polym 2021; 269:118242. [PMID: 34294284 DOI: 10.1016/j.carbpol.2021.118242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
To promote bactericidal activity, improve photostability and safety, novel antibacterial nanoparticle system based on photodynamic action (PDA) was prepared here through conjugation of photosensitizer hematoporphyrin (HP) onto carboxymethyl chitosan (CMCS) via amide linkage and followed by ultrasonic treatment. The system was stable in PBS (pH 7.4) and could effectively inhibit the photodegradation of conjugated HP because of aggregation-caused quenching effect. ROS produced by the conjugated HP under light exposure could change the structure of nanoparticles by oxidizing the CMCS skeleton and thereby significantly promote the photodynamic activity of HP and its photodynamic activity after 6 h was higher than that of HP·2HCl under the same conditions. Antibacterial experiments showed that CMCS-HP nanoparticles had excellent photodynamic antibacterial activity, and the bacterial inhibition rates after 60 min of light exposure were greater than 97%. Safety evaluation exhibited that the nanoparticles were safe to mammalian cells, showing great potential for antibacterial therapy.
Collapse
Affiliation(s)
- Ting Zhou
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yihua Yin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Rizhao Wuhan University of Technology Biomedicine and New Materials Research Institute, PR China.
| | - Weiquan Cai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, PR China.
| | - Haibo Wang
- Zhuhai Guojia New Materials Co., Ltd., Economic and Technological Development District, Zhuhai 519040, PR China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Rizhao Wuhan University of Technology Biomedicine and New Materials Research Institute, PR China
| | - Guanghua He
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengqing Jiang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jinsheng Liu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
28
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
29
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences Department of Chemistry Tianjin University Tianjin 300072 China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province College of Chemistry & Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
30
|
Zhang Y, Zhao Y, Han Z, Zhang R, Du P, Wu Y, Lu X. Switching the Photoluminescence and Electrochemiluminescence of Liposoluble Porphyrin in Aqueous Phase by Molecular Regulation. Angew Chem Int Ed Engl 2020; 59:23261-23267. [PMID: 32888252 DOI: 10.1002/anie.202010216] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/25/2020] [Indexed: 01/10/2023]
Abstract
By a facile peripheral decoration of 5-(4-aminophenyl)-10,15,20-triphenylporphyrin (ATPP) with inherent aggregation-induced emission (AIE) active tetraphenylethene (TPE), a versatile AIEgenic porphyrin derivative (ATPP-TPE) was obtained, which greatly abolishes the detrimental π-π stacking and thus surmounts the notorious aggregation-caused quenching (ACQ) effect of ATPP in aqueous phase. The photoluminescence of ATPP-TPE is 4.5-fold stronger than ATPP at aggregation state. Moreover, an unequivocal aggregation induced electrochemiluminescence (AIECL) of ATPP-TPE was found to be seriously dependent on its aggregation property in aqueous solution with efficiency of 34 %, which is 6 times higher than pure ATPP. The versatility of this molecular structure modulation strategy along with the ACQ-to-AIE transformation in this work provides direction to guide for applying liposoluble porphyrins in aqueous phase by designs of synthetic porphyrin AIEgens.
Collapse
Affiliation(s)
- Yinpan Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yaqi Zhao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Photoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Yanxia Wu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|
31
|
Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci Rep 2020; 10:12150. [PMID: 32699240 PMCID: PMC7376061 DOI: 10.1038/s41598-020-69133-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The colour of oyster shells is a very diverse characteristic morphotype, forming intriguing vivid patterns both on the inside and outside of the shell. In the present study, we have identified for the first time, the presence of several porphyrins as constituents of the shell pigmentation of the Crassostrea gigas oyster consumed worldwide. The precise molecular structures of halochromic, fluorescent and acid-soluble porphyrins, such as uroporphyrin and turacin, are unambiguously determined by reverse phase liquid chromatography combined with high resolution mass spectrometry. Their presence account for the purple colouration of shells but also for the dark colouration of adductor muscle scars. We have also defined the endogenous origin of these porphyrins, specifically secreted or accumulated by the shell forming tissue. These findings are pioneering analytical proofs of the existence of the haem pathway in the edible oyster Crassostrea gigas, evidenced by the chemical identification of haem side-products and supported by the recent publication of the corresponding oyster genome.
Collapse
|
32
|
Liu D, Wei JY, Tian WW, Jiang W, Sun YM, Zhao Z, Tang BZ. Endowing TADF luminophors with AIE properties through adjusting flexible dendrons for highly efficient solution-processed nondoped OLEDs. Chem Sci 2020; 11:7194-7203. [PMID: 33033608 PMCID: PMC7499814 DOI: 10.1039/d0sc02194f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
The amalgamation of thermally activated delayed fluorescence (TADF) and aggregation-induced emission (AIE) properties, termed AIE-TADF, is a promising strategy to design novel robust luminescent materials. Herein, we transform 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile (5CzBN) from an ACQ molecule into an AIEgen by simply decorating the 5CzBN core with alkyl chain-linked spirobifluorene dendrons. By increasing the number of flexible dendrons, these materials can not only show obvious AIE-TADF characteristics and uniform film morphology, but can also exhibit better resistance to isopropyl alcohol, which are beneficial to fully solution-processed OLEDs. Notably, 5CzBN-PSP shows great device efficiency with an external quantum efficiency (EQE), current efficiency and power efficiency of 20.1%, 58.7 cd A-1 and 46.2 lm W-1, respectively and achieved record-breaking efficiency in solution-processed nondoped OLEDs based on AIE emitters. This work demonstrates a general approach to explore new efficient emitters by the marriage of AIE and TADF which could potentially improve their performance in various areas.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Jing Yi Wei
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wen Wen Tian
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Wei Jiang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Yue Ming Sun
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research , Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing , 211189 , China .
| | - Zheng Zhao
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| |
Collapse
|
33
|
Tavakolian M, Jafari SM, van de Ven TGM. A Review on Surface-Functionalized Cellulosic Nanostructures as Biocompatible Antibacterial Materials. NANO-MICRO LETTERS 2020; 12:73. [PMID: 34138290 PMCID: PMC7770792 DOI: 10.1007/s40820-020-0408-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
As the most abundant biopolymer on the earth, cellulose has recently gained significant attention in the development of antibacterial biomaterials. Biodegradability, renewability, strong mechanical properties, tunable aspect ratio, and low density offer tremendous possibilities for the use of cellulose in various fields. Owing to the high number of reactive groups (i.e., hydroxyl groups) on the cellulose surface, it can be readily functionalized with various functional groups, such as aldehydes, carboxylic acids, and amines, leading to diverse properties. In addition, the ease of surface modification of cellulose expands the range of compounds which can be grafted onto its structure, such as proteins, polymers, metal nanoparticles, and antibiotics. There are many studies in which cellulose nano-/microfibrils and nanocrystals are used as a support for antibacterial agents. However, little is known about the relationship between cellulose chemical surface modification and its antibacterial activity or biocompatibility. In this study, we have summarized various techniques for surface modifications of cellulose nanostructures and its derivatives along with their antibacterial and biocompatibility behavior to develop non-leaching and durable antibacterial materials. Despite the high effectiveness of surface-modified cellulosic antibacterial materials, more studies on their mechanism of action, the relationship between their properties and their effectivity, and more in vivo studies are required.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Theo G M van de Ven
- Pulp and Paper Research Center, McGill University, Montreal, QC, H3A 0C7, Canada.
- Quebec Centre for Advanced Materials (QCAM/CQMF), Montreal, Canada.
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada.
| |
Collapse
|
34
|
Rabiee N, Yaraki MT, Garakani SM, Garakani SM, Ahmadi S, Lajevardi A, Bagherzadeh M, Rabiee M, Tayebi L, Tahriri M, Hamblin MR. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020; 232:119707. [PMID: 31874428 PMCID: PMC7008091 DOI: 10.1016/j.biomaterials.2019.119707] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022]
Abstract
Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the "pigments of life". They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery characteristics. Porphyrins can be used in a composite designed material with properties that allow specific targeting, immune tolerance, extended tissue lifetime and improved hydrophilicity. Drug delivery, healing and repairing of damaged organs, and cancer theranostics are some of the medical uses of porphyrin-based nanocomposites covered in this review.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | | | | | - Sepideh Ahmadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aseman Lajevardi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Mohammadreza Tahriri
- Department of Developmental Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
35
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Donnelly JL, Offenbartl-Stiegert D, Marín-Beloqui JM, Rizzello L, Battaglia G, Clarke TM, Howorka S, Wilden JD. Exploring the Relationship between BODIPY Structure and Spectroscopic Properties to Design Fluorophores for Bioimaging. Chemistry 2019; 26:863-872. [PMID: 31660647 DOI: 10.1002/chem.201904164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/25/2019] [Indexed: 12/17/2022]
Abstract
Designing chromophores for biological applications requires a fundamental understanding of how the chemical structure of a chromophore influences its photophysical properties. We here describe the synthesis of a library of BODIPY dyes, exploring diversity at various positions around the BODIPY core. The results show that the nature and position of substituents have a dramatic effect on the spectroscopic properties. Substituting in a heavy atom or adjusting the size and orientation of a conjugated system provides a means of altering the spectroscopic profiles with high precision. The insight from the structure-activity relationship was applied to devise a new BODIPY dye with rationally designed photochemical properties including absorption towards the near-infrared region. The dye also exhibited switch-on fluorescence to enable visualisation of cells with high signal-to-noise ratio without washing-out of unbound dye. The BODIPY-based probe is non-cytotoxic and compatible with staining procedures including cell fixation and immunofluorescence microscopy.
Collapse
Affiliation(s)
- Joanna L Donnelly
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Daniel Offenbartl-Stiegert
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - José M Marín-Beloqui
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Loris Rizzello
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Physics of Living System, University College London, Gower Street, London, WC1E 6BT, UK.,IBEC-Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Guiseppe Battaglia
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Physics of Living System, University College London, Gower Street, London, WC1E 6BT, UK.,IBEC-Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| | - Tracey M Clarke
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Stefan Howorka
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jonathan D Wilden
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.,Institute of Structural and Molecular Biology, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| |
Collapse
|
37
|
Espinar-Barranco L, Meazza M, Linares-Perez A, Rios R, Paredes JM, Crovetto L. Synthesis, Photophysics, and Solvatochromic Studies of an Aggregated-Induced-Emission Luminogen Useful in Bioimaging. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4932. [PMID: 31726748 PMCID: PMC6891498 DOI: 10.3390/s19224932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
Biological samples are a complex and heterogeneous matrix where different macromolecules with different physicochemical parameters cohabit in reduced spaces. The introduction of fluorophores into these samples, such as in the interior of cells, can produce changes in the fluorescence emission properties of these dyes, caused by the specific physicochemical properties of cells. This effect can be especially intense with solvatofluorochromic dyes, where changes in the polarity environment surrounding the dye can drastically change the fluorescence emission. In this article, we studied the photophysical behavior of a new dye and confirmed the aggregation-induced emission (AIE) phenomenon with different approaches, such as by using different solvent proportions, increasing the viscosity, forming micelles, and adding bovine serum albumin (BSA), through analysis of the absorption and steady-state and time-resolved fluorescence. Our results show the preferences of the dye for nonpolar media, exhibiting AIE under specific conditions through immobilization. Additionally, this approach offers the possibility of easily determining the critical micelle concentration (CMC). Finally, we studied the rate of spontaneous incorporation of the dye into cells by fluorescence lifetime imaging and observed the intracellular pattern produced by the AIE. Interestingly, different intracellular compartments present strong differences in fluorescence intensity and fluorescence lifetime. We used this difference to isolate different intracellular regions to selectively study these regions. Interestingly, the fluorescence lifetime shows a strong difference in different intracellular compartments, facilitating selective isolation for a detailed study of specific organelles.
Collapse
Affiliation(s)
- Laura Espinar-Barranco
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| | - Marta Meazza
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (M.M.); (R.R.)
| | - Azahara Linares-Perez
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071 Granada, Spain;
| | - Ramon Rios
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (M.M.); (R.R.)
| | - Jose Manuel Paredes
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| | - Luis Crovetto
- Department of Physical Chemistry, University of Granada, Unidad de Excelencia en Quimica Aplicada a Biomedicina y Medioambiente (UEQ), Cartuja Campus, 18071 Granada, Spain;
| |
Collapse
|
38
|
Wang Q, Chen Q, Jiang G, Xia M, Wang M, Li Y, Ma X, Wang J, Gu X. Highly-efficient photosensitizer based on AIEgen-decorated porphyrin for protein photocleaving. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Faustova M, Nikolskaya E, Sokol M, Zabolotsky A, Mollaev M, Zhunina O, Fomicheva M, Lobanov A, Severin E, Yabbarov N. High-effective reactive oxygen species inducer based on Mn-tetraphenylporphyrin loaded PLGA nanoparticles in binary catalyst therapy. Free Radic Biol Med 2019; 143:522-533. [PMID: 31520768 DOI: 10.1016/j.freeradbiomed.2019.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/09/2023]
Abstract
The mechanisms of binary catalyst therapy (BCT) and photodynamic therapy (PDT) are based on the formation of reactive oxygen species (ROS). This ROS formation results from specific chemical reactions. In BCT, light exposure does not necessarily initiate ROS formation and BCT application is not limited to regions of tissues that are accessible to illumination like photodynamic therapy (PDT). The principle of BCT is electron transition, resulting in the interaction of a transition metal complex (catalyst) and substrate molecule. MnIII- tetraphenylporphyrin chloride (MnClTPP) in combination with an ascorbic acid (AA) has been proposed as an appropriate candidate for cancer treatment regarding the active agents in BCT. The goal of this study was to determine whether MnClTPP in combination with AA would be a promising agent for BCT. The problem of used MnClTPP's, low solubility in water, was solved by MnClTPP loading into PLGA matrix. H2O2 produced during AA decomposition oxidized MnClTPP to high-reactive oxo-MnV species. MnClTPP in presence AA leads to the production of excessive ROS levels in vitro. ROS are mainly substrates of catalase and superoxide dismutase (H2O2 and O2●-). SOD1 and catalase were identified as the key players of the MnClTPP ROS-induced cell defense system. The cytotoxicity of MnClTPP-loaded nanoparticles (NPs) was greatly increased in the presence of specific catalase inhibitor (3-amino-1,2,4-triazole (3AT)) and superoxide dismutase 1 (SOD1) inhibitor (diethyldithiocarbamate (DDC)). Cell death resulted from the combined activation of caspase-dependent (caspase 3/9 system) and independent pathways, namely the AIF translocation to nuclei. Preliminary acute toxicity and in vivo anticancer studies have been revealed the safe and potent anticancer effect of PLGA-entrapped MnClTPP in combination with AA. The findings indicate that MnClTPP-loaded PLGA NPs are promising agents for BCT.
Collapse
Affiliation(s)
- Maria Faustova
- MIREA, Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454, Moscow, Russia
| | | | - Maria Sokol
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | | | - Murad Mollaev
- MIREA, Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454, Moscow, Russia
| | - Olga Zhunina
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia
| | - Margarita Fomicheva
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | - Anton Lobanov
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia
| | - Evgeniy Severin
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149, Moscow, Russia
| | - Nikita Yabbarov
- Semenov Institute of Chemical Physics, 119991, Moscow, Russia.
| |
Collapse
|
40
|
Guo H, Zheng S, Chen S, Han C, Yang F. A first porphyrin liquid crystal with strong fluorescence in both solution and aggregated states based on the AIE-FRET effect. SOFT MATTER 2019; 15:8329-8337. [PMID: 31566635 DOI: 10.1039/c9sm01174a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Porphyrins are good near-infrared fluorescent materials, but the strong self-assembly stacking resulted in the aggregation-caused quenching (ACQ) effect, limiting their emissive performance in aggregated states. In this work, a novel diphenylacrylonitrile-porphyrin derivative with multiple polyglycol chains on the periphery was designed and synthesized as an excellent near-infrared-emissive liquid crystalline material in both solution and aggregated states, which was first observed for porphyrin liquid crystals. It exhibited a high self-assembly ability with the ordered hexagonal columnar mesophase between 70 and 120 °C approximately. The strong AIE-FRET effect was produced based on the overlap of the emission wavelength of diphenylacrylonitrile and the absorption wavelength of the porphyrin, resulting in the excellent near-infrared emission in both solution and aggregated states. The pseudo Stokes shift was as large as 210 nm and the fluorescence quantum yield reached 0.12 in the solid state. Moreover, this porphyrin liquid crystal displayed low biotoxicity and excellent fluorescence bio-imaging ability in living cells, opening a new application prospect for porphyrin liquid crystalline materials.
Collapse
Affiliation(s)
- Hongyu Guo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China.
| | | | | | | | | |
Collapse
|
41
|
Facile fabrication and biological imaging applications of salicylaldehyde based fluorescent organic nanoparticles with aggregation-induced emission and ESIPT feature. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Bai T, Shao D, Chen J, Li Y, Xu BB, Kong J. pH-responsive dithiomaleimide-amphiphilic block copolymer for drug delivery and cellular imaging. J Colloid Interface Sci 2019; 552:439-447. [DOI: 10.1016/j.jcis.2019.05.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
|
43
|
Guo B, Feng Z, Hu D, Xu S, Middha E, Pan Y, Liu C, Zheng H, Qian J, Sheng Z, Liu B. Precise Deciphering of Brain Vasculatures and Microscopic Tumors with Dual NIR-II Fluorescence and Photoacoustic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902504. [PMID: 31169334 DOI: 10.1002/adma.201902504] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Indexed: 05/14/2023]
Abstract
Diagnostics of cerebrovascular structures and microscopic tumors with intact blood-brain barrier (BBB) significantly contributes to timely treatment of patients bearing neurological diseases. Dual NIR-II fluorescence and photoacoustic imaging (PAI) is expected to offer powerful strength, including good spatiotemporal resolution, deep penetration, and large signal-to-background ratio (SBR) for precise brain diagnostics. Herein, biocompatible and photostable conjugated polymer nanoparticles (CP NPs) are reported for dual-modality brain imaging in the NIR-II window. Uniform CP NPs with a size of 50 nm are fabricated from microfluidics devices, which show an emission peak at 1156 nm with a large absorptivity of 35.2 L g-1 cm-1 at 1000 nm. The NIR-II fluorescence imaging resolves hemodynamics and cerebral vasculatures with a spatial resolution of 23 µm at a depth of 600 µm. The NIR-II PAI enables successful noninvasive mapping of deep microscopic brain tumors (<2 mm at a depth of 2.4 mm beneath dense skull and scalp) with an SBR of 7.2 after focused ultrasound-induced BBB opening. This study demonstrates that CP NPs are promising contrast agents for brain diagnostics.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of OpticalScience and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of OpticalScience and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
44
|
Guo B, Chen J, Chen N, Middha E, Xu S, Pan Y, Wu M, Li K, Liu C, Liu B. High-Resolution 3D NIR-II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808355. [PMID: 31063244 DOI: 10.1002/adma.201808355] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/31/2019] [Indexed: 05/20/2023]
Abstract
Exogenous contrast-agent-assisted NIR-II optical-resolution photoacoustic microscopy imaging (ORPAMI) holds promise to decipher wide-field 3D biological structures with deep penetration, large signal-to-background ratio (SBR), and high maximum imaging depth to depth resolution ratio. Herein, NIR-II conjugated polymer nanoparticle (CP NP) assisted ORPAMI is reported for pinpointing cerebral and tumor vasculatures. The CP NPs exhibit a large extinction coefficient of 48.1 L g-1 at the absorption maximum of 1161 nm, with an ultrahigh PA sensitivity up to 2 µg mL-1 . 3D ORPAMI of wide-field mice ear allows clear visualization of regular vasculatures with a resolution of 19.2 µm and an SBR of 29.3 dB at the maximal imaging depth of 539 µm. The margin of ear tumor composed of torsional dense vessels among surrounding normal regular vessels can be clearly delineated via 3D angiography. In addition, 3D whole-cortex cerebral vasculatures with large imaging area (48 mm2 ), good resolution (25.4 µm), and high SBR (22.3 dB) at a depth up to 1001 µm are clearly resolved through the intact skull. These results are superior to the recently reported 3D NIR-II fluorescence confocal vascular imaging, which opens up new opportunities for NIR-II CP-NP-assisted ORPAMI in various biomedical applications.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingqin Chen
- CAS Key Laboratory of Health Informatics, Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Science, Shenzhen, 518055, China
| | - Ningbo Chen
- CAS Key Laboratory of Health Informatics, Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Ke Li
- CAS Key Laboratory of Health Informatics, Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Chengbo Liu
- CAS Key Laboratory of Health Informatics, Research Laboratory for Biomedical Optics and Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
45
|
Zheng N, Zhang Z, Kuang J, Wang C, Zheng Y, Lu Q, Bai Y, Li Y, Wang A, Song W. Poly(photosensitizer) Nanoparticles for Enhanced in Vivo Photodynamic Therapy by Interrupting the π-π Stacking and Extending Circulation Time. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18224-18232. [PMID: 31046231 DOI: 10.1021/acsami.9b04351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The natural planar and rigid structures of most of the hydrophobic photosensitizers (PSs) [such as tetraphenyl porphyrin (TPP)] significantly reduce their loading efficiencies in polymeric nanoparticles (NPs) because of the strong π-π interaction-induced aggregation. This aggregation-caused quenching will further reduce the quantum yield of singlet oxygen (1O2) generation and weaken the efficiency of photodynamic therapy (PDT). In addition, the small molecular PSs exhibit short tumor retention time and tend to be easily cleared once released. Herein, poly(TPP) NPs, prepared by cross-linking of reactive oxygen species degradable, thioketal linkers and TPP derivatives, followed by coprecipitation, were first developed with quantitative loading efficiency (>99%), uniform NP sizes (without aggregation), increased singlet oxygen quantum yield (ΦΔ = 0.79 in dimethyl sulfoxide compared with 0.52 for original TPP), increased in vitro phototoxicity, extended tumor retention time, light-triggered on-demand release, and enhanced in vivo antitumor efficacy, which comprehensively address the multiple issues for most of the PSs in the PDT area.
Collapse
Affiliation(s)
- Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| | - Zhiyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| | - Jia Kuang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| | - Chunsen Wang
- Department of Comparative Medicine Laboratory Animal Center , Dalian Medical University , No. 9 Lvshun South Road , Dalian , Liaoning 116000 , China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| | - Qing Lu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Bio-sensing and Chemometrics, Department of Chemistry , Hunan University Changsha , Hunan 410000 , China
| | - Yugang Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chem/Bio-sensing and Chemometrics, Department of Chemistry , Hunan University Changsha , Hunan 410000 , China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| | - Aiguo Wang
- Department of Comparative Medicine Laboratory Animal Center , Dalian Medical University , No. 9 Lvshun South Road , Dalian , Liaoning 116000 , China
| | - Wangze Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Linggong Rd. 2 , Dalian , Liaoning 116023 , China
| |
Collapse
|
46
|
Liu D, Cao Y, Yan X, Wang B. Two stimulus-responsive carbazole-substituted D–π–A pyrone compounds exhibiting mechanochromism and solvatochromism. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03742-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Abstract
Organic particles have attracted extensive attention due to their broad scientific and industrial applications. Solvents play important roles in producing organic particles with fine-tuned sizes, shapes, and surface morphologies, thus the advancement of microfluidic devices with a thorough understanding of solvent miscibility offers additional opportunities to fabricate organic particles in large quantities. In this issue of ACS Nano, Chen et al. report that solvents could play a seemingly magical role in switching both reaction directions and particle morphologies from the same starting materials. Through monitoring the particle formulation kinetics, both social self-sorting and narcissistic self-sorting mechanisms have been proposed, which offer powerful methods to yield organic particles with desirable shapes and compositions.
Collapse
Affiliation(s)
- Bing Guo
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Eshu Middha
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering , National University of Singapore , 4 Engineering Drive 4 , Singapore 117585
| |
Collapse
|
48
|
Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J. Sunlight-Driven Wearable and Robust Antibacterial Coatings with Water-Soluble Cellulose-Based Photosensitizers. Adv Healthc Mater 2019; 8:e1801591. [PMID: 30734526 DOI: 10.1002/adhm.201801591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Herein, a simple, effective, and general strategy is demonstrated to obtain a water-soluble and nontoxic cellulose-based photosensitizer (CPS) with enhanced photodynamic antibacterial activity through introducing protoporphyrin IX (PpIX) and quaternary ammonium salt (QAS) groups onto the cellulose backbone. The synergistic effect of the anchoring and diluting effect of the cellulose backbone and the electrostatic repulsion between QAS groups effectively inhibit the π-π stacking of PpIX groups, thus the as-prepared CPS exhibits markedly enhanced reactive oxygen species (ROS) yield. Meanwhile, the positively charged QAS groups endow the CPS with water-solubility and a strong attractive force to bacteria. As a result, the CPS can rapidly and efficiently kill drug-resistant bacteria strains, including E. coli and S. aureus, with a low light dose (2.4 J cm-2 ) and low concentration of PpIX groups (0.35 × 10-6 m). Benefiting from the excellent processability and formability, the CPS is readily applied as a sunlight-driven wearable and robust antibacterial coating by a spray coating and later crosslinking procedure.
Collapse
Affiliation(s)
- Ruonan Jia
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weiguo Tian
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Haotian Bai
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Shu Wang
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
- CAS Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Jun Zhang
- CAS Key Laboratory of Engineering Plastics and CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
- College of Chemistry; University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
49
|
Jiang N, Wang Y, Qin A, Sun JZ, Tang BZ. Effective enhancement of the emission efficiency of tetraphenylporphyrin in solid state by tetraphenylethene modification. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
Han C, Jiang S, Qiu J, Guo H, Yang F. A diphenylacrylonitrile conjugated porphyrin with near-infrared emission by AIE–FRET. NEW J CHEM 2019. [DOI: 10.1039/c8nj05785k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The strong aggregation induced emission–fluorescence resonance energy transfer (AIE–FRET) effect was observed for diphenylacrylonitrile units and porphyrin units.
Collapse
Affiliation(s)
- Chenyang Han
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Shengjie Jiang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Jiabin Qiu
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|