1
|
Bartoli M, Cardano F, Piatti E, Lettieri S, Fin A, Tagliaferro A. Interface properties of nanostructured carbon-coated biological implants: an overview. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1041-1053. [PMID: 39161465 PMCID: PMC11331541 DOI: 10.3762/bjnano.15.85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The interfaces between medical implants and living tissues are of great complexity because of the simultaneous occurrence of a wide variety of phenomena. The engineering of implant surfaces represents a crucial challenge in material science, but the further improvement of implant properties remains a critical task. It can be achieved through several processes. Among them, the production of specialized coatings based on carbon-based materials stands very promising. The use of carbon coatings allows one to simultaneously fine-tune tribological, mechanical, and chemical properties. Here, we review applications of nanostructured carbon coatings (nanodiamonds, carbon nanotubes, and graphene-related materials) for the improvement of the overall properties of medical implants. We are focusing on biological interactions, improved corrosion resistance, and overall mechanical properties, trying to provide a complete overview within the field.
Collapse
Affiliation(s)
- Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Francesca Cardano
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Erik Piatti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Stefania Lettieri
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Andrea Fin
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno, 60, 10144, Torino, Italy
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125 Torino, Italy
| | - Alberto Tagliaferro
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
2
|
Khatua R, Bhar B, Dey S, Jaiswal C, J V, Mandal BB. Advances in engineered nanosystems: immunomodulatory interactions for therapeutic applications. NANOSCALE 2024; 16:12820-12856. [PMID: 38888201 DOI: 10.1039/d4nr00680a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Advances in nanotechnology have led to significant progress in the design and fabrication of nanoparticles (NPs) with improved therapeutic properties. NPs have been explored for modulating the immune system, serving as carriers for drug delivery or vaccine adjuvants, or acting as therapeutics themselves against a wide range of deadly diseases. The combination of NPs with immune system-targeting moieties has facilitated the development of improved targeted immune therapies. Targeted delivery of therapeutic agents using NPs specifically to the disease-affected cells, distinguishing them from other host cells, offers the major advantage of concentrating the therapeutic effect and reducing systemic side effects. Furthermore, the properties of NPs, including size, shape, surface charge, and surface modifications, influence their interactions with the targeted biological components. This review aims to provide insights into these diverse emerging and innovative approaches that are being developed and utilized for modulating the immune system using NPs. We reviewed various types of NPs composed of different materials and their specific application for modulating the immune system. Furthermore, we focused on the mechanistic effects of these therapeutic NPs on primary immune components, including T cells, B cells, macrophages, dendritic cells, and complement systems. Additionally, a recent overview of clinically approved immunomodulatory nanomedicines and potential future perspectives, offering new paradigms of this field, is also highlighted.
Collapse
Affiliation(s)
- Rupam Khatua
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Bibrita Bhar
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Chitra Jaiswal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Victoria J
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Biman B Mandal
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
3
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Iraji Asiabadi A, Esmaeil N, Zargar Kharazi A, Dabiri A, Varshosaz J. Harnessing IL-10 induced anti-inflammatory response in maturing macrophages in presence of electrospun dexamethasone-loaded PLLA scaffold. J Biomed Mater Res B Appl Biomater 2024; 112:e35411. [PMID: 38773758 DOI: 10.1002/jbm.b.35411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/19/2024] [Accepted: 04/13/2024] [Indexed: 05/24/2024]
Abstract
The ultimate goal of tissue engineering is to repair and regenerate damaged tissue or organ. Achieving this goal requires blood vessel networks to supply oxygen and nutrients to new forming tissues. Macrophages are part of the immune system whose behavior plays a significant role in angiogenesis and blood vessel formation. On the other hand, macrophages are versatile cells that change their behavior in response to environmental stimuli. Given that implantation of a biomaterial is followed by inflammation; therefore, we reasoned that this inflammatory condition in tissue spaces modulates the final phenotype of macrophages. Also, we hypothesized that anti-inflammatory glucocorticoid dexamethasone improves modulating macrophages behavior. To check these concepts, we investigated the macrophages that had matured in an inflammatory media. Furthermore, we examined macrophages' behavior after maturation on a dexamethasone-containing scaffold and analyzed how the behavioral change of maturing macrophages stimulates other macrophages in the same environment. In this study, the expression of pro-inflammatory markers TNFa and NFκB1 along with pro-healing markers IL-10 and CD163 were investigated to study the behavior of macrophages. Our results showed that macrophages that were matured in the inflammatory media in vitro increase expression of IL-10, which in turn decreased the expression of pro-inflammatory markers TNFa and NFκB in maturing macrophages. Also, macrophages that were matured on dexamethasone-containing scaffolds decreased the expression of IL-10, TNFa, and NFκB and increase the expression of CD163 compared to the control group. Moreover, the modulation of anti-inflammatory response in maturing macrophages on dexamethasone-containing scaffold resulted in increased expression of TNFa and CD163 by other macrophages in the same media. The results obtained in this study, proposing strategies to improve healing through controlling the behavior of maturing macrophages and present a promising perspective for inflammation control using tissue engineering scaffolds.
Collapse
Affiliation(s)
- Arash Iraji Asiabadi
- Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Ghasemlou M, Pn N, Alexander K, Zavabeti A, Sherrell PC, Ivanova EP, Adhikari B, Naebe M, Bhargava SK. Fluorescent Nanocarbons: From Synthesis and Structure to Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312474. [PMID: 38252677 DOI: 10.1002/adma.202312474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Nanocarbons are emerging at the forefront of nanoscience, with diverse carbon nanoforms emerging over the past two decades. Early cancer diagnosis and therapy, driven by advanced chemistry techniques, play a pivotal role in mitigating mortality rates associated with cancer. Nanocarbons, with an attractive combination of well-defined architectures, biocompatibility, and nanoscale dimension, offer an incredibly versatile platform for cancer imaging and therapy. This paper aims to review the underlying principles regarding the controllable synthesis, fluorescence origins, cellular toxicity, and surface functionalization routes of several classes of nanocarbons: carbon nanodots, nanodiamonds, carbon nanoonions, and carbon nanohorns. This review also highlights recent breakthroughs regarding the green synthesis of different nanocarbons from renewable sources. It also presents a comprehensive and unified overview of the latest cancer-related applications of nanocarbons and how they can be designed to interface with biological systems and work as cancer diagnostics and therapeutic tools. The commercial status for large-scale manufacturing of nanocarbons is also presented. Finally, it proposes future research opportunities aimed at engendering modifiable and high-performance nanocarbons for emerging applications across medical industries. This work is envisioned as a cornerstone to guide interdisciplinary teams in crafting fluorescent nanocarbons with tailored attributes that can revolutionize cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Center for Sustainable Products, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Navya Pn
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Katia Alexander
- School of Engineering, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter C Sherrell
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Minoo Naebe
- Carbon Nexus, Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Suresh K Bhargava
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
6
|
Sung S, Steele LA, Risser GE, Spiller KL. Biomaterial-Assisted Macrophage Cell Therapy for Regenerative Medicine. Adv Drug Deliv Rev 2023:114979. [PMID: 37394101 DOI: 10.1016/j.addr.2023.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.
Collapse
Affiliation(s)
- Samuel Sung
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Lindsay A Steele
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Gregory E Risser
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Niora M, Lerche MH, Dufva M, Berg-Sørensen K. Quantitative Evaluation of the Cellular Uptake of Nanodiamonds by Monocytes and Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205429. [PMID: 36638251 DOI: 10.1002/smll.202205429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluorescent nanodiamonds (FNDs) with negative nitrogen-vacancy (NV- ) defect centers are great probes for biosensing applications, with potential to act as biomarkers for cell differentiation. To explore this concept, uptake of FNDs (≈120 nm) by THP-1 monocytes and monocyte-derived M0-macrophages is studied. The time course analysis of FND uptake by monocytes confirms differing FND-cell interactions and a positive time-dependence. No effect on cell viability, proliferation, and differentiation potential into macrophages is observed, while cells saturated with FNDs, unload the FNDs completely by 25 cell divisions and subsequently take up a second dose effectively. FND uptake variations by THP-1 cells at early exposure-times indicate differing phagocytic capability. The cell fraction that exhibits relatively enhanced FND uptake is associated to a macrophage phenotype which derives from spontaneous monocyte differentiation. In accordance, chemical-differentiation of the THP-1 cells into M0-macrophages triggers increased and homogeneous FND uptake, depleting the fraction of cells that were non-responsive to FNDs. These observations imply that FND uptake allows for distinction between the two cell subtypes based on phagocytic capacity. Overall, FNDs demonstrate effective cell labeling of monocytes and macrophages, and are promising candidates for sensing biological processes that involve cell differentiation.
Collapse
Affiliation(s)
- Maria Niora
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Mathilde Hauge Lerche
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| | - Kirstine Berg-Sørensen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads, building 345C, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Zhang J, Zheng Y, Lee J, Hoover A, King SA, Chen L, Zhao J, Lin Q, Yu C, Zhu L, Wu X. Continuous Glucose Monitoring Enabled by Fluorescent Nanodiamond Boronic Hydrogel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203943. [PMID: 36646501 PMCID: PMC9982560 DOI: 10.1002/advs.202203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Continuous monitoring of glucose allows diabetic patients to better maintain blood glucose level by altering insulin dosage or diet according to prevailing glucose values and thus to prevent potential hyperglycemia and hypoglycemia. However, current continuous glucose monitoring (CGM) relies mostly on enzyme electrodes or micro-dialysis probes, which suffer from insufficient stability, susceptibility to corrosion of electrodes, weak or inconsistent correlation, and inevitable interference. A fluorescence-based glucose sensor in the skin will likely be more stable, have improved sensitivity, and can resolve the issues of electrochemical interference from the tissue. This study develops a fluorescent nanodiamond boronic hydrogel system in porous microneedles for CGM. Fluorescent nanodiamond is one of the most photostable fluorophores with superior biocompatibility. When surface functionalized, the fluorescent nanodiamond can integrate with boronic polymer and form a hydrogel, which can produce fluorescent signals in response to environmental glucose concentration. In this proof-of-concept study, the strategy for building a miniatured device with fluorescent nanodiamond hydrogel is developed. The device demonstrates remarkable long-term photo and signal stability in vivo with both small and large animal models. This study presents a new strategy of fluorescence based CGM toward treatment and control of diabetes.
Collapse
Affiliation(s)
- Jian Zhang
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Yongjun Zheng
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Burns Center of Changhai HospitalShanghaiChina
| | - Jimmy Lee
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Alex Hoover
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Sarah Ann King
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Lifeng Chen
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Jing Zhao
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| | - Qiuning Lin
- School of Biomedical Engineering Shanghai Jiao Tong University800 Dong Chuan RoadShanghai200240China
| | - Cunjiang Yu
- Departments of Engineering Science and Mechanics, Biomedical Engineering, Materials Science and EngineeringMaterials Research InstitutePennsylvania State UniversityUniversity ParkPA16802USA
| | - Linyong Zhu
- Key laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
- Pritzker School of Molecular EngineeringUniversity of ChicagoILUSA
| | - Xiaoyang Wu
- Ben May Department for Cancer ResearchUniversity of ChicagoChicagoILUSA
| |
Collapse
|
9
|
Santos CIM, Cicuéndez M, Gonçalves G, Rodríguez-Pérez L, Portolés MT, Faustino MAF, Herranz MÁ, Neves MGPMS, Martinho JMG, Maçôas EMS, Martín N. Safety assessment of new nanodiamonds@corrole hybrids addressed by the response of RAW-264.7 macrophages. J Mater Chem B 2023; 11:675-686. [PMID: 36562480 DOI: 10.1039/d2tb01863b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Safety assessment of carbon nanomaterials is of paramount importance since they are on the frontline for applications in sensing, bioimaging and drug delivery. The biocompatibility and safety of functionalized nanodiamonds (NDs) are here addressed through the study of the pro-inflammatory response of RAW-264.7 macrophages exposed to new nanodiamonds@corrole hybrids. The corrole unit selected is as a prototype for a hydrophobic organic molecule that can function as a NIR fluorophore reporter, an optical sensor, a photodynamic therapy agent or a photocatalyst. The new functional nanohybrids containing detonated nanodiamonds (NDs) were obtained through esterification using carboxylated NDs and glycol corroles. The success of the covalent functionalization via carbodiimide activation was confirmed through X-ray photoelectron spectroscopy (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy. The UV-vis absorption and emission spectra of the hybrids are additive with respect to the corrole features. The cellular uptake, localization, cell viability and effects on immune cell activation of the new hybrids and of the precursors were carefully investigated using RAW-264.7 macrophages. Overall results showed that the ND@corrole hybrids had no pro-inflammatory effects on the RAW-264.7 macrophage cell line, making them an ideal candidate for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Carla I M Santos
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.,LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Mónica Cicuéndez
- Chemistry Department, Faculty of Pharmacy, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), E-28040, Madrid, Spain
| | - Gil Gonçalves
- TEMA-Nanotechnology Research Group, Mechanical Engineering Department, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.,Intelligent Systems Associate Laboratory (LASI), Portugal
| | - Laura Rodríguez-Pérez
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Teresa Portolés
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain, E-28040 Madrid, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, 28040 Madrid, Spain
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Ángeles Herranz
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - José M G Martinho
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ermelinda M S Maçôas
- CQE, Centro de Química Estrutural, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nazario Martín
- Department of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
10
|
Zangeneh Z, Khamisipour G, Andalib AR. Induced overexpression of MARCH-1 in human macrophages altered to M2 phenotype for suppressing inflammation process. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:474-482. [PMID: 35656075 PMCID: PMC9150814 DOI: 10.22038/ijbms.2022.62893.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/10/2022] [Indexed: 11/15/2022]
Abstract
Objectives The M1 macrophage is characterized by enhanced pro-inflammatory cytokines production, whereas macrophage (M2) has anti-inflammatory features. Macrophage polarization as a therapeutic target for controlling immune responses could be performed by gene transduction to control the regulation of exaggerated innate/adaptive immune responses. Materials and Methods Macrophages were prepared from THP-1 cell line and human monocytes that were transduced with (Membrane-Associated RING-CH-type finger) MARCH-1 viral lentivector produced in HEK-293T cells. RT-PCR and Western blotting confirmed MARCH-1 gene transduction. Cytokine production, CD markers assay, macrophage phagocytosis potential activity and mixed leukocyte reaction (MLR) with CFSE were performed for M1/M2 plasticity. Results The mean fluorescent intensity of HLA-DR and CD64 expression reduced in MARCH-1+ transduced macrophage population. However, CD206 and CD163 expression increased in these macrophages. The concentrations of IL-6, TNF-α and iNOS were decreased in MARCH-1 transduced cells, and TGF-β production showed an augmentation in concentration. Western blotting and real-time PCR measurement confirmed that the expression levels of MARCH-1 protein and arginase-1 enzyme were increased in transduced macrophages. Conclusion The anti-inflammatory features of MARCH-1 revealed the reduced levels of pro-inflammatory factors and maintained M2 phenotype characterized by high levels of scavenger receptors. Therefore, targeting MARCH-1 in monocytes/macrophages could represent a new autologous cell-based therapies strategy for inflammatory conditions.
Collapse
Affiliation(s)
- Zivar Zangeneh
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Khamisipour
- Department of Hematology, School of Para Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Reza Andalib
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran ,National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran,Corresponding author: Ali Reza Andalib. Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Chen YL, Lee GY, Sung MY, Huang JH, Cho EC, Lee KC. Versatile Functionalization of P25 Conjugated ND Nanocomposites for UV-Mediated Free Radical Scavenging and Facilitates Anti-Inflammation Potential in Human Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39088-39099. [PMID: 34433242 DOI: 10.1021/acsami.1c10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we demonstrated that building different linking groups between nanodiamond (ND) and TiO2 (P25) could provide more effective protection under oxidative stress and ultraviolet (UV) light irradiation compared with the use of TiO2 alone. The establishment of ester (-C-O-O-R), amide (-CONH-), and epoxide-amine adduct (-NHCCO-) groups between ND-TiO2 composites was found to be critical in the generation of reactive oxygen species (ROS) by controlling their charge transfer behaviors. We hypothesized that linking groups between the composites dictate the performance of ROS generation from nano-TiO2 under UV-light irradiation due to the differences in linking groups. The results showed that hydroxyl radicals were attenuated by the incorporation of ND. An MTT cell proliferation assay was performed in human cells under the treatment of ND-TiO2 composites to investigate the impacts of composites on cell viability. The results from the luciferase reporter assay suggested they have anti-inflammatory activity and can reduce cellular DNA damage under ROS stimulation. A zebrafish model was also applied with the ND-TiO2 composite treatment to demonstrate the safety aspects of the composites in vivo and their biomedical application potential. Studies exploring ROS generation behaviors in different linking groups suggested that interactive functionalization between nanoparticles might be an ideal antioxidant and anti-inflammatory strategy.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan
| | - Guang-Yu Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan
| | - Ming-Yen Sung
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 81126, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
- Master Program in Clinical Genomics and Proteomics, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City, 110, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No.134, Sec. 2, Heping E. Rd., Da-an District, Taipei City 106, Taiwan
- PhD Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City, 110, Taiwan
| |
Collapse
|
12
|
Li S, Su J, Cai W, Liu JX. Nanomaterials Manipulate Macrophages for Rheumatoid Arthritis Treatment. Front Pharmacol 2021; 12:699245. [PMID: 34335264 PMCID: PMC8316763 DOI: 10.3389/fphar.2021.699245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, and systemic inflammatory autoimmune disease, characterized by synovial inflammation, synovial lining hyperplasia and inflammatory cell infiltration, autoantibody production, and cartilage/bone destruction. Macrophages are crucial effector cells in the pathological process of RA, which can interact with T, B, and fibroblast-like synovial cells to produce large amounts of cytokines, chemokines, digestive enzymes, prostaglandins, and reactive oxygen species to accelerate bone destruction. Therefore, the use of nanomaterials to target macrophages has far-reaching therapeutic implications for RA. A number of limitations exist in the current clinical therapy for patients with RA, including severe side effects and poor selectivity, as well as the need for frequent administration of therapeutic agents and high doses of medication. These challenges have encouraged the development of targeting drug delivery systems and their application in the treatment of RA. Recently, obvious therapeutic effects on RA were observed following the use of various types of nanomaterials to manipulate macrophages through intravenous injection (active or passive targeting), oral administration, percutaneous absorption, intraperitoneal injection, and intra-articular injection, which offers several advantages, such as high-precision targeting of the macrophages and synovial tissue of the joint. In this review, the mechanisms involved in the manipulation of macrophages by nanomaterials are analyzed, and the prospect of clinical application is also discussed. The objective of this article was to provide a reference for the ongoing research concerning the treatment of RA based on the targeting of macrophages.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,College Pharmacy, Jiamusi University, Jiamusi, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
13
|
Balakin S, Yun YS, Lee J, Kang EH, Spohn J, Yun IS, Opitz J, Cuniberti G, Yeo JS. In vitro characterization of osteoblast cells on polyelectrolyte multilayers containing detonation nanodiamonds. ACTA ACUST UNITED AC 2020; 15:055026. [PMID: 32526712 DOI: 10.1088/1748-605x/ab9baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticle-enhanced coatings of bone implants are a promising method to facilitate sustainable wound healing, leading to an increase in patient well-being. This article describes the in vitro characterization of osteoblast cells interacting with polyelectrolyte multilayers, which contain detonation nanodiamonds (NDs), as a novel class of carbon-based coating material, which presents a unique combination of photoluminescence and drug-binding properties. The cationic polyelectrolyte, namely polydiallyldimethylammonium chloride (PDDA), has been used to immobilize NDs on silica glass. The height of ND-PDDA multilayers varies from a minimum of 10 nm for one bilayer to a maximum of 90 nm for five bilayers of NDs and PDDA. Human fetal osteoblasts (hFOBs) cultured on ND-PDDA multilayers show a large number of focal adhesions, which were studied via quantitative fluorescence imaging analysis. The influence of the surface roughness on the filopodia formation was assessed via scanning electron microscopy and atomic force microscopy. The nano-rough surface of five bilayers constrained the filopodia formation. The hFOBs grown on NDs tend to show not only a similar cell morphology compared to cells cultured on extracellular matrix protein-coated silica glass substrates, but also increased cell viability by about 40%. The high biocompatibility of the ND-PDDA multilayers, indicated via high cell proliferation and sound cell adhesion, shows their potential for biomedical applications such as drug-eluting coatings and biomaterials in general.
Collapse
Affiliation(s)
- Sascha Balakin
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany. Bio- and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Dresden, Germany. Both authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lasola JJM, Kamdem H, McDaniel MW, Pearson RM. Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis. Front Immunol 2020; 11:1726. [PMID: 32849612 PMCID: PMC7418829 DOI: 10.3389/fimmu.2020.01726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is an essential component of a wide variety of disease processes and oftentimes can increase the deleterious effects of a disease. Finding ways to modulate this essential immune process is the basis for many therapeutics under development and is a burgeoning area of research for both basic and translational immunology. In addition to developing therapeutics for cellular and molecular targets, the use of biomaterials to modify innate and adaptive immune responses is an area that has recently sparked significant interest. In particular, immunomodulatory activity can be engineered into biomaterials to elicit heightened or dampened immune responses for use in vaccines, immune tolerance, or anti-inflammatory applications. Importantly, the inherent physicochemical properties of the biomaterials play a significant role in determining the observed effects. Properties including composition, molecular weight, size, surface charge, and others affect interactions with immune cells (i.e., nano-bio interactions) and allow for differential biological responses such as activation or inhibition of inflammatory signaling pathways, surface molecule expression, and antigen presentation to be encoded. Numerous opportunities to open new avenues of research to understand the ways in which immune cells interact with and integrate information from their environment may provide critical solutions needed to treat a variety of disorders and diseases where immune dysregulation is a key inciting event. However, to elicit predictable immune responses there is a great need for a thorough understanding of how the biomaterial properties can be tuned to harness a designed immunological outcome. This review aims to systematically describe the biological effects of nanoparticle properties-separate from additional small molecule or biologic delivery-on modulating innate immune cell responses in the context of severe inflammation and sepsis. We propose that nanoparticles represent a potential polypharmacological strategy to simultaneously modify multiple aspects of dysregulated immune responses where single target therapies have fallen short for these applications. This review intends to serve as a resource for immunology labs and other associated fields that would like to apply the growing field of rationally designed biomaterials into their work.
Collapse
Affiliation(s)
- Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Henry Kamdem
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Michael W. McDaniel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Ryan M. Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
15
|
Yakovlev RY, Mingalev PG, Leonidov NB, Lisichkin GV. Detonation Nanodiamonds as Promising Drug Carriers. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Soltani R, Guo S, Bianco A, Ménard‐Moyon C. Carbon Nanomaterials Applied for the Treatment of Inflammatory Diseases: Preclinical Evidence. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rym Soltani
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| | - Cécilia Ménard‐Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg, ISIS Strasbourg 67000 France
| |
Collapse
|
17
|
Wofford KL, Singh BS, Cullen DK, Spiller KL. Biomaterial-mediated reprogramming of monocytes via microparticle phagocytosis for sustained modulation of macrophage phenotype. Acta Biomater 2020; 101:237-248. [PMID: 31731024 PMCID: PMC6960335 DOI: 10.1016/j.actbio.2019.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
Monocyte-derived macrophages orchestrate tissue regeneration by homing to sites of injury, phagocytosing pathological debris, and stimulating other cell types to repair the tissue. Accordingly, monocytes have been investigated as a translational and potent source for cell therapy, but their utility has been hampered by their rapid acquisition of a pro-inflammatory phenotype in response to the inflammatory injury microenvironment. To overcome this problem, we designed a cell therapy strategy where monocytes are exogenously reprogrammed by intracellularly loading the cells with biodegradable microparticles containing an anti-inflammatory drug in order to modulate and maintain an anti-inflammatory phenotype over time. To test this concept, poly(lactic-co-glycolic) acid microparticles were loaded with the anti-inflammatory drug dexamethasone (Dex) and administered to primary human monocytes for four hours to facilitate phagocytic uptake. After removal of non-phagocytosed microparticles, microparticle-loaded monocytes differentiated into macrophages and stored the microparticles intracellularly for several weeks in vitro, releasing drug into the extracellular environment over time. Cells loaded with intracellular Dex microparticles showed decreased expression and secretion of inflammatory factors even in the presence of pro-inflammatory stimuli up to 7 days after microparticle uptake compared to untreated cells or cells loaded with blank microparticles, without interfering with phagocytosis of tissue debris. This study represents a new strategy for long-term maintenance of anti-inflammatory macrophage phenotype using a translational monocyte-based cell therapy strategy without the use of genetic modification. Because of the ubiquitous nature of monocyte-derived macrophage involvement in pathology and regeneration, this strategy holds potential as a treatment for a vast number of diseases and disorders. STATEMENT OF SIGNIFICANCE: We report a unique and translational strategy to overcome the challenges associated with monocyte- and macrophage-based cell therapies, in which the cells rapidly take on inflammatory phenotypes when administered to sites of injury. By intracellularly loading monocytes with drug-loaded microparticles prior to administration via phagocytosis, we were able to inhibit inflammation while preserving functional behaviors of human primary macrophages derived from those monocytes up to seven days later. To our knowledge, this study represents the first report of reprogramming macrophages to an anti-inflammatory phenotype without the use of genetic modification.
Collapse
Affiliation(s)
- Kathryn L Wofford
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States; Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Departments of Neurosurgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Bhavani S Singh
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, United States; Departments of Neurosurgery & Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Li JA, Chen L, Zhang XQ, Guan SK. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110607. [PMID: 32228927 DOI: 10.1016/j.msec.2019.110607] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022]
Abstract
In this paper the poly-dopamine (PDA)/hyaluronic acid (HA) coatings with different HA molecular weight (MW, 4 × 103, 1 × 105, 5 × 105 and 1 × 106 Da) were prepared onto the NaOH passivated Mg-Zn-Y-Nd alloy aiming at potential application of cardiovascular implants. The characterization of weight loss, polarization curves and surface morphology indicated that the coatings with HA MW of 1 × 105 (PDA/HA-2) and 1 × 106 Da (PDA/HA-4) significantly enhanced the corrosion resistance of Mg-Zn-Y-Nd. In vitro biological test also suggested better hemocompatibility, pro-endothelialization, anti-hyperplasia and anti-inflammation functions of the PDA/HA-2- and PDA/HA-4-coated Mg-Zn-Y-Nd alloy. Nevertheless, the in vivo implantation of SD rats' celiac artery demonstrated that the PDA/HA-2 had preferable corrosion resistance and biocompatibility.
Collapse
Affiliation(s)
- Jing-An Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Li Chen
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xue-Qi Zhang
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shao-Kang Guan
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
19
|
Pentecost A, Kim MJ, Jeon S, Ko YJ, Kwon IC, Gogotsi Y, Kim K, Spiller KL. Immunomodulatory nanodiamond aggregate-based platform for the treatment of rheumatoid arthritis. Regen Biomater 2019; 6:163-174. [PMID: 31198584 PMCID: PMC6547310 DOI: 10.1093/rb/rbz012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/14/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that octadecylamine-functionalized nanodiamond (ND-ODA) and dexamethasone (Dex)-adsorbed ND-ODA (ND-ODA-Dex) promoted anti-inflammatory and pro-regenerative behavior in human macrophages in vitro. In this study, we performed a pilot study to investigate if these immunomodulatory effects translate when used as a treatment for rheumatoid arthritis in mice. Following local injection in limbs of mice with collagen type II-induced arthritis, microcomputed tomography showed that mice treated with a low dose of ND-ODA and ND-ODA-Dex did not experience bone loss to the levels observed in non-treated arthritic controls. A low dose of ND-ODA and ND-ODA-Dex also reduced macrophage infiltration and expression of pro-inflammatory mediators iNOS and tumor necrosis factor-α compared to the arthritic control, while a high dose of ND-ODA increased expression of these markers. Overall, these results suggest that ND-ODA may be useful as an inherently immunomodulatory platform, and support the need for an in-depth study, especially with respect to the effects of dose.
Collapse
Affiliation(s)
- Amanda Pentecost
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Min Ju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sangmin Jeon
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Young Ji Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Ick Chan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yury Gogotsi
- Department of Materials Science and Engineering, College of Engineering, Drexel University, Philadelphia, PA, USA
| | - Kwangmeyung Kim
- Biomedical Research Institute, Center for Theragnosis, Korea Institute of Science and Technology, Seoul, South Korea
| | - Kara L Spiller
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Wofford KL, Cullen DK, Spiller KL. Modulation of macrophage phenotype via phagocytosis of drug-loaded microparticles. J Biomed Mater Res A 2019; 107:1213-1224. [PMID: 30672109 PMCID: PMC6499658 DOI: 10.1002/jbm.a.36617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022]
Abstract
Monocyte-derived macrophages play a critical role in directing wound pathology following injury. Depending on their phenotype, macrophages also promote tissue regeneration. However, the therapeutic administration of macrophages with a controlled phenotype is challenging because macrophages are highly plastic and quickly revert to a detrimental, inflammatory phenotype in response to the environment of a damaged tissue. To address this issue, we developed a novel strategy to modulate macrophage phenotype intracellularly through phagocytosis of drug-loaded microparticles. Poly(lactic-co-glycolic acid) microparticles loaded with the anti-inflammatory drug dexamethasone (Dex) were phagocytosed by monocytes and stored intracellularly for at least 5 days. After differentiation into macrophages, cell phenotype was characterized over time with high-throughput gene expression analysis via NanoString. We found that the microparticles modulated macrophage phenotype for up to 7 days after microparticle uptake, with decreases in inflammation-related genes at early timepoints and upregulation of homing- and phagocytosis-related genes at multiple timepoints in a manner similar to cells treated with continuous free Dex. These data suggest that intracellularly loading macrophages with Dex microparticles via phagocytosis could be a unique methodology to selectively modulate macrophage phenotype over time. This strategy would allow therapeutic administration of macrophages for the treatment of a number of inflammatory disease and disorders. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1213-1224, 2019.
Collapse
Affiliation(s)
- Kathryn L Wofford
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration and Restoration, CMC VA Medical Center, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
21
|
Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:913-931. [DOI: 10.1016/j.msec.2018.12.073] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 02/07/2023]
|
22
|
Witherel CE, Abebayehu D, Barker TH, Spiller KL. Macrophage and Fibroblast Interactions in Biomaterial-Mediated Fibrosis. Adv Healthc Mater 2019; 8:e1801451. [PMID: 30658015 PMCID: PMC6415913 DOI: 10.1002/adhm.201801451] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Indexed: 01/08/2023]
Abstract
Biomaterial-mediated inflammation and fibrosis remain a prominent challenge in designing materials to support tissue repair and regeneration. Despite the many biomaterial technologies that have been designed to evade or suppress inflammation (i.e., delivery of anti-inflammatory drugs, hydrophobic coatings, etc.), many materials are still subject to a foreign body response, resulting in encapsulation of dense, scar-like extracellular matrix. The primary cells involved in biomaterial-mediated fibrosis are macrophages, which modulate inflammation, and fibroblasts, which primarily lay down new extracellular matrix. While macrophages and fibroblasts are implicated in driving biomaterial-mediated fibrosis, the signaling pathways and spatiotemporal crosstalk between these cell types remain loosely defined. In this review, the role of M1 and M2 macrophages (and soluble cues) involved in the fibrous encapsulation of biomaterials in vivo is investigated, with additional focus on fibroblast and macrophage crosstalk in vitro along with in vitro models to study the foreign body response. Lastly, several strategies that have been used to specifically modulate macrophage and fibroblast behavior in vitro and in vivo to control biomaterial-mediated fibrosis are highlighted.
Collapse
Affiliation(s)
- Claire E. Witherel
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Daniel Abebayehu
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Thomas H. Barker
- University of Virginia, Department of Biomedical Engineering, School of Engineering & School of Medicine, 415 Lane Road, Charlottesville, Virginia 22904, USA
| | - Kara L. Spiller
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA,
| |
Collapse
|
23
|
Wan X, Zhang S, Wang F, Fan W, Wu C, Mao K, Wang H, Hu Z, Yang YG, Sun T. Red blood cell-derived nanovesicles for safe and efficient macrophage-targeted drug delivery in vivo. Biomater Sci 2019; 7:187-195. [PMID: 30421747 DOI: 10.1039/c8bm01258j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RBC-derived nanovesicles are effective hydrophilic drug carriers and can effectively deliver drugs into macrophages both in vitro and in vivo.
Collapse
|