1
|
Vandergrift GW, Kew W, Andersen A, Lukowski JK, Goo YA, Anderton CR. Experimental and Computational Evaluation of Lipidomic In-Source Fragmentation as a Result of Postionization with Matrix-Assisted Laser Desorption/Ionization. Anal Chem 2024; 96:16127-16133. [PMID: 39297865 DOI: 10.1021/acs.analchem.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can provide spatially resolved molecular information about a sample. Recently, a postionization approach (MALDI-2) has been commercially integrated with MALDI-MSI, allowing for bettered sensitivity and consequent improved spatial resolution. While advantages of MALDI-2 have previously been established, we demonstrate here statistically increased in-source fragmentation (ISF) results from postionization with a commercial instrument. Via lipid standard analyses, known MALDI ISF pathways (e.g., loss of trimethylamine) were statistically increased in MALDI-2 compared to MALDI-1 (65-172% increase in fragmentation). Gas phase molecular modeling with density functional theory estimated that the most-weighted virtual orbitals to excite within lipids involve ester and phosphate bonds. Protonated lipid excitation energies are furthermore red-shifted compared to those of other adduct types [e.g., 254 nm for protonated PC(16:0/18:1)] and approach the MALDI-2 laser energy (266 nm). Analysis of rat brain homogenate detected statistically more positive-ion mode peaks with MALDI-2 (1090) than that with MALDI-1 (719), where Kernel density estimations showed that the majority of this enhancement occurs with low m/z ions (i.e., m/z 75-500). Taken together with the lipid standard data, these observations may indicate ISF due to postionization. While artifact contributions from matrix blanks were also noted, both experimental and computational data sets suggest that the overall extent of ISF is statistically increased in MALDI-2 compared to MALDI-1.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William Kew
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amity Andersen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jessica K Lukowski
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Young Ah Goo
- Washington University in St. Louis School of Medicine, St. Louis, Missouri 63108, United States
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
2
|
Frisch K, Nielsen KL, Hasselstro M JRB, Fink R, Rasmussen SV, Johannsen M. Desorption Electrospray Ionization Mass Spectrometry Imaging of Powder-Treated Fingermarks on Forensic Gelatin Lifters and its Application for Separating Overlapping Fingermarks. Anal Chem 2024. [PMID: 39028891 DOI: 10.1021/acs.analchem.4c02305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Fingermarks are frequently collected at crime scenes by using gelatin lifters for preservation and transport of the marks to a forensic laboratory for inspection. The gelatin lifters preserve both the imprint of the fingermark pattern necessary for identification purposes and the chemical residue of the mark potentially useful for profiling the person who left the fingermark. The fingermark patterns are traditionally recorded using photography/optical imaging, but methods for chemical analysis of fingermark residues on gelatin lifters are scarce. Here we report the first method for the chemical analysis of fingermarks on gelatin lifters using desorption electrospray ionization mass spectrometry (DESI-MS) imaging. The imaging can be done directly on the gelatin support without any sample preparation, supporting immediate operational use of the method for fingermarks collected at crime scenes. Operational use of the method is further supported by successful chemical imaging of fingermarks enhanced by traditional dusting with forensic powders and lifted off different surfaces (glass, stainless steel, painted aluminum, polystyrene, cardboard, and plastic) as well as fingermarks lifted multiple times. We also demonstrate that the present method can be used to visually separate natural overlapping powder-treated fingermarks, and the chemical composition of the fingermarks can be analyzed on the gelatin support by DESI-MS/MS. The presented method has potential for integration into the traditional workflow for fingermark analysis, and will allow more fingermarks collected at crime scenes to be evaluated both visually and chemically.
Collapse
Affiliation(s)
- Kim Frisch
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| | - Kirstine L Nielsen
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| | | | - Rikke Fink
- National Special Crime Unit, Danish Police, Glostrup 2600, Denmark
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N 8200, Denmark
| |
Collapse
|
3
|
Amin MO, Al-Hetlani E. Matrix- and surface-assisted laser desorption/ionization-mass spectrometry analysis of fingermark components for forensic studies: current trends and future prospects. Anal Bioanal Chem 2024; 416:3751-3764. [PMID: 38647691 DOI: 10.1007/s00216-024-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The chemical analysis of fingermarks (FMs) has attracted considerable attention in the realm of forensic investigations. Techniques based on direct ionization of a sample by laser irradiation, specifically matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS), have provided excellent figures of merit for analyzing high molecular-weight compounds. However, it can be challenging to analyze low molecular-weight compounds using MALDI-MS owing to potential interference produced by the organic matrices in the low molecular-weight region, which can impede the detection of small molecules (m/z < 700 Da). Alternately, surface-assisted laser desorption/ionization-mass spectrometry (SALDI-MS) has shown great promise for small molecules analysis owing to the unique properties of the nanostructures used, particularly, minimal chemical background in low m/z region improved the production of ions involved in this method. The advancement of MALDI-MS and SALDI-MS has propelled their application in the analysis of FM components, focused on gaining deep insights into individual traits. This review aims to outline the current role of MALDI-MS and SALDI-MS in the chemical analysis of FMs. It also describes the latest achievements in forensic intelligence derived from fingermark analysis using these powerful methods. The accomplishments include the understanding of certain characteristics and lifestyles of donors. The review offers a comprehensive overview of the challenges and demands in this field. It suggests potential enhancements in this rapidly expanding domain to bridge the gap between research and practical police casework.
Collapse
Affiliation(s)
- Mohamed O Amin
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| | - Entesar Al-Hetlani
- Department of Chemistry, Faculty of Science, Kuwait University, P.O. Box 5969, 13060, Safat, Kuwait City, Kuwait.
| |
Collapse
|
4
|
Banidol M, Kouider S, Sergent I, Pizzala H, Charles L. Desorption electrospray ionization mass spectrometry imaging of latent fingerprints revealed by Oil Red O. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9724. [PMID: 38420652 DOI: 10.1002/rcm.9724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/04/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
Mass spectrometry imaging (MSI) is increasingly used to produce chemical images of latent fingerprints. Yet, the actual benefits of MSI for real case studies have to be assessed for fingerprints previously processed by forensic techniques. Here, we have evaluated the compatibility of desorption electrospray ionization (DESI) with the fingerprint enhancement technique involving Oil Red O (ORO). METHODS To optimize the ionization step independently from surface extraction, the ORO reagent and its mixture with model compounds (triolein and linoleic acid) were first studied in solution using high-resolution electrospray ionization tandem mass spectrometry (ESI-MS/MS). Then, DESI-MSI experiments were performed in both polarity modes for ORO-processed fingermarks deposited on pieces of paper used as porous substrates. RESULTS ESI-MS of ORO reveals a complex mixture of azo dyes. Two main impurities detected beside the targeted species were characterized using MS/MS and then were usefully employed to produce DESI-MS images of fingermarks, decreasing the scanning rate to get sufficient ion abundance from natural fingerprints. ORO did not prevent chemical profiling, and one major added value of this pink dye was to produce MS images with contrast that cannot be obtained optically for some colored substrates. CONCLUSIONS DESI-MS has demonstrated imaging compatibility with the application of ORO used to enhance latent fingerprints on paper and could also enable chemical profiling in natural fingermarks. In addition, MS images of ORO impurities were of higher quality than optical ones for fingerprints revealed on colored paper.
Collapse
Affiliation(s)
- Mariska Banidol
- Aix Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France
| | - Sophia Kouider
- Aix Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
| | - Isaure Sergent
- Aix Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
| | - Hélène Pizzala
- Aix Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
5
|
Hanna T, Chadwick S, Moret S. Fingermark quality assessment, a transversal study of subjective quality scales. Forensic Sci Int 2023; 350:111783. [PMID: 37453206 DOI: 10.1016/j.forsciint.2023.111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Fingermark detection research aims to improve the quantity and quality of fingermarks detected through the development of novel techniques. Subsequently, there is a need to evaluate these methods to determine the quality of the developed mark. Since the 1980's there has been a significant number of publications, which utilise a variety of different quality assessment methods. The introduction of common practice methods from the International Fingerprint Research Group (IFRG) aimed to implement a more standardised approach. Although these schemes are recommended as common practice, they are only guidelines. Consequentially, there is currently no universally accepted method to evaluate the enhancement techniques implemented in research. Therefore, this study aimed to collate and analyse the published protocols being used within fingermark detection research in order to better understand their application and how research is currently analysing and interpreting fingermark quality. This study comprised of manual and automatic searches of over 2000 published papers within the fingermark detection area. After thorough analysis of the articles, 396 published papers were found to have used a scale within the years spanning 1998-2022. The number of publications that report the use of a scale to assess quality for fingermark detection research has considerably increased over the last decade. However, whilst the number of publications utilising scales has increased, it is not proportional to the number of papers using the IFRG scales. The choice of scale is often institution specific and even more specific to their location. There are also numerous different adaptations of the IFRG recommended scales, as well as novel scales, which do not associate with the IFRG recommended versions being introduced the more research continues to grow. One such reason for this is investigated here, as different quality parameters are utilised within each individual scale. There is underrepresentation of these quality parameters within some of the IFRG scales, in particular the Centre for Applied Science and Technology (CAST) scale. This correlates to the considerable number of tailored approaches as authors are forced to add these parameters within the descriptions. Until there is an introduction of clear guidelines surrounding all areas of fingermark quality, from definition to parameters chosen within phases, the research area will continue to face such issues. This article recommends areas of potential study, whilst also recommending procedures that may be employed to alleviate some of the issues seen with fingermark quality evaluation.
Collapse
Affiliation(s)
- Teneil Hanna
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Scott Chadwick
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Sébastien Moret
- Centre for Forensic Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Human Sciences, College of Science and Engineering, University of Derby, United Kingdom
| |
Collapse
|
6
|
Villette C, Maurer L, Zumsteg J, Mutterer J, Wanko A, Heintz D. Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse. Nat Commun 2023; 14:4244. [PMID: 37454165 PMCID: PMC10349827 DOI: 10.1038/s41467-023-40051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Biosolids are byproducts of wastewater treatment. With the increasing global population, the amounts of wastewater to be treated are expanding, along with the amounts of biosolids generated. The reuse of biosolids is now accepted for diversified applications in fields such as agriculture, engineering, agro-forestry. However, biosolids are known to be potential carriers of compounds that can be toxic to living beings or alter the environment. Therefore, biosolid reuse is subject to regulations, mandatory analyses are performed on heavy metals, persistent organic pollutants or pathogens. Conventional methods for the analysis of heavy metals and persistent organic pollutants are demanding, lengthy, and sometimes unsafe. Here, we propose mass spectrometry imaging as a faster and safer method using small amounts of material to monitor heavy metals and persistent organic pollutants in different types of biosolids, allowing for ecological and health risk assessment before reuse. Our methodology can be extended to other soil-like matrices.
Collapse
Affiliation(s)
- Claire Villette
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Loïc Maurer
- Université de Strasbourg, CNRS, ENGEES, ICube UMR 7357, F-67000, Strasbourg, France
| | - Julie Zumsteg
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Jérôme Mutterer
- Microscopie et Imagerie Cellulaire, Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Adrien Wanko
- Université de Strasbourg, CNRS, ENGEES, ICube UMR 7357, F-67000, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging & Mass Spectrometry (PIMS), Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| |
Collapse
|
7
|
Differentiating individuals through the chemical composition of their fingermarks. Forensic Sci Int 2023; 346:111645. [PMID: 36996582 DOI: 10.1016/j.forsciint.2023.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Fingermark patterns are one of the oldest means of biometric identification. During this last decade, the molecules that constitute the fingermark residue have gained interest among the forensic research community to gain additional intelligence regarding its donor profile including its gender, age, lifestyle or even its pathological state. In this work, the molecular composition of fingermarks have been studied to monitor the variability between donors and to explore its capacity to differentiate individuals using supervised multi-class classification models. Over one year, fingermarks from thirteen donors have been analysed by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (n = 716) and mined by different machine learning approaches. We demonstrate the potential of the fingermark chemical composition to help differentiating individuals with an accuracy between 80% and 96% depending on the period of sample collection for each donor and size of the pool of donors. It would be premature at this stage to transpose the results of this research to real cases, however the conclusions of this study can provide a better understanding of the variations of the chemical composition of the fingermark residue in between individuals over long periods and help clarifying the notion of donorship.
Collapse
|
8
|
Abstract
The blood fingerprint enhancement is not so eye-catching as latent fingerprint development in forensic community, but it is indeed an important piece of evidence for personal identification, forensic analysis and even reconstruction of crime scenes. In over past ten years, novel reagents, advanced materials and emerging techniques have growingly participated in blood fingerprint enhancement, which not only leads to a higher level of developing sensitivity, selectivity and contrast, but also endows blood impressions with more forensic significance. This review summarizes recent advances in conventional chemical reagents targeting at heme, protein and amino acid as well as emerging enhancement techniques based on advanced materials, new equipment or methods. Some critical issues in forensic science are also discussed, including partial blood fingerprint enhancement, false positive of developing reagents, the compatibility of blood enhancement technique and DNA, fingerprint age determination, and so on. Finally, we have proposed several urgent problems to be solved and the prospects of some promising techniques were proposed in the field of blood fingerprint enhancement in future work.
Collapse
Affiliation(s)
- Zimin Zhang
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| | - Di Peng
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| |
Collapse
|
9
|
Gorka M, Thomas A, Bécue A. Chemical composition of the fingermark residue: Assessment of the intravariability over one year using MALDI-MSI. Forensic Sci Int 2022; 338:111380. [PMID: 35849992 DOI: 10.1016/j.forsciint.2022.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/04/2022]
Abstract
These past years, the chemical composition of fingermarks have attracted interest of researchers to meet multiple objectives like the determination of an individual's age, gender or lifestyle or the impact of some fingermark detection processes, to cite a few. These studies have highlighted the need to investigate the consistency of the fingermark composition over time. This research explores the evolution of the secretion residue composition of thirteen donors over one year, focusing on the intravariability. The dual use of Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging (MALDI-MSI) and chemometrics provided valuable data regarding the evolution of composition over time as well as the consistency of presence of hundreds of compounds.
Collapse
Affiliation(s)
- Marie Gorka
- School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration, University of Lausanne, Switzerland.
| | - Aurélien Thomas
- Faculty Unit of Toxicology, University Center of Legal Medicine, Vulliette 04, 1000 Lausanne, Switzerland.
| | - Andy Bécue
- School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration, University of Lausanne, Switzerland.
| |
Collapse
|
10
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
11
|
Amin MO, Al-Hetlani E, Francese S. Magnetic Carbon Nanoparticles Derived from Candle soot for SALDI MS Analyses of Drugs and Heavy Metals in Latent Fingermarks. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Gorka M, Thomas A, Bécue A. Development of a printed quality control test strip for the analysis and imaging of fingermark composition. Forensic Sci Int 2021; 329:111063. [PMID: 34736048 DOI: 10.1016/j.forsciint.2021.111063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
In the last decade, there have been many scientific developments regarding the use of mass spectrometry to analyse the composition of fingermarks. In this context, the development of a dedicated quality control test strip would benefit the forensic community by providing a way to assess the reproducibility of the measures as well as to perform inter-laboratory comparisons. To accomplish this goal, the use of a chemical printer offers the possibility of combining a visual template with artificial fingerprint secretions. The design of the quality control test strip as well as the preliminary assessment of its performance with fingermark detection reagents and matrix-assisted laser desorption-ionisation combined with mass spectrometry imaging (MALDI-MSI) are presented in this paper. The chosen template combines two geometric patterns intended to help assess the chemical analysis (full square) and imaging (lined square) capabilities of the instrument. The artificial secretion is composed of two distinct solutions: artificial sweat and artificial sebum. The printing reproducibility and chemical homogeneity of the quality control test strips were assessed in two ways: (1) using MALDI-MSI, the printed pattern was analysed and the m/z values compared to the reference list based on the artificial secretion composition, and (2) using two common fingermark detection techniques, the printed pattern was processed using an amino acid reagent (ninhydrin) and a lipid stain (Oil Red O). Overall, the results highlight the potential of a printed quality control test strip for the assessment of the quality of fingermark detection techniques as well as the possibility of performing quality monitoring of mass-spectrometry-based techniques over time.
Collapse
Affiliation(s)
- Marie Gorka
- Ecole des Sciences Criminelles/School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration; University of Lausanne, 1015 Lausanne-Dorigny Switzerland.
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Vulliette 04, 1000 Lausanne 25 Switzerland.
| | - Andy Bécue
- Ecole des Sciences Criminelles/School of Criminal Justice, Faculty of Law, Criminal Justice, and Public Administration; University of Lausanne, 1015 Lausanne-Dorigny Switzerland.
| |
Collapse
|
13
|
Tuccitto N, Bombace A, Auditore A, Valenti A, Torrisi A, Capizzi G, Licciardello A. Revealing Contamination and Sequence of Overlapping Fingerprints by Unsupervised Treatment of a Hyperspectral Secondary Ion Mass Spectrometry Dataset. Anal Chem 2021; 93:14099-14105. [PMID: 34645262 PMCID: PMC8552212 DOI: 10.1021/acs.analchem.1c01981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Time-of-flight secondary
ion mass spectrometry (ToF-SIMS) has been
successfully applied for chemical imaging of overlapping fingermarks.
The resulting big dataset has been treated by means of an unsupervised
machine learning approach based on uniform manifold approximation
and projection. The hyperspectral matrix was composed of 49 million
pixels associated with 518 peaks. However, the single-pixel spectrum
results in a very poor signal intensity, mostly like a barcode. Contrary
to what has been reported in the literature recently, we have not
applied a crude approach based on binning but a sophisticated machine
learning method capable of separating the chemical signals of the
two fingerprints from each other and from the substrate in which they
were impressed. Moreover, using ToF-SIMS, an extremely surface-sensitive
technique, the sequence of deposition of the fingerprints has been
determined.
Collapse
Affiliation(s)
- Nunzio Tuccitto
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy.,Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandra Bombace
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Alessandro Auditore
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Andrea Valenti
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Alberto Torrisi
- Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giacomo Capizzi
- Electrical, Electronic and Computer Engineering, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Antonino Licciardello
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy.,Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
14
|
Jeanneret A, Anthonioz A, Bécue A. Printed artificial sweat as replacement for natural fingermarks: Qualitative and quantitative approach considering an amino acid reagent. Sci Justice 2021; 61:249-259. [PMID: 33985673 DOI: 10.1016/j.scijus.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/21/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
The study presented in this paper aims at assessing how printed fingermarks can be used to generate realistic latent marks bearing varying quantities of materials to be detected. Considering dilution series of artificial sweat (eccrine secretion) and 1,2-indanedione/zinc as amino acid reagent, we assessed how printed marks behave in comparison to natural fingermarks provided by a set of 30 donors. The results were assessed in terms of relative intensity (contrast, luminescence) and expert grading (ridge details, overall quality). With regards to the set of 30 donors, this study brought a quantitative look to the influence of intra- and inter-variability on the relative intensity values observed when processing natural fingermarks. This provided new data to further understand the concept of "donorship". With regards to the use of printed marks, it has been illustrated how dilution series of a concentrated solution allows covering a range of cases: unnatural marks (intensity values well above those obtained with donors), rich marks (corresponding to fingermarks left by good donors), and faint marks (associated with the kind of results observed with poor donors). Such a range of detection performance offers the possibility to generate fine-tuned detection exercises of varying difficulty levels. Printed items made of artificial sweat could hence constitute a valuable alternative to natural secretions in the context of education and proficiency testing.
Collapse
Affiliation(s)
- Ambre Jeanneret
- École des Sciences Criminelles (School of Criminal Justice), Faculté de Droit, des Sciences Criminelles et d'Administration Publique, University of Lausanne, Quartier Sorge, Building Batochime, CH-1015 Lausanne, Switzerland
| | - Alexandre Anthonioz
- École des Sciences Criminelles (School of Criminal Justice), Faculté de Droit, des Sciences Criminelles et d'Administration Publique, University of Lausanne, Quartier Sorge, Building Batochime, CH-1015 Lausanne, Switzerland
| | - Andy Bécue
- École des Sciences Criminelles (School of Criminal Justice), Faculté de Droit, des Sciences Criminelles et d'Administration Publique, University of Lausanne, Quartier Sorge, Building Batochime, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Kennedy K, Bengiat R, Heaton C, Herman Y, Oz C, Elad ML, Cole L, Francese S. "MALDI-CSI": A proposed method for the tandem detection of human blood and DNA typing from enhanced fingermarks. Forensic Sci Int 2021; 323:110774. [PMID: 33930825 DOI: 10.1016/j.forsciint.2021.110774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 01/25/2023]
Abstract
Matrix Assisted Laser Desorption Ionization Mass Spectrometry Profiling and Imaging (MALDI MSP and MALDI MSI), in combination with bottom up proteomics, have proven to successfully detect and map blood-derived peptide signatures in blood fingermarks, with high specificity and compatibility with a number of blood enhancement techniques (BET). In the present study, the application of MALDI MSP and MSI to blood marks has been investigated further. In particular, the MALDI based detection and visualisation of blood has been explored in tandem with DNA typing. This investigation has been undertaken in a scenario simulating blood fingermarks on painted walls. In the present study, two sets of marks were analysed with each set comprising of a depletion series of four marks deposited on a surface treated to simulate painted walls: Set I - developed with Ninhydrin (NIN) and Set II- developed with Acid Black-1 (AB-1). For both sets, the application of MALDI MSP was successful in detecting haem and human specific haemoglobin peptide markers. MALDI MSI also provided molecular images by visualising haem on the ridge pattern enhanced by BET. The feasibility of successful and subsequent DNA profiling from the recovered fingermarks was also assessed for marks that had undergone enzymatic in situ digestion and MALDI MSI; it was observed that in 73% of the samples analysed, a DNA profile suitable for comparison was obtained. Based on these results, a possible operational workflow has been proposed incorporating the use of a MALDI MS based approach as a confirmatory test for human blood enabling subsequent DNA typing.
Collapse
Affiliation(s)
- Katie Kennedy
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Ravell Bengiat
- Latent Fingerprint Laboratory, Division of Identification and Forensic Science (DIFS), Israel Police, National H.Q., Jerusalem 9780204, Israel
| | - Cameron Heaton
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Yael Herman
- Biology & DNA Laboratory, Division of Identification and Forensic Science (DIFS), Israel Police, National H.Q., Jerusalem 9780204, Israel
| | - Carla Oz
- Biology & DNA Laboratory, Division of Identification and Forensic Science (DIFS), Israel Police, National H.Q., Jerusalem 9780204, Israel
| | - Michal Levin Elad
- Latent Fingerprint Laboratory, Division of Identification and Forensic Science (DIFS), Israel Police, National H.Q., Jerusalem 9780204, Israel
| | - Laura Cole
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Simona Francese
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
16
|
Bradshaw R, Wilson G, Denison N, Francese S. Application of MALDI MS imaging after sequential processing of latent fingermarks. Forensic Sci Int 2020; 319:110643. [PMID: 33321384 DOI: 10.1016/j.forsciint.2020.110643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Latent fingermarks are routinely visualised by subjecting them to one or more CSI/crime lab processes to maximise the recovery of ridge flow and minutiae permitting an identification. In the last decade mass spectrometric imaging (MSI) techniques have been applied to fingermarks to provide information about a suspect and/or on the circumstances of the crime as well as yielding additional images of the ridge pattern. In some cases, these techniques have shown the ability to provide further ridge detail, "filling in the gaps" of the developed mark. Matrix Assisted Laser Desorption Ionisation Mass Spectrometry Imaging (MALDI MSI) is presently the most advanced of the so-called 'surface analysis' techniques, in terms of compatibility with a number of fingermark enhancement processes and implementation in operational casework. However, for the use of this technique in major crimes to become widespread, compatibility with sequential processing must be demonstrated. This short study has assessed compatibility with a number fingermark processing sequences applied to natural marks on the adhesive side of brown (parcel) and clear tapes. Within the study undertaken, the results confirm the possibility to use MALDI MSI in sequence with multiple processes offering in some instances, complementary ridge detail with respect to that recovered from marks developed by conventional sequence processing.
Collapse
Affiliation(s)
- R Bradshaw
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield, UK
| | - G Wilson
- Accreditation & Standards, Yorkshire & Humber Regional Scientific Support Services, UK
| | - N Denison
- Identification Services Yorkshire and the Humber Region, West Yorkshire Police, UK
| | - S Francese
- Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield, UK.
| |
Collapse
|
17
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
18
|
Bécue A, Eldridge H, Champod C. Interpol review of fingermarks and other body impressions 2016-2019. Forensic Sci Int Synerg 2020; 2:442-480. [PMID: 33385142 PMCID: PMC7770454 DOI: 10.1016/j.fsisyn.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
This review paper covers the forensic-relevant literature in fingerprint and bodily impression sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20 Review%20 Papers%202019. pdf.
Collapse
Affiliation(s)
- Andy Bécue
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| | - Heidi Eldridge
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| | - Christophe Champod
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| |
Collapse
|
19
|
González M, Gorziza RP, de Cássia Mariotti K, Pereira Limberger R. Methodologies Applied to Fingerprint Analysis. J Forensic Sci 2020; 65:1040-1048. [PMID: 32176818 DOI: 10.1111/1556-4029.14313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
This systematic review deals with the last 10 years of research in analytical methodologies for the analysis of fingerprints, regarding their chemical and biological constituents. A total of 123 manuscripts, which fit the search criteria defined using the descriptor "latent fingermarks analysis," were selected. Its main instrumental areas (mass spectrometry, spectroscopy, and innovative methods) were analyzed and summarized in a specific table, highlighting its main analytical parameters. The results show that most studies in this field use mass spectrometry to identify the constituents of fingerprints, both to determine the chemical profile and for aging. There is also a marked use of mass spectrometry coupled with chromatographic methods, and it provides accurate results for a fatty acid profile. Additional significant results are achieved by spectroscopic methods, mainly Raman and infrared. It is noteworthy that spectroscopic methods using microscopy assist in the accuracy of the analyzed region of the fingerprint, contributing to more robust results. There was also a significant increase in studies using methods focused on finding new developers or identifying components present in fingerprints by rapid tests. This systematic review of analytical techniques applied to the detection of fingerprints explores different approaches to contribute to future studies in forensic identification, verifying new demands in the forensic sciences and assisting in the selection of studies for the progress of research.
Collapse
Affiliation(s)
- Marina González
- Department of Pharmacy, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave, Lab 605A - Santana, Porto Alegre, 90610-000, RS, Brazil
| | - Roberta Petry Gorziza
- Department of Pharmacy, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave, Lab 605A - Santana, Porto Alegre, 90610-000, RS, Brazil
| | - Kristiane de Cássia Mariotti
- Identification Group, Brazilian Federal Police, Porto Alegre, 90610-093, RS, Brazil.,National Institute of Forensic Science and Technology - INCT FORENSE, 2752 Ipiranga Ave, Lab 605A - Santana, Porto Alegre, 90610-000, RS, Brazil
| | - Renata Pereira Limberger
- Department of Pharmacy, Federal University of Rio Grande do Sul, 2752 Ipiranga Ave, Lab 605A - Santana, Porto Alegre, 90610-000, RS, Brazil.,National Institute of Forensic Science and Technology - INCT FORENSE, 2752 Ipiranga Ave, Lab 605A - Santana, Porto Alegre, 90610-000, RS, Brazil
| |
Collapse
|
20
|
Barré FPY, Paine MRL, Flinders B, Trevitt AJ, Kelly PD, Ait-Belkacem R, Garcia JP, Creemers LB, Stauber J, Vreeken RJ, Cillero-Pastor B, Ellis SR, Heeren RMA. Enhanced Sensitivity Using MALDI Imaging Coupled with Laser Postionization (MALDI-2) for Pharmaceutical Research. Anal Chem 2019; 91:10840-10848. [PMID: 31355633 PMCID: PMC6706868 DOI: 10.1021/acs.analchem.9b02495] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.
Collapse
Affiliation(s)
- Florian P Y Barré
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Martin R L Paine
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Bryn Flinders
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Adam J Trevitt
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | - Patrick D Kelly
- School of Chemistry , University of Wollongong , Wollongong , Australia
| | | | - João P Garcia
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | - Laura B Creemers
- University Medical Centre (UMC) Utrecht , Department of Orthopedics , Heidelberglaan 100 , 3584 CX Utrecht , The Netherlands
| | | | - Rob J Vreeken
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands.,Discovery Sciences , Janssen Research and Development , Beerse , Belgium
| | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Shane R Ellis
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry , Maastricht University , Universiteitssingel 50 , 6229 ER Maastricht , The Netherlands
| |
Collapse
|
21
|
Combination of electrospray deposition technology of TiO2 nanoparticles and MALDI FTICR MSI for identification of fingerprint morphology and latent components. Talanta 2019; 198:310-315. [DOI: 10.1016/j.talanta.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 01/27/2023]
|
22
|
Molecular composition of fingermarks: Assessment of the intra- and inter-variability in a small group of donors using MALDI-MSI. Forensic Chem 2019. [DOI: 10.1016/j.forc.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Francese S. Criminal profiling through MALDI MS based technologies – breaking barriers towards border-free forensic science. AUST J FORENSIC SCI 2019. [DOI: 10.1080/00450618.2018.1561949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Cole LM, Clench MR, Francese S. Sample Treatment for Tissue Proteomics in Cancer, Toxicology, and Forensics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:77-123. [PMID: 31236840 DOI: 10.1007/978-3-030-12298-0_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Since the birth of proteomics science in the 1990, the number of applications and of sample preparation methods has grown exponentially, making a huge contribution to the knowledge in life science disciplines. Continuous improvements in the sample treatment strategies unlock and reveal the fine details of disease mechanisms, drug potency, and toxicity as well as enable new disciplines to be investigated such as forensic science.This chapter will cover the most recent developments in sample preparation strategies for tissue proteomics in three areas, namely, cancer, toxicology, and forensics, thus also demonstrating breath of application within the domain of health and well-being, pharmaceuticals, and secure societies.In particular, in the area of cancer (human tumor biomarkers), the most efficient and multi-informative proteomic strategies will be covered in relation to the subsequent application of matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid extraction surface analysis (LESA), due to their ability to provide molecular localization of tumor biomarkers albeit with different spatial resolution.With respect to toxicology, methodologies applied in toxicoproteomics will be illustrated with examples from its use in two important areas: the study of drug-induced liver injury (DILI) and studies of effects of chemical and environmental insults on skin, i.e., the effects of irritants, sensitizers, and ionizing radiation. Within this chapter, mainly tissue proteomics sample preparation methods for LC-MS/MS analysis will be discussed as (i) the use of LC-MS/MS is majorly represented in the research efforts of the bioanalytical community in this area and (ii) LC-MS/MS still is the gold standard for quantification studies.Finally, the use of proteomics will also be discussed in forensic science with respect to the information that can be recovered from blood and fingerprint evidence which are commonly encountered at the scene of the crime. The application of proteomic strategies for the analysis of blood and fingerprints is novel and proteomic preparation methods will be reported in relation to the subsequent use of mass spectrometry without any hyphenation. While generally yielding more information, hyphenated methods are often more laborious and time-consuming; since forensic investigations need quick turnaround, without compromising validity of the information, the prospect to develop methods for the application of quick forensic mass spectrometry techniques such as MALDI-MS (in imaging or profiling mode) is of great interest.
Collapse
Affiliation(s)
- L M Cole
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - M R Clench
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK
| | - S Francese
- Biomolecular Science Research Centre, Centre for Mass Spectrometry Imaging, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
25
|
J. Bailey M, Costa C. Mass Spectrometry Methods for the Recovery of Forensic Intelligence from Fingermarks. EMERGING TECHNOLOGIES FOR THE ANALYSIS OF FORENSIC TRACES 2019. [DOI: 10.1007/978-3-030-20542-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Oonk S, Schuurmans T, Pabst M, de Smet LCPM, de Puit M. Proteomics as a new tool to study fingermark ageing in forensics. Sci Rep 2018; 8:16425. [PMID: 30401937 PMCID: PMC6219553 DOI: 10.1038/s41598-018-34791-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 01/10/2023] Open
Abstract
Fingermarks are trace evidence of great forensic importance, and their omnipresence makes them pivotal in crime investigation. Police and law enforcement authorities have exploited fingermarks primarily for personal identification, but crucial knowledge on when fingermarks were deposited is often lacking, thereby hindering crime reconstruction. Biomolecular constituents of fingermark residue, such as amino acids, lipids and proteins, may provide excellent means for fingermark age determination, however robust methodologies or detailed knowledge on molecular mechanisms in time are currently not available. Here, we address fingermark age assessment by: (i) drafting a first protein map of fingermark residue, (ii) differential studies of fresh and aged fingermarks and (iii), to mimic real-world scenarios, estimating the effects of donor contact with bodily fluids on the identification of potential age biomarkers. Using a high-resolution mass spectrometry-based proteomics approach, we drafted a characteristic fingermark proteome, of which five proteins were identified as promising candidates for fingermark age estimation. This study additionally demonstrates successful identification of both endogenous and contaminant proteins from donors that have been in contact with various bodily fluids. In summary, we introduce state-of-the-art proteomics as a sensitive tool to monitor fingermark aging on the protein level with sufficient selectivity to differentiate potential age markers from body fluid contaminants.
Collapse
Affiliation(s)
- Stijn Oonk
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Tom Schuurmans
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands
| | - Martin Pabst
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Louis C P M de Smet
- Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.,Wageningen University & Research, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Marcel de Puit
- Netherlands Forensic Institute, Digital Technology and Biometrics, Laan van Ypenburg 6, 2497 GB, Den Haag, Netherlands. .,Delft University of Technology, Faculty of Applied Sciences, Department of Chemical Engineering, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
27
|
Chu HW, Unnikrishnan B, Anand A, Mao JY, Huang CC. Nanoparticle-based laser desorption/ionization mass spectrometric analysis of drugs and metabolites. J Food Drug Anal 2018; 26:1215-1228. [PMID: 30249320 PMCID: PMC9298562 DOI: 10.1016/j.jfda.2018.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022] Open
|
28
|
Palermo A, Forsberg EM, Warth B, Aisporna AE, Billings E, Kuang E, Benton HP, Berry D, Siuzdak G. Fluorinated Gold Nanoparticles for Nanostructure Imaging Mass Spectrometry. ACS NANO 2018; 12:6938-6948. [PMID: 29966083 DOI: 10.1021/acsnano.8b02376] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Nanostructure imaging mass spectrometry (NIMS) with fluorinated gold nanoparticles (f-AuNPs) is a nanoparticle assisted laser desorption/ionization approach that requires low laser energy and has demonstrated high sensitivity. Here we describe NIMS with f-AuNPs for the comprehensive analysis of metabolites in biological tissues. F-AuNPs assist in desorption/ionization by laser-induced release of the fluorocarbon chains with minimal background noise. Since the energy barrier required to release the fluorocarbons from the AuNPs is minimal, the energy of the laser is maintained in the low μJ/pulse range, thus limiting metabolite in-source fragmentation. Electron microscopy analysis of tissue samples after f-AuNP NIMS shows a distinct "raising" of the surface as compared to matrix assisted laser desorption ionization ablation, indicative of a gentle desorption mechanism aiding in the generation of intact molecular ions. Moreover, the use of perfluorohexane to distribute the f-AuNPs on the tissue creates a hydrophobic environment minimizing metabolite solubilization and spatial dislocation. The transfer of the energy from the incident laser to the analytes through the release of the fluorocarbon chains similarly enhances the desorption/ionization of metabolites of different chemical nature, resulting in heterogeneous metabolome coverage. We performed the approach in a comparative study of the colon of mice exposed to three different diets. F-AuNP NIMS allows the direct detection of carbohydrates, lipids, bile acids, sulfur metabolites, amino acids, nucleotide precursors as well as other small molecules of varied biological origins. Ultimately, the diversified molecular coverage obtained provides a broad picture of a tissue's metabolic organization.
Collapse
Affiliation(s)
- Amelia Palermo
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Erica M Forsberg
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry and Vienna Metabolomics Center (VIME) , University of Vienna , Währingerstraße 38 , 1090 Vienna , Austria
| | - Aries E Aisporna
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Elizabeth Billings
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Ellen Kuang
- Department of Chemistry and Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - H Paul Benton
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - David Berry
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry Meets Microbiology , University of Vienna , Althanstraße 14 , 1090 Vienna , Austria
| | - Gary Siuzdak
- Scripps Center for Metabolomics , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
- Department of Chemistry, Molecular and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
29
|
Abdelhamid HN. Ionic Liquid-Assisted Laser Desorption/Ionization-Mass Spectrometry: Matrices, Microextraction, and Separation. Methods Protoc 2018; 1:E23. [PMID: 31164566 PMCID: PMC6526421 DOI: 10.3390/mps1020023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/16/2022] Open
Abstract
Ionic liquids (ILs) have advanced a variety of applications, including matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). ILs can be used as matrices and solvents for analyte extraction and separation prior to analysis using laser desorption/ionization-mass spectrometry (LDI-MS). Most ILs show high stability with negligible sublimation under vacuum, provide high ionization efficiency, can be used for qualitative and quantitative analyses with and without internal standards, show high reproducibility, form homogenous spots during sampling, and offer high solvation efficiency for a wide range of analytes. Ionic liquids can be used as solvents and pseudo-stationary phases for extraction and separation of a wide range of analytes, including proteins, peptides, lipids, carbohydrates, pathogenic bacteria, and small molecules. This review article summarizes the recent advances of ILs applications using MALDI-MS. The applications of ILs as matrices, solvents, and pseudo-stationary phases, are also reviewed.
Collapse
|
30
|
The analysis of latent fingermarks on polymer banknotes using MALDI-MS. Sci Rep 2018; 8:8765. [PMID: 29884869 PMCID: PMC5993810 DOI: 10.1038/s41598-018-27004-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/18/2018] [Indexed: 11/12/2022] Open
Abstract
In September 2016, the UK adopted a new Bank of England (BoE) £5 polymer banknote, followed by the £10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface.
Collapse
|
31
|
Affiliation(s)
- Chris Lennard
- School of Science and Health, Western Sydney University, Penrith, Australia
| |
Collapse
|
32
|
Kriegsmann J, Casadonte R, Kriegsmann K, Longuespée R, Kriegsmann M. Mass spectrometry in pathology - Vision for a future workflow. Pathol Res Pract 2018; 214:1057-1063. [PMID: 29910062 DOI: 10.1016/j.prp.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 02/09/2023]
Abstract
Mass spectrometric (MS) techniques are applied in various areas of medical diagnostics. For the detection of microbiological germs and genetic mutations, MS is a method used in routine. Since MS also allows the analysis of proteins and peptides, it seems an ideal candidate to supplement histopatholological diagnostics. Matrix-assisted laser desorption/ionization time-of-flight Imaging MS links molecular analysis of numerous analytes with morphological information about their spatial distribution in cells or tissues. Herein, we review principle MS techniques as well as potential applications in pathology and discuss our vision for a future workflow.
Collapse
Affiliation(s)
- Jörg Kriegsmann
- MVZ for Histology, Cytology and Molecular Diagnostics Trier, Trier, Germany; Proteopath GmbH, Trier, Germany
| | | | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rémi Longuespée
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|