1
|
Shin J, Shin H, Lee SH, Jang JD, Kim HJ. Influence of Solvent Dielectric Constant on the Complex Coacervation Phase Behavior of Polymerized Ionic Liquids. ACS Macro Lett 2024; 13:1678-1685. [PMID: 39570941 DOI: 10.1021/acsmacrolett.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Complex coacervation is an associative phase separation process of oppositely charged polyelectrolyte solutions, resulting in a coacervate phase enriched with charged polymers and a polymer-lean phase. To date, studies on the phase behavior of complex coacervation have been largely restricted to aqueous systems with relatively high dielectric constants due to the limited solubility of most polyelectrolytes, hindering the exploration of the effects of electrostatic interactions from differences in solvent permittivity. Herein, we prepare two symmetric but oppositely charged polymerized ionic liquids (PILs), consisting of poly[1-[2-acryloyloxyethyl]-3-butylimidazolium bis(trifluoromethane)sulfonimide] (PAT) and poly[1-ethyl-3-methylimidazolium 3-[[[(trifluoromethyl)sulfonyl]amino]sulfonyl]propyl acrylate] (PEA). Due to the delocalized ionic charges and their chemical structure similarity, both PAT and PEA are soluble in various organic solvents with a wide range of dielectric constants, ranging from 16.7 (hexafluoro-2-propanol (HFIP)) to 66.1 (propylene carbonate (PC)). Notably, no significant correlation is observed between the solvent dielectric constant and the phase diagram of the complex coacervation of PILs. Most organic solvents lead to similar phase diagrams and salt resistances regardless of their dielectric constants, except two protic solvents (HFIP and 2,2,2-trifluoroethanol (TFE)) showing significantly low salt resistances compared to the others. The low salt resistance in these protic solvents primarily arises from strong hydrogen bonding between PILs and solvents as evidenced by 1H NMR and small-angle neutron scattering (SANS) experiments. Our finding suggests that for the coacervation of PILs, particularly those with delocalized and weak charge interactions, entropy from the counterion release and polymer-solvent interaction χ parameter play a more important role than the electrostatic interactions of charged molecules, rendered by the dielectric constant of the solvent medium.
Collapse
Affiliation(s)
- Jowon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Heewoon Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Sang-Ho Lee
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Jong Dae Jang
- Neutron Science Division, Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 34057, Korea
| | - Hyeong Jun Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| |
Collapse
|
2
|
Chen Y, Shen Y, Liu Z, Yang M, Zhang Y, Niu Z, Wang Y, Feng M, Shi Z. Natural Low-Melting Mixture Solvents for Green Recovery of Spent All-Solid-State Sodium-Ion Batteries with Superior Efficiency over Lithium-Ion Batteries. CHEMSUSCHEM 2024:e202402457. [PMID: 39648947 DOI: 10.1002/cssc.202402457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/10/2024]
Abstract
Spent all-solid-state sodium-ion batteries (ASIBs) containing toxic and precious metal would be produced significantly and lead to resource waste and environmental pollution as the wide application of ASIBs in the near future. Therefore, it is necessary to develop green strategy for recovery of ASIBs. Here, we propose a safe, mild and green strategy to recover toxic and precious metals from cathode/solid electrolyte of ASIBs by using natural low-melting mixture solvents (LoMMSs) with high selectivity and high leaching efficiency. Natural LoMMSs are abundant, natural available, cheap, non-flammable, biodegradable and biocompatible. Results show that natural LoMMSs could leach nearly 100 % Na and achieve superhigh Na/Zr selectivity of up to 58 from ASIBs at mild temperature, outperforming the recycling efficiency and selectivity of lithium-ion batteries cathode. More importantly, we find that water could be used as a green and low-cost anti-solvent to precipitate the extracted metal from the leachate with low-energy consumption at room temperature. This work provides a cost-effective, energy-saving, mild, green strategy for the recovery of cathode/solid electrolyte from spent ASIBs with high safety and high selectivity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Yaxue Shen
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Zicheng Liu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Mingshuai Yang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Yuqing Zhang
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Zihang Niu
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| | - Yanlong Wang
- Hebei Regional Geological Survey Institute, Langfang, 065000, Hebei Province, P. R. China
| | - Minghui Feng
- Hebei Regional Geological Survey Institute, Langfang, 065000, Hebei Province, P. R. China
| | - Zhuojia Shi
- Department of Chemistry and Material Science, Langfang Normal University, Langfang, 065000, Hebei, China
| |
Collapse
|
3
|
Liao Y, Sun D, Tang X, Han S, Dong X, Zhao B, An Y, Yang Z, Tang N, Zeng J, Zhang W. Effect of structure and interaction on physicochemical properties of new [Emim][BF 3X] complex anion ionic liquids studied by quantum chemistry. J Mol Model 2024; 30:404. [PMID: 39556283 DOI: 10.1007/s00894-024-06212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT One of the key challenges in the industrial application of ionic liquids (ILs) is their extreme characteristics, such as viscosity, glass transition temperatures, and conductivity. Understanding the relationship between ILs structure and physicochemical property is a crucial aspect of the directed design of ILs with good properties, which is a prerequisite for their successful implementation in industrial processes. In this work, high-level quantum-chemical research with for four pairs ionic liquids, [Emim][X] and [Emim][BF3X] (X = CH3SO3, EtSO4, HSO4, Tos), was performed, to analyze the stable structure, interionic interaction, and charge transfer and provide a new insight into the property variances at the molecular level. The result shows that the overall structural stability of ionic liquids is contributed with hydrogen bonding network between the protons in the C-H and N-H of the cation and oxygen atoms of the anion, as well as fluorine atoms. The nature and strength of the interionic interaction were measured via atoms in molecule analysis and sobEDAw method and results suggested that BF3 could waning interionic interaction of ion pairs. Moreover, a close relation between the binding energies of ion pairs and physicochemical properties was established: the weaker the interionic interaction, the lower is the viscosity and glass transition, and the higher is the conductivity. METHODS Quantum chemistry calculations were performed under B3LYP-D3/aug-cc-pVTZ level of DFT functional using the Gaussian 16 package (version C01). The Multiwfn 3.7 program was used to calculate the electrostatic potential, interaction region indicator, the information of bond critical points, core-valence bifurcation index, and ADCH charge. Visualization of structure and the region of interaction were achieved using VESTA and VMD.
Collapse
Affiliation(s)
- Yuanhao Liao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Dongwei Sun
- Electric Power Research Institute of Guangdong Power Grid, Guangzhou, 510080, China
| | - Xiaobo Tang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Sheng Han
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Xingzong Dong
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Bo Zhao
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Yu An
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Zhiqiang Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
| | - Nian Tang
- Electric Power Research Institute of Guangdong Power Grid, Guangzhou, 510080, China
| | - Jijun Zeng
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China.
| | - Wei Zhang
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China.
| |
Collapse
|
4
|
Li Y, Sun M, Cao Y, Yu K, Fan Z, Cao Y. Designing Low Toxic Deep Eutectic Solvents for the Green Recycle of Lithium-Ion Batteries Cathodes. CHEMSUSCHEM 2024; 17:e202301953. [PMID: 38409620 DOI: 10.1002/cssc.202301953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The Lithium-ion battery (LIB) is one of the main energy storage equipment. Its cathode material contains Li, Co, and other valuable metals. Therefore, recycling spent LIBs can reduce environmental pollution and resource waste, which is significant for sustainable development. However, traditional metallurgical methods are not environmentally friendly, with high cost and environmental toxicity. Recently, the concept of green chemistry gives rise to environmental and efficient recycling technology, which promotes the transition of recycling solvents from organic solvents to green solvents represented by deep eutectic solvents (DESs). DESs are considered as ideal alternative solvents in extraction processes, attracting great attention due to their low cost, low toxicity, good biodegradability, and high extraction capacity. It is very important to develop the DESs system for LIBs recycling for sustainable development of energy and green economic development of recycling technology. In this work, the applications and research progress of DESs in LIBs recovery are reviewed, and the physicochemical properties such as viscosity, toxicity and regulatory properties are summarized and discussed. In particular, the toxicity data of DESs are collected and analyzed. Finally, the guidance and prospects for future research are put forward, aiming to explore more suitable DESs for recycling valuable metals in batteries.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Mingjie Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yanbo Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Zixuan Fan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, P.R. China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, P.R. China
| |
Collapse
|
5
|
Chen LL, Bu X, Song WL, Chen HS, Wang W, Jiao S. Stable Photo-Rechargeable Al Battery for Enhancing Energy Utilization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306701. [PMID: 38727004 DOI: 10.1002/adma.202306701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Photovoltaic cells (PVs) are able to convert solar energy to electric energy, while energy storage devices are required to be equipped due to the fluctuations of sunlight. However, the electrical connection of PVs and energy storage devices leads to increased energy consumption, and thus energy storage ability and utilization efficiency are decreased. One of the solutions is to explore an integrated photoelectrochemical energy conversion-storage device. Up to date, the integrated photo-rechargeable Li-ion batteries often suffer from unstable photo-active materials and flammable electrolytes under illumination, with concerns in safety risks and limited lifetime. To address the critical issues, here a novel photo-rechargeable aluminum battery (PRAB) is designed with safe ionic liquid electrolytes and stable polyaniline photo-electrodes. The integrated PRAB presents stable operation with an enhanced reversible specific capacity ≈191% under illumination. Meanwhile, a simplified continuum model is established to provide rational guidance for designing electrode structures along with a charging/discharging strategy to meet the practical operation conditions. The as-designed PRAB presents an energy-saving efficiency ≈61.92% upon charging and an energy output increment ≈31.25% during discharging under illumination. The strategy of designing and fabricating stable and safe photo-rechargeable non-aqueous Al batteries highlights the pathway for substantially promoting the utilization efficiency of solar energy.
Collapse
Affiliation(s)
- Li-Li Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Xudong Bu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hao-Sen Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
6
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
7
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
8
|
Goyal P, Sengupta A, Srivastava A, Mukherjee S, Rout VV, Mohapatra PK. In-Situ-Generated Fluoride-Assisted Rapid Dissolution of Uranium Oxides by Ionic Liquids. Inorg Chem 2024; 63:7161-7176. [PMID: 38591969 DOI: 10.1021/acs.inorgchem.3c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A quantitative, rapid, endothermic dissolution of U3O8 in C4mim·PF6 (1-alkyl-3-methyl imidazolium hexafluorophosphate) has been achieved within 2 h at 65 °C by in situ generated fluoride ions by pre-equilibrating the ionic liquid with suitable concentrations of nitric acid. The efficiency of the dissolution followed the trend: UO3 > UO2 > U3O8. The fluoride generation was found to increase with the concentration of nitric acid being equilibrated, the water content of the ionic liquid, and also the time of equilibration. The rate of dissolution of U3O8 followed the trend: C4mim·PF6> C6mim·PF6 > C8mim·PF6. The maximum loading observed for the present case was 200 mg mL-1 which is considered to be quite high with an ionic liquid. The effects of different acid pre-equilibration (HClO4, HCl) on F- generation and subsequent dissolution characteristics have also been investigated. The in situ F- generation, as well as U3O8 dissolution, were found to predominantly follow a pseudo-second-order rate kinetics, while the rate constants for U3O8 dissolution were found to be higher than that of F- generation. The dissolved uranium was successfully electrodeposited on a Cu plate, as confirmed by EDXRF, while the formation of UO2 was revealed from the XRD pattern of the deposit.
Collapse
Affiliation(s)
- Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sumanta Mukherjee
- Product Development Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vaibhavi V Rout
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prasanta K Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
9
|
Silva R, Montes-Campos H, Lobo Ferreira AI, Bakis E, Santos LM. Thermodynamic Study of Alkylsilane and Alkylsiloxane-Based Ionic Liquids. J Phys Chem B 2024; 128:3742-3754. [PMID: 38573787 PMCID: PMC11033869 DOI: 10.1021/acs.jpcb.3c08333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 J·K-1·mol-1 in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.
Collapse
Affiliation(s)
- Rodrigo
M.A. Silva
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Hadrián Montes-Campos
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Ana I.M.C. Lobo Ferreira
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Eduards Bakis
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Luís M.N.B.F. Santos
- CIQUP,
Institute of Molecular Sciences (IMS), Department of Chemistry and
Biochemistry, Faculty of Science, University
of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| |
Collapse
|
10
|
Gu H, Meng K, Yuan R, Xiao S, Shan Y, Zhu R, Deng Y, Luo X, Li R, Liu L, Chen X, Shi Y, Wang X, Duan C, Wang H. Rewritable printing of ionic liquid nanofilm utilizing focused ion beam induced film wetting. Nat Commun 2024; 15:2949. [PMID: 38580645 PMCID: PMC10997651 DOI: 10.1038/s41467-024-47018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Manipulating liquid flow over open solid substrate at nanoscale is important for printing, sensing, and energy devices. The predominant methods of liquid maneuvering usually involve complicated surface fabrications, while recent attempts employing external stimuli face difficulties in attaining nanoscale flow control. Here we report a largely unexplored ion beam induced film wetting (IBFW) technology for open surface nanofluidics. Local electrostatic forces, which are generated by the unique charging effect of Helium focused ion beam (HFIB), induce precursor film of ionic liquid and the disjoining pressure propels and stabilizes the nanofilm with desired patterns. The IBFW technique eliminates the complicated surface fabrication procedures to achieve nanoscale flow in a controllable and rewritable manner. By combining with electrochemical deposition, various solid materials with desired patterns can be produced.
Collapse
Affiliation(s)
- Haohao Gu
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Kaixin Meng
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Ruowei Yuan
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Siyang Xiao
- Department of Mechanical Engineering, Boston University, Boston, 02215, MA, USA
| | - Yuying Shan
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing, 100871, PR China
| | - Rui Zhu
- Electron Microscopy Lab, School of Physics, Peking University, Beijing, 100871, PR China
| | - Yajun Deng
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, PR China
| | - Xiaojin Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Ruijie Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Xu Chen
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, PR China
| | - Yuping Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiaodong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, PR China
| | - Chuanhua Duan
- Department of Mechanical Engineering, Boston University, Boston, 02215, MA, USA
| | - Hao Wang
- Laboratory of Heat and Mass Transport at Micro-Nano Scale, College of Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
11
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
12
|
Panda I, Behera BR, Jena D, Behera SK, Samal SK, Pradhan S. Experimental and in silico insights: interaction of dimethyl sulphoxide with 1-hexyl-2-methyl imidazolium bromide/1-octyl-2-methyl imidazolium bromide at different temperatures. RSC Adv 2024; 14:2453-2465. [PMID: 38223693 PMCID: PMC10785048 DOI: 10.1039/d3ra07417j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Ionic liquids have gained attention as 'designer solvents' since they offer a broad spectrum of properties that can be tuned by altering the constituent ions. In this work, 1-alkyl-2-methyl imidazolium-based ionic liquids with two different alkyl chains (alkyl = hexyl and octyl) have been synthesized and characterized. Since the binary mixture of ionic liquids with molecular solvents can give rise to striking physicochemical properties, the interaction of the synthesized room temperature ionic liquids, 1-hexyl-2-methyl imidazolium bromide [HMIM][Br]/1-octyl-2-methyl imidazolium bromide [OMIM][Br] with DMSO has been examined through density and specific conductance at T = (303.15, 308.15, 313.15 and 318.15) K under atmospheric pressure. The obtained molar volume and excess molar volume are fitted to the Redlich-Kister polynomial equation, and the standard deviation is noted. The positive excess molar volume at elevated temperatures indicates volume expansion due to the mutual loss of dipolar association and differences in the sizes and shapes of the constituent molecules. To have a better understanding of the reactivity and efficacy of 1-hexyl-2-methyl imidazolium bromide and 1-octyl-2-methyl imidazolium bromide with DMSO, the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) correlation function of density functional theory (DFT) has been used. The ORCA Program version 4.0 calculates the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy. The effective reactivities of both the compounds that showed an energy band gap (ΔE), i.e., the difference between ELUMO and EHOMO, are 7.147 and 8.037 kcal mol-1.
Collapse
Affiliation(s)
- Itishree Panda
- Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan, deemed to be University Khandagiri Square Bhubaneswar 751030 Odisha India
| | - Bikash Ranjan Behera
- Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan, deemed to be University Khandagiri Square Bhubaneswar 751030 Odisha India
| | - Debasmita Jena
- Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan, deemed to be University Khandagiri Square Bhubaneswar 751030 Odisha India
| | - Santosh Kumar Behera
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research Ahmedabad Gujarat 382355 India
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Center Bhubaneswar - 751 023 Odisha India
| | - Sanghamitra Pradhan
- Department of Chemistry, Institute of Technical Education and Research (FET), Siksha 'O' Anusandhan, deemed to be University Khandagiri Square Bhubaneswar 751030 Odisha India
| |
Collapse
|
13
|
Xin M, Wang Q, Wang Q, Wang H, Muhammad F, Nie G. New adsorbent materials based on PILs for Freon refrigerants. RSC Adv 2024; 14:90-100. [PMID: 38173624 PMCID: PMC10758758 DOI: 10.1039/d3ra07033f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The development of refrigerant adsorbent materials is not only essential for enhancing the efficiency of refrigeration systems but also plays a pivotal role in environmental conservation and addressing global warming challenges. However, traditional adsorbent materials are often limited in widespread applications in industrial scales due to various disadvantages, such as low adsorption efficiency, difficulties in desorption, and poor reusability. In this context, three distinct PILs, P[EVIM][PF6], P[BVIM][PF6] and P[HVIM][PF6], were synthesized and characterized. In addition, their structure as well as adsorption capacities towards three different Freon refrigerants (R12, R22 and R134a) were explored. The results indicated that the synthesized PILs had high thermal stability and exceptional adsorption capabilities, with P[EVIM][PF6] demonstrating the best adsorption performance. These PILs consistently maintain a stable saturated adsorption capacity throughout nine consecutive adsorption-desorption cycles, and the desorption rate of the adsorbent tubes consistently exceeded 96%. Thus, the superior recyclability of these PILs was verified. These PILs provide a promising route for efficient adsorption of Freon refrigerants, highlighting their potential significance in pertinent industries and environmental conservation efforts.
Collapse
Affiliation(s)
- Mingyuan Xin
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
- Dandong Chemical Engineering Institute Co., LTD. Dandong Liaoning China
| | - Qiang Wang
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Qiang Wang
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Haoyu Wang
- Dandong Chemical Engineering Institute Co., LTD. Dandong Liaoning China
| | - Furqan Muhammad
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| | - Guanze Nie
- Key Laboratory of Coal Cleaning Conversion and Chemical Engineering Process, Xinjiang Uyghur Autonomous Region, College of Chemical Engineering, Xinjiang University Urumqi Xinjiang 830017 PR China
| |
Collapse
|
14
|
Jesse KA, Abad SD, Studvick C, Andrade GA, Maurya S, Scott BL, Mukundan R, Popov IA, Davis BL. Impact of Pendent Ammonium Groups on Solubility and Cycling Charge Carrier Performance in Nonaqueous Redox Flow Batteries. Inorg Chem 2023; 62:19218-19229. [PMID: 37948607 DOI: 10.1021/acs.inorgchem.3c02396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an ∼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.
Collapse
Affiliation(s)
- Kate A Jesse
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergio Diaz Abad
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Chad Studvick
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Gabriel A Andrade
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sandip Maurya
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Rangachary Mukundan
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Benjamin L Davis
- MPA-11: Materials Physics Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Anuchi S, Campbell KLS, Hallett JP. Effects of the Ionic Liquid Structure on Porosity of Lignin-Derived Carbon Materials. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:15228-15241. [PMID: 37886039 PMCID: PMC10598883 DOI: 10.1021/acssuschemeng.3c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Converting lignin into advanced porous carbon materials, with desirable surface functionalities, can be challenging. While lignin-derived carbons produced by pyrolysis at >600 °C develop porosity, they also simultaneously lose nearly all their surface functional groups. By contrast, pyrolysis of lignin at lower temperatures (e.g., <400 °C) results in the formation of nonporous char that retains some surface functionalities. However, copyrolysis of lignin with some ionic liquids (ILs) at lower temperatures offers an opportunity to produce porous carbon materials with both large surface areas and an abundance of surface functional groups. This study investigates the effects of IL properties (solubility, thermal, and ionic size) on the specific surface areas of lignin-derived carbons produced by copyrolysis of lignin and ILs at 350-400 °C for 20 min. It was found that ILs that have bulky anions and small cation sizes can induce porosity in lignin-derived carbons with large surface areas. Among 16 ILs that were tested, [C2MIm][NTF2] demonstrated the best performance; the inclusion of it in the copyrolysis process resulted in lignin-derived carbons with ∼528 m2 g-1 and 0.48 cm3 g-1. Lignin-derived carbons produced using no IL, [C2MIm][NTF2], and [C4MIm][OTF] were further characterized for morphology, interfacial chemical, and elemental properties. The copyrolysis of lignin and [C2MIm][NTF2], and [C4MIm][OTF] resulted in doping of heteroatoms (N and S) on the porous carbon materials during pyrolysis reaction. The present findings contribute to a better understanding of the main property of ILs responsible for creating porosity in lignin carbon during pyrolysis.
Collapse
Affiliation(s)
- Samson
O. Anuchi
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| | | | - Jason P. Hallett
- Laboratory
of Sustainable Chemical Technology, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 1AZ, U.K.
| |
Collapse
|
16
|
Oluwole SA, Veríssimo NV, Denis AA, Garcia NT, Fura S, Jayaraman K, Valles JD, Del Rosario DH, Patel PN, Duran A, Hakim QA, Quintana AA, Agatemor C. Unusual photophysics of geranic acid deep eutectic solvents. Chem Commun (Camb) 2023; 59:10492-10495. [PMID: 37566436 DOI: 10.1039/d3cc02457a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The photophysics of natural deep eutectic solvents (NADESs) remains unexplored. Here, we report that a class of NADESs aggregates in water, enabling through-space interaction as evidenced by an unusual emission and redshifted UV absorption band. The NADESs enhanced fluorescence excitation and emission of fluorogenic proteins for improved bioimaging.
Collapse
Affiliation(s)
| | | | - Amina A Denis
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | | | - Samuel Fura
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | | | | | | | | | | | | | | | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
- Department of Biology, University of Miami, Coral Gables, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
17
|
Dhakal P, Gassaway W, Shah JK. Mapping the frontier orbital energies of imidazolium-based cations using machine learning. J Chem Phys 2023; 159:064513. [PMID: 37579028 DOI: 10.1063/5.0155775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
The knowledge of the frontier orbital, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), energies is vital for studying chemical and electrochemical stability of compounds, their corrosion inhibition potential, reactivity, etc. Density functional theory (DFT) calculations provide a direct route to estimate these energies either in the gas-phase or condensed phase. However, the application of DFT methods becomes computationally intensive when hundreds of thousands of compounds are to be screened. Such is the case when all the isomers for the 1-alkyl-3-alkylimidazolium cation [CnCmim]+ (n = 1-10, m = 1-10) are considered. Enumerating the isomer space of [CnCmim]+ yields close to 386 000 cation structures. Calculating frontier orbital energies for each would be computationally very expensive and time-consuming using DFT. In this article, we develop a machine learning model based on the extreme gradient boosting method using a small subset of the isomer space and predict the HOMO and LUMO energies. Using the model, the HOMO energies are predicted with a mean absolute error (MAE) of 0.4 eV and the LUMO energies are predicted with a MAE of 0.2 eV. Inferences are also drawn on the type of the descriptors deemed important for the HOMO and LUMO energy estimates. Application of the machine learning model results in a drastic reduction in computational time required for such calculations.
Collapse
Affiliation(s)
- Pratik Dhakal
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Wyatt Gassaway
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Jindal K Shah
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| |
Collapse
|
18
|
Birrer SG, Quinnan P, Zarzar LD. Ionic Liquid-in-Water Emulsions Stabilized by Molecular and Polymeric Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37478134 DOI: 10.1021/acs.langmuir.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Ionic liquids have drawn notable attention for their unique solvent properties and use in applications such as batteries and chemical separations. While many ionic liquids are water-soluble, there are numerous examples of ionic liquids that are sufficiently hydrophobic to remain phase separated from water. However, relatively little is known about the stability and properties of ionic liquid-in-water emulsions. Here, we survey a series of ionic liquid-in-water emulsions stabilized by a range of ionic and nonionic molecular surfactants and polymers. To assess droplet stability and dynamics, we characterize the ionic liquid-surfactant interfacial tension, describe qualitative coarsening rates, and quantify droplet solubilization rate. In some instances, we observe unexpected spontaneous formation of complex double and triple emulsions. Our observations highlight approaches for ionic liquid emulsion formulation and provide insight into how to address challenges surrounding stabilization of ionic liquid-in-water droplets with molecular surfactants.
Collapse
Affiliation(s)
- Samuel G Birrer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Patrick Quinnan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lauren D Zarzar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Bhowmick S, Tatrari G, Filippov A, Johansson P, Shah FU. Structurally flexible pyrrolidinium- and morpholinium-based ionic liquid electrolytes. Phys Chem Chem Phys 2023. [PMID: 37449961 DOI: 10.1039/d3cp01190a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Ion transport measures and details as well as physico-chemical and electrochemical properties are presented for a small set of structurally flexible pyrrolidinium (Pyrr) and morpholinium (Morph) cation-based ionic liquids (ILs), all with oligoether phosphate-based anions. All have high thermal stabilities, low glass transition temperatures, and wide electrochemical stability windows, but rather moderate ionic conductivities, where both the anions and the cations of the Pyrr-based ILs diffuse faster than those of the Morph-based ILs. Overall, the Pyrr-based ILs show significantly more promise as high-temperature supercapacitor electrolytes, rendering a specific capacitance of 164 F g-1 at 1 mV s-1, a power density of 609 W kg-1 and a specific energy density of 27 W h kg-1 at 90 °C in a symmetric graphite supercapacitor.
Collapse
Affiliation(s)
- Sourav Bhowmick
- Chemistry of Interfaces, Lulea University of Technology, SE-971 87 Lulea, Sweden.
| | - Gaurav Tatrari
- Chemistry of Interfaces, Lulea University of Technology, SE-971 87 Lulea, Sweden.
| | - Andrei Filippov
- Chemistry of Interfaces, Lulea University of Technology, SE-971 87 Lulea, Sweden.
| | - Patrik Johansson
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
- ALISTORE-European Research Institute, CNRS FR 3104, Hub de l'Energie, 80039 Amiens, France
| | - Faiz Ullah Shah
- Chemistry of Interfaces, Lulea University of Technology, SE-971 87 Lulea, Sweden.
| |
Collapse
|
20
|
Paolone A, Di Muzio S, Palumbo O, Brutti S. Some Considerations about the Anodic Limit of Ionic Liquids Obtained by Means of DFT Calculations. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25050793. [PMID: 37238548 DOI: 10.3390/e25050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Ionic liquids are good candidates as the main component of safe electrolytes for high-energy lithium-ion batteries. The identification of a reliable algorithm to estimate the electrochemical stability of ionic liquids can greatly speed up the discovery of suitable anions able to sustain high potentials. In this work, we critically assess the linear dependence of the anodic limit from the HOMO level of 27 anions, whose performances have been experimentally investigated in the previous literature. A limited r Pearson's value of ≈0.7 is found even with the most computationally demanding DFT functionals. A different model considering vertical transitions in a vacuum between the charged state and the neutral molecule is also exploited. In this case, the best-performing functional (M08-HX) provides a Mean Squared Error (MSE) of 1.61 V2 on the 27 anions here considered. The ions which give the largest deviations are those with a large value of the solvation energy, and therefore, an empirical model that linearly combines the anodic limit calculated by vertical transitions in a vacuum and in a medium with a weight dependent on the solvation energy is proposed for the first time. This empirical method can decrease the MSE to 1.29 V2 but still provides an r Pearson's value of ≈0.72.
Collapse
Affiliation(s)
- Annalisa Paolone
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Simone Di Muzio
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Oriele Palumbo
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Brutti
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
21
|
Zhang C, Qu P, Zhou M, Qian L, Bai T, Jin J, Xin B. Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules 2023; 28:molecules28073051. [PMID: 37049827 PMCID: PMC10095915 DOI: 10.3390/molecules28073051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Ionic liquids (ILs), as one of the most concerned functional materials in recent decades, have opened up active perspectives for electrocatalysis. In catalyst preparation, ILs act as characteristic active components besides media and templates. Compared with catalysts obtained using ordinary reagents, IL-derived catalysts have a special structure and catalytic performance due to the influence of IL’s special physicochemical properties and structures. This review mainly describes the use of ILs as modifiers and reaction reagents to prepare electrocatalysts for water splitting. The designability of ILs provides opportunities for the ingenious composition of cations or anions. ILs containing heteroatoms (N, O, S, P, etc.) and transition metal anion (FeCl4−, NiCl3−, etc.) can be used to directly prepare metal phosphides, sulfides, carbides and nitrides, and so forth. The special physicochemical properties and supramolecular structures of ILs can provide growth conditions for catalysts that are different from the normal media environment, inducing special structure and high performance. ILs as heteroatom sources are safe, green and easy to operate compared with traditional heteroatom sources. The strategy for using ILs as reagents is expected to realize 100% atomic transformation of reactants, in line with the concept of green chemistry. This review reflects the discovered work with the best findings from the literature. It will offer readers a deeper understanding on the development of IL-derived electrocatalysts and inspire them to ingeniously design high-performance electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Puyu Qu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Mei Zhou
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Lidong Qian
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-136-8534-5517
| |
Collapse
|
22
|
Experimental and Computational Evaluation of 1,2,4-Triazolium-Based Ionic Liquids for Carbon Dioxide Capture. SEPARATIONS 2023. [DOI: 10.3390/separations10030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Utilization of ionic liquids (ILs) for carbon dioxide (CO2) capture is continuously growing, and further understanding of the factors that influence its solubility (notably for new ILs) is crucial. Herein, CO2 absorption of two 1,2,4-triazolium-based ILs was compared with imidazolium-based Ils of different anions, namely bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, and glycinate. The CO2 absorption capacity was determined using an isochoric saturation method and compared with predicted solubility employing COnductor-like Screening Model for Real Solvents (COSMO-RS). To gain an understanding of the effects of cations and anions of the ILs on the CO2 solubility, the molecular orbitals energy levels were calculated using TURBOMOLE. Triazolium-based ILs exhibit higher absorption capacity when compared to imidazolium-based ILs for the same anions. The results also showed that the anions’ energy levels are more determinant towards solubility than the cations’ energy levels, which can be explained by the higher tendency of CO2 to accept electrons than to donate them.
Collapse
|
23
|
McCalmont SH, Vaz ICM, Oorts H, Gong Z, Moura L, Costa Gomes M. Insights into the Absorption of Hydrocarbon Gases in Phosphorus-Containing Ionic Liquids. J Phys Chem B 2023; 127:3402-3415. [PMID: 36867065 DOI: 10.1021/acs.jpcb.2c08051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The solubility of ethane, ethylene, propane, and propylene was measured in two phosphorus-containing ionic liquids, trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate, [P6,6,6,14][DiOP], and 1-butyl-3-methylimidazolium dimethylphosphate, [C4C1Im][DMP], using an isochoric saturation method. The ionic liquid [C4C1Im][DMP] absorbed between 1 and 20 molecules of gas per 1000 ion pairs, at 313 K and 0.1 MPa, while [P6,6,6,14][DiOP] absorbed up to 169 molecules of propane per 1000 ion pairs under the same conditions. [C4C1Im][DMP] had a higher capacity to absorb olefins than paraffins, while the opposite was true for [P6,6,6,14][DiOP], with the former being slightly more selective than the later. From the analysis of the thermodynamic properties of solvation, we concluded that in both ionic liquids and for all of the studied gases the solvation is ruled by the entropy, even if its contribution is unfavorable. These results, together with density measurements, 2D NMR studies, and self-diffusion coefficients suggest that the gases' solubility is ruled mostly by nonspecific interactions with the ionic liquids and that the looser ion packing in [P6,6,6,14][DiOP] makes it easier to accommodate the gases compared to [C4C1Im][DMP].
Collapse
Affiliation(s)
- Sam H McCalmont
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Inês C M Vaz
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Hanne Oorts
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Zheng Gong
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| | - Leila Moura
- QUILL Research Centre, Queen's University Belfast, School of Chemistry and Chemical Engineering, David Keir Building, 39-123 Stranmillis Road, Belfast BT9 5AG, U.K
| | - Margarida Costa Gomes
- Laboratoire de Chimie de l'ENS Lyon, CNRS and Université de Lyon, 46 allée d'Italie, 69364 Lyon, France
| |
Collapse
|
24
|
Zhang H, Zou L, Feng Y. Fabrication of high-quality microcapsules containing ionic liquid for application in self-healing conductive materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
25
|
Rauber D, Philippi F, Becker J, Zapp J, Morgenstern B, Kuttich B, Kraus T, Hempelmann R, Hunt P, Welton T, Kay CWM. Anion and ether group influence in protic guanidinium ionic liquids. Phys Chem Chem Phys 2023; 25:6436-6453. [PMID: 36779955 DOI: 10.1039/d2cp05724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.
Collapse
Affiliation(s)
- Daniel Rauber
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Julian Becker
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Josef Zapp
- Pharmaceutical Biology, Saarland University, Campus B 2.3, 66123 Saarbrücken, Germany
| | - Bernd Morgenstern
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Björn Kuttich
- INM-Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Tobias Kraus
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany. .,INM-Leibniz Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany
| | - Rolf Hempelmann
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany.
| | - Patricia Hunt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.,School of Chemical and Physical Sciences, Victoria University of Wellington, New Zealand
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Christopher W M Kay
- Department of Chemistry, Saarland University, Campus B 2.2, 66123 Saarbrücken, Germany. .,London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
26
|
Khan AS, Sakina, Nasrullah A, Ullah S, Ullah Z, Khan Z, Khan NA, Khan SZ, Din IU. An Overview on Phytotoxic Perspective of Ionic Liquids and Deep Eutectic Solvents: The Role of Chemical Structure in the Phytotoxicity. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Amir Sada Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Sakina
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Asma Nasrullah
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
- Shaheed Benazir Bhutto Women University Department of Chemistry 25000 Peshawar Khyber Pakhtunkhwa Pakistan
| | - Saadat Ullah
- Hazara University Department of Chemistry Mansehra Khyber Pakhtunkhwa Pakistan
| | - Zahoor Ullah
- Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS) Department of Chemistry Takatu Campus 87100 Quetta Pakistan
| | - Zahid Khan
- American University of Sharjah Department of Civil Engineering, College of Engineering P.O. Box 26666 Sharjah United Arab Emirates
| | - Naveed Ahmed Khan
- University of Sharjah Department of Clinical Sciences, College of Medicine University City 27272 Sharjah Unites Arab Emirates
- Istinye University Istinye Faculty of Medicine 34396 Istanbul Turkey
| | - Shahan Zeb Khan
- University of Science and Technology Department of Chemistry 28100 Bannu Khyber Pakhtunkhwa Pakistan
| | - Israf Ud Din
- Prince Sattam Bin Abdulaziz University Department of Chemistry, College of Science and Humanities P.O. Box 173 Al-Kharj Saudi Arabia
| |
Collapse
|
27
|
Lyu P, Guo W, Qi H, Yuan X, Ma J, Xu X, Zhou H. Degradation of 1-alkyl-3-methylimidazolium tetrafluoroborate in an ultrasonic zero-valent zinc and activated carbon micro-electrolysis system. Sci Rep 2023; 13:1951. [PMID: 36732576 PMCID: PMC9894912 DOI: 10.1038/s41598-023-28237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Increased attention has been given to the removal of ionic liquids (ILs) from natural water environments. In this work, 5 kinds of 1-alkyl-3-methylimidazoliumtetrafluoroborate ([Cnmim][BF4] (n = 2, 4, 6, 8, 10)) ILs were degraded in an ultrasonic zero-valent zinc (ZVZ) and activated carbon (AC) micro-electrolysis system. Optimization of degradation conditions and the degradation levels were studied by high performance liquid chromatography, the surface morphology of the ZVZ and AC changed before and after the reaction were observed by scanning electron microscope. The degradation intermediates were detected by gas chromatography- mass spectrometry and ion chromatography, and inferred the degradation pathway. The degradation effect of [C4mim][BF4] was best with ultrasonic assistance, pH 3 and an AC/ZVZ ratio of 1:1. The degradation of [Cnmim][BF4] in aqueous solution exceeded 91.7% in 120 min, and the mineralization level exceeded 88.9%. The surface of smooth and dense ZVZ particles became loose flocculent and the porous surface of AC became larger and rougher after reaction. The degradation pathway suggested that the imidazolium ring was sulfurized or oxidized, and then the ring was opened to form N-alkyl formamide and N-methyl formamide. ZVZ/AC micro-electrolysis combined with ultrasonic irradiation is an effective method to remove ILs, which provides new insight into IL degradation.
Collapse
Affiliation(s)
- Ping Lyu
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Wan Guo
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Hang Qi
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Yuan
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jinqi Ma
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xingmin Xu
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haimei Zhou
- grid.453074.10000 0000 9797 0900Faculty of Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
28
|
Matuszek K, Kar M, Pringle JM, MacFarlane DR. Phase Change Materials for Renewable Energy Storage at Intermediate Temperatures. Chem Rev 2023; 123:491-514. [PMID: 36417460 DOI: 10.1021/acs.chemrev.2c00407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thermal energy storage technologies utilizing phase change materials (PCMs) that melt in the intermediate temperature range, between 100 and 220 °C, have the potential to mitigate the intermittency issues of wind and solar energy. This technology can take thermal or electrical energy from renewable sources and store it in the form of heat. This is of particular utility when the end use of the energy is also as heat. For this purpose, the material should have a phase change between 100 and 220 °C with a high latent heat of fusion. Although a range of PCMs are known for this temperature range, many of these materials are not practically viable for stability and safety reasons, a perspective not often clear in the primary literature. This review examines the recent development of thermal energy storage materials for application with renewables, the different material classes, their physicochemical properties, and the chemical structural origins of their advantageous thermal properties. Perspectives on further research directions needed to reach the goal of large scale, highly efficient, inexpensive, and reliable intermediate temperature thermal energy storage technologies are also presented.
Collapse
Affiliation(s)
- Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria3800, Australia
| | - Mega Kar
- School of Chemistry, Monash University, Clayton, Victoria3800, Australia
| | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University Burwood, Burwood, Victoria3125, Australia
| | | |
Collapse
|
29
|
Kurchavov D, Rustambek U, Haddad M, Ottochian A, Lefèvre G, Ciofini I, Lair V, Volovitch P. Influence of PEG-containing cation on molecular state of water in water – Acetate based ionic liquids mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Ferdeghini C, Mezzetta A, D’Andrea F, Pomelli CS, Guazzelli L, Guglielmero L. The Structure-Property Relationship of Pyrrolidinium and Piperidinium-Based Bromide Organic Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8483. [PMID: 36499976 PMCID: PMC9737136 DOI: 10.3390/ma15238483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Two couples of dicationic ionic liquids, featuring pyrrolidinium and piperidinium cations and different linker chains, were prepared and characterized. 1,1'-(propane-1,3-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(octane-1,8-diyl)bis(1-methylpyrrolidinium) bromide, 1,1'-(propane-1,3-diyl)bis(1-methylpiperidinium) bromide, and 1,1'-(octane-1,8-diyl)bis(1-methylpiperidinium) bromide were synthesized in quantitative yields and high purity and thermally characterized through TGA and DSC analysis. In this study, we propose a preliminary comparative evaluation of the effect of the linker chain length and of the size of the aliphatic ammonium ring on the thermal and solubility properties of bromide dicationic ionic liquids.
Collapse
Affiliation(s)
- Claudio Ferdeghini
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Andrea Mezzetta
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Felicia D’Andrea
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | | | - Lorenzo Guazzelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Luca Guglielmero
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| |
Collapse
|
31
|
Kaiho S, Hmayed AAR, Delle Chiaie KR, Worch JC, Dove AP. Designing Thermally Stable Organocatalysts for Poly(ethylene terephthalate) Synthesis: Toward a One-Pot, Closed-Loop Chemical Recycling System for PET. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Shu Kaiho
- School of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
- Chemicals Research Laboratories, Toray Industries, Inc., 9-1, Oe-cho, Minato-ku, Nagoya455-8502, Japan
| | - Ali Al Rida Hmayed
- School of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | | | - Joshua C. Worch
- School of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K
| |
Collapse
|
32
|
Ionic liquid derived novel deep eutectic solvents as low viscous electrolytes for energy storage. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Tuning toxic properties of polyethylene glycol-based deep eutectic solvents for achieving greener solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Xue M, Sun J, Li X, Qi J, Xu Q, Yin J. A novel supported ionic liquid catalyst, GO-[DBU][Br] catalyzes cycloaddition of CO2 in a fixed-bed reactor. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Chen Y, Han X, Liu Z, Li Y, Sun H, Wang H, Wang J. Thermal decomposition and volatility of ionic liquids: Factors, evaluation and strategies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Synthesis, Characterization, Biological Evaluation, and In Silico Studies of Imidazolium-, Pyridinium-, and Ammonium-Based Ionic Liquids Containing n-Butyl Side Chains. Molecules 2022; 27:molecules27196650. [PMID: 36235187 PMCID: PMC9572234 DOI: 10.3390/molecules27196650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Ionic liquids (ILs) have emerged as active pharmaceutical ingredients because of their excellent antibacterial and biological activities. Herein, we used the green-chemistry-synthesis procedure, also known as the metathesis method, to develop three series of ionic liquids using 1-methyl-3-butyl imidazolium, butyl pyridinium, and diethyldibutylammonium as cations, and bromide (Br−), methanesulfonate (CH3SO3−), bis(trifluoromethanesulfonyl)imide (NTf2−), dichloroacetate (CHCl2CO2−), tetrafluoroborate (BF4−), and hydrogen sulfate (HSO4−) as anions. Spectroscopic methods were used to validate the structures of the lab-synthesized ILs. We performed an agar well diffusion assay by using pathogenic bacteria that cause various infections (Escherichia coli; Enterobacter aerogenes; Klebsiella pneumoniae; Proteus vulgaris; Pseudomonas aeruginosa; Streptococcus pneumoniae; Streptococcus pyogenes) to scrutinize the in vitro antibacterial activity of the ILs. It was established that the nature and unique combination of the cations and anions were responsible for the antibacterial activity of the ILs. Among the tested ionic liquids, the imidazolium cation and NTf2− and HSO4− anions exhibited the highest antibacterial activity. The antibacterial potential was further investigated by in silico studies, and it was observed that bis(trifluoromethanesulfonyl)imide (NTf2−) containing imidazolium and pyridinium ionic liquids showed the maximum inhibition against the targeted bacterial strains and could be utilized in antibiotics. These antibacterial activities float the ILs as a promising alternative to the existing antibiotics and antiseptics.
Collapse
|
37
|
Thermal stability limits of imidazolium, piperidinium, pyridinium, and pyrrolidinium ionic liquids immobilized on metal oxides. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Livi S, Baudoux J, Gérard JF, Duchet-Rumeau J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Xu X, Su L, Lu F, Yin Z, Gao Y, Zheng L, Gao X. Unraveling anion effect on lithium ion dynamics and interactions in concentrated ionic liquid electrolyte. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Ionic Liquid/Deep Eutectic Solvent-Mediated Ni-Based Catalysts and Their Application in Water Splitting Electrocatalysis. Catalysts 2022. [DOI: 10.3390/catal12080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nickel-based electrocatalysts have been widely used to catalyze electrocatalytic water splitting. In order to obtain high-performance nickel-based electrocatalysts, using ionic liquids and deep eutectic solvents mediated their preparation has received increasing attention. Firstly, ionic liquids and deep eutectic solvents can act as media and templates for the preparation of Ni-based nanomaterials with novel structures and excellent catalytic activity. Secondly, ionic liquids and deep eutectic solvents can be employed as reactants to participate the synthesis of catalysts. Their participation not only increase the catalytic performance, but also simplify the reaction system, improve reproducibility, reduce emissions, and achieve atomic economy. On the basis of the work of our group, this review gives a detailed description of the impressive progress made concerning ionic liquids and deep eutectic solvents in the preparation of nickel-based electrocatalysts according to their roles. We also point out the challenges and opportunities in the field.
Collapse
|
41
|
Wan R, Li M, Song F, Xiao Y, Zeng F, Peng C, Liu H. Predicting the Thermal Conductivity of Ionic Liquids Using a Quantitative Structure–Property Relationship. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ren Wan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyan Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Song
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongjun Xiao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fazhan Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
42
|
Gurjar S, Sharma SK, Sharma A, Ratnani S. Pyridazinium based ionic liquids as green corrosion inhibitors: An overview. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Shriniwas Gurjar
- Research Scholar Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Sushil Kumar Sharma
- Assistant Professor Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Ankit Sharma
- Assistant Professor Department of Pure and Applied Chemistry University of Kota Kota Rajasthan India
| | - Sonia Ratnani
- Associate Professor Department of Chemistry Ramjas College University of Delhi Delhi India
| |
Collapse
|
43
|
Abdalmageed Saadaldeen Mohammed S, Yahya WZN, Bustam MA, Kibria MG, Masri AN, Mohd Kamonwel ND. Study of the ionic liquids’ electrochemical reduction using experimental and computational methods. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Yu S, Ying J, Tian A. Applications of Viologens in Organic and Inorganic Discoloration Materials. Chempluschem 2022; 87:e202200171. [PMID: 35876415 DOI: 10.1002/cplu.202200171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/02/2022] [Indexed: 11/06/2022]
Abstract
Viologen derived from 4,4'-bipyridine has attracted much attention because of its color changing properties with electron transfer, unique redox stability and structural diversity. These characteristics have led to its successful use in various applications, in particular in color-changing materials. In the past few years, researchers have been working on the syntheses of viologen-based color-changing functional materials, and such materials have been widely used in many fields. In photochromic materials, it is used as anti-counterfeiting material; in thermochromic, it is used as memory storage material, and in electrochromic, it is used as a battery material. This Review discusses the progress of viologen in organic and inorganic discoloration materials in recent years. The syntheses of viologen and its derivatives are summarized, and its application in the field of discoloration materials is introduced.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
45
|
Dutta A, Mishra DK, Kundu D, Mahanta U, Jiang SP, Silvester DS, Banerjee T. Examining the Electrochemical Nature of an Ionogel Based on the Ionic Liquid [P 66614][TFSI] and TiO 2: Synthesis, Characterization, and Quantum Chemical Calculations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arindam Dutta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Dhirendra Kumar Mishra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debashis Kundu
- Department of Chemical Engineering, Institute of Chemical Technology, Marathwada Campus, Jalna, Maharashtra 431203, India
| | - Upasana Mahanta
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - San Ping Jiang
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia
| | - Debbie S. Silvester
- School of Molecular and Life Sciences, Curtin University, Perth, Western Australia 6845, Australia
| | - Tamal Banerjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
46
|
Lethesh KC, Bahaa A, Abdullah M, Bamgbopa MO, Susantyoko RA. Temperature-Dependent Electrochemical Stability Window of Bis(trifluoromethanesulfonyl)imide and Bis(fluorosulfonyl)imide Anion Based Ionic Liquids. Front Chem 2022; 10:859304. [PMID: 35783210 PMCID: PMC9247390 DOI: 10.3389/fchem.2022.859304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/26/2022] [Indexed: 12/01/2022] Open
Abstract
The electrochemical stability of 22 commercially available hydrophobic ionic liquids was measured at different temperatures (288.15, 298.15, 313.15, 333.15 and 358.15 K), to systematically investigate ionic liquids towards electrolytes for supercapacitors in harsh weather conditions. Bis(trifluoromethanesulfonyl)imide and bis(fluorosulfonyl)imide anions in combination with 1-Butyl-1-methylpyrrolidinium, 1-Ethyl-3-methylimidazolium, N-Ethyl-N, N-dimethyl-N(2methoxyethyl)ammonium, 1-Methyl-1-(2-methoxyethyl)pyrrolidinium, N-Pentyl-N-methylpyrrolidinium, N, N-Diethyl-N-methyl-N-propylammonium, N, N-Dimethyl-N-ethyl-N-benzyl ammonium, N, N-Dimethyl-N-Ethyl-N-phenylethylammonium, N-Butyl-N-methylpiperidinium, 1-Methyl-1-propylpiperidinium, N-Tributyl-N-methylammonium, N-Trimethyl-N-butylammonium, N-Trimethyl-N-butylammonium, N-Trimethyl-N-propylammonium, N-Propyl-N-methylpyrrolidinium cations were selected for the study. Linear regression with a numerical model was used in combination with voltammetry experiments to deduce the temperature sensitivity of both anodic and cathodic potential limits (defining the electrochemical stability window), in addition to extrapolating results to 283.15 and 363.15 K. We evaluated the influence of the cations, anions, and the presence of functional groups on the observed electrochemical stability window which ranged from 4.1 to 6.1 V.
Collapse
|
47
|
Shi H, Zhang Y, Liu Y, Yuan C. Metallic Sodium Anodes for Advanced Sodium Metal Batteries: Progress, Challenges and Perspective. CHEM REC 2022; 22:e202200112. [PMID: 35675943 DOI: 10.1002/tcr.202200112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/22/2022] [Indexed: 11/11/2022]
Abstract
Sodium (Na)-based batteries, as the ideal choice of large-scale and low-cost energy storage, have attracted much attention. Na metal anodes with high theoretical specific capacity and low potential are considered to be one of the most promising anodes for next-generation Na-based batteries. However, the high reactivity of Na metal anodes makes the electrode/electrolyte phase unstable, resulting in formation of Na dendrites, short cycle life and safety problems. Herein, the contribution outlines the latest development of Na metal anodes for Na metal batteries. The design strategies for high efficiency utilization of Na metal anodes are elucidated, including sophisticated electrode construction, liquid electrolyte optimization, electrode/electrolyte interface stabilization, and solid electrolyte adaptation. Finally, the future research direction and existing problems are proposed.
Collapse
Affiliation(s)
- Huan Shi
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yamin Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Yang Liu
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Changzhou Yuan
- School of Materials Science & Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
48
|
Fu D, Gao X, Wang J, Jiang H, Zheng M, Li P, Huang B, Kan K, Zhang X. Micellization and thermodynamics study of ester functionalized picoline-based ionic liquid surfactants in water. RSC Adv 2022; 12:14477-14484. [PMID: 35702243 PMCID: PMC9097595 DOI: 10.1039/d2ra01706g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
A novel series of picoline-based ionic liquid surfactants, N-alkyoxycarbonyl-3-picoline bromides [C n Empy][Br] (n = 10, 12, 14), have been synthesized. The thermal stability, aggregation behavior and surface activity of the synthetic ionic liquid surfactants were investigated systematically though a series of methods, such as thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tensiometry and conductivity. The thermodynamics of micellization of the ionic liquid surfactants solution were studied by using the conductivity method in the temperature range 278.15-318.15 K. The surface activity parameters and thermodynamics parameters were derived, respectively. The enthalpy-entropy compensation effect was further discussed by using relative thermodynamics parameters. It was found that the [C n Empy][Br] have moderate surface activity, and their critical micelle concentration (CMC) decreased with the ester-functionalized chain length and exhibited a U-shape with temperature. The calculation results of the thermodynamic parameters showed that the micellization processes of [C n Empy][Br] were spontaneous, endothermic at low temperature and exothermic at higher temperature.
Collapse
Affiliation(s)
- Dong Fu
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China .,College of Materials Science and Chemical Engineering, Harbin Engineering University Harbin P. R. China
| | - Xiaoru Gao
- Harbin Fiber Reinforced Plastic Institute Harbin P. R. China
| | - Jue Wang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Haijian Jiang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Mingming Zheng
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Peng Li
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Bo Huang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Kan Kan
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| | - Xiaochen Zhang
- Heilongjiang Academy of Sciences, Institute of Advanced Technology Harbin P. R. China
| |
Collapse
|
49
|
Sosa J, Santiago R, Redondo AE, Avila J, Lepre LF, Gomes MC, Araújo JM, Palomar J, Pereiro AB. Design of Ionic Liquids for Fluorinated Gas Absorption: COSMO-RS Selection and Solubility Experiments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5898-5909. [PMID: 35435682 PMCID: PMC9069701 DOI: 10.1021/acs.est.2c00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the fight against climate change and the mitigation of the impact of fluorinated gases (F-gases) on the atmosphere is a global concern. Development of technologies that help to efficiently separate and recycle hydrofluorocarbons (HFCs) at the end of the refrigeration and air conditioning equipment life is a priority. The technological development is important to stimulate the F-gas capture, specifically difluoromethane (R-32) and 1,1,1,2-tetrafluoroethane (R-134a), due to their high global warming potential. In this work, the COSMO-RS method is used to analyze the solute-solvent interactions and to determine Henry's constants of R-32 and R-134a in more than 600 ionic liquids. The three most performant ionic liquids were selected on the basis of COSMO-RS calculations, and F-gas absorption equilibrium isotherms were measured using gravimetric and volumetric methods. Experimental results are in good agreement with COSMO-RS predictions, with the ionic liquid tributyl(ethyl)phosphonium diethyl phosphate, [P2444][C2C2PO4], being the salt presenting the highest absorption capacities in molar and mass units compared to salts previously tested. The other two ionic liquids selected, trihexyltetradecylphosphonium glycinate, [P66614][C2NO2], and trihexyl(tetradecyl)phosphonium 2-cyano-pyrrole, [P66614][CNPyr], may be competitive as far as their absorption capacities are concerned. Future works will be guided on evaluating the performance of these ionic liquids at an industrial scale by means of process simulations, in order to elucidate the role in process efficiency of other relevant absorbent properties such as viscosity, molar weight, or specific heat.
Collapse
Affiliation(s)
- Julio
E. Sosa
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Rubén Santiago
- Chemical
Engineering Department, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Andres E. Redondo
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Jocasta Avila
- Laboratoire
de Chimie, École Normale Superieure de Lyon & CNRS, Lyon 69364, France
| | - Luiz F. Lepre
- Laboratoire
de Chimie, École Normale Superieure de Lyon & CNRS, Lyon 69364, France
| | | | - João M.
M. Araújo
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - José Palomar
- Chemical
Engineering Department, Universidad Autónoma
de Madrid, Madrid 28049, Spain
| | - Ana B. Pereiro
- LAQV,
REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| |
Collapse
|
50
|
Patil T, Dharaskar S, Sinha M, Jampa SS. Effectiveness of ionic liquid-supported membranes for carbon dioxide capture: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35723-35745. [PMID: 35260978 DOI: 10.1007/s11356-022-19586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The world's population explosion creates a need for natural resources for energy, which will become a significant contributor to global climate change. As we all know, carbon dioxide (CO2) is one of the most critical elements of the global greenhouse gas effect. CO2 capture and storage innovations have piqued researchers' attention in recent decades. Compared to other methods, membrane separation has some positive performance in CO2 capture. CO2 capture with membrane separation using enhanced ionic liquids (ILs) is described in this review. ILs have made an appearance in CO2 capture work as the potential additive, and companies and academics have been interested in CO2 separation for the past two decades. This article comprehensively analyzes the current modern approach in ILs and IL-based membranes for gas separation processes. Based on the latest literature and performance data, this work provides a complete compressive examination of types of ILs and IL-supported membrane performances. ILs for CO2 capture were also explored, and IL-based membranes for different ILs were also studied. This study emphasizes the supremacy of novel ILs for CO2 capture in membrane separation.
Collapse
Affiliation(s)
- Tushar Patil
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| | - Swapnil Dharaskar
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India.
| | - Manishkumar Sinha
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| | - Surendra Sasikumar Jampa
- CO2 Research Group, Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, 382426, Raisan, Gandhinagar, India
| |
Collapse
|