1
|
Sun Y, Jia C, Zhang S, Zhang Q, Chen J, Liu X. Accelerated molecular dynamics study of the interaction mechanism between small molecule inhibitors and phosphoglycerate mutase 1. Phys Chem Chem Phys 2024; 26:26784-26798. [PMID: 39403732 DOI: 10.1039/d4cp03309d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
In 2020, cancer-related deaths reached 9.96 million globally, of which China accounted for 3 million, ranking first in the world. Phosphoglycerate mutase 1 (PGAM1) is a key metabolic enzyme in glycolysis, catalysing the conversion of 3-phosphoglycerate to 2-phosphoglycerate. Based on the excellent anticancer activity of PGMI-004A and HKB99, new small molecules with an anthraquinone core were synthesised to inhibit tumour growth. Developing small molecules with an anthraquinone core targeting PGAM1 may be an effective strategy for treating cancer. In this study, accelerated molecular dynamics (aMD) simulation, dynamic cross-correlation map (DCCM) calculation, principal component analysis (PCA) and free energy landscape (FEL) analysis were used to analyse conformational changes of PGAM1 caused by binding of inhibitors 8KX, 9HU and HKB. DCCM calculations and PCA showed that inhibitor binding significantly affected the kinetic behaviour of PGAM1 and conformational rearrangement of PGAM1. The binding ability and mechanism of 8KX, 9HU and HKB to PGAM1 were studied using the molecular mechanics generalised Born surface area (MM-GBSA) method. The results showed that compared with 8KX, the binding ability of 9HU and HKB to PGAM1 was enhanced by sulphonamide reversal and aminocarboxyl trifluoromethyl substitution. There were several hydrophobic interactions between inhibitors and PGAM1, providing significant contributions for inhibitor binding. Calculation of residue-based free energy decomposition revealed that F22, R90, Y92, L95, V112, W115, R116, V121, P123, P124, R191 and M206 were key residues of the PGAM1-inhibitor interaction and could be used as effective targets for designing drugs that inhibit the activity of PGAM1.
Collapse
Affiliation(s)
- Yanqi Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Chaoyue Jia
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250357, China.
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China.
| |
Collapse
|
2
|
Chen J, Wang J, Yang W, Zhao L, Hu G. Conformations of KRAS4B Affected by Its Partner Binding and G12C Mutation: Insights from GaMD Trajectory-Image Transformation-Based Deep Learning. J Chem Inf Model 2024; 64:6880-6898. [PMID: 39197061 DOI: 10.1021/acs.jcim.4c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Binding of partners and mutations highly affects the conformational dynamics of KRAS4B, which is of significance for deeply understanding its function. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) and principal component analysis (PCA) were carried out to probe the effect of G12C and binding of three partners NF1, RAF1, and SOS1 on the conformation alterations of KRAS4B. DL reveals that G12C and binding of partners result in alterations in the contacts of key structure domains, such as the switch domains SW1 and SW2 together with the loops L4, L5, and P-loop. Binding of NF1, RAF1, and SOS1 constrains the structural fluctuation of SW1, SW2, L4, and L5; on the contrary, G12C leads to the instability of these four structure domains. The analyses of free energy landscapes (FELs) and PCA also show that binding of partners maintains the stability of the conformational states of KRAS4B while G12C induces greater mobility of the switch domains SW1 and SW2, which produces significant impacts on the interactions of GTP with SW1, L4, and L5. Our findings suggest that partner binding and G12C play important roles in the activity and allosteric regulation of KRAS4B, which may theoretically aid in further understanding the function of KRAS4B.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Wang B, Wang J, Yang W, Zhao L, Wei B, Chen J. Unveiling Allosteric Regulation and Binding Mechanism of BRD9 through Molecular Dynamics Simulations and Markov Modeling. Molecules 2024; 29:3496. [PMID: 39124901 PMCID: PMC11314499 DOI: 10.3390/molecules29153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.
Collapse
Affiliation(s)
- Bin Wang
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China;
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.)
| |
Collapse
|
4
|
Zhao L, Wang J, Yang W, Zhao K, Sun Q, Chen J. Unveiling Conformational States of CDK6 Caused by Binding of Vcyclin Protein and Inhibitor by Combining Gaussian Accelerated Molecular Dynamics and Deep Learning. Molecules 2024; 29:2681. [PMID: 38893554 PMCID: PMC11174096 DOI: 10.3390/molecules29112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
CDK6 plays a key role in the regulation of the cell cycle and is considered a crucial target for cancer therapy. In this work, conformational transitions of CDK6 were identified by using Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy landscapes (FELs). DL finds that the binding pocket as well as the T-loop binding to the Vcyclin protein are involved in obvious differences of conformation contacts. This result suggests that the binding pocket of inhibitors (LQQ and AP9) and the binding interface of CDK6 to the Vcyclin protein play a key role in the function of CDK6. The analyses of FELs reveal that the binding pocket and the T-loop of CDK6 have disordered states. The results from principal component analysis (PCA) indicate that the binding of the Vcyclin protein affects the fluctuation behavior of the T-loop in CDK6. Our QM/MM-GBSA calculations suggest that the binding ability of LQQ to CDK6 is stronger than AP9 with or without the binding of the Vcyclin protein. Interaction networks of inhibitors with CDK6 were analyzed and the results reveal that LQQ contributes more hydrogen binding interactions (HBIs) and hot interaction spots with CDK6. In addition, the binding pocket endures flexibility changes from opening to closing states and the Vcyclin protein plays an important role in the stabilizing conformation of the T-loop. We anticipate that this work could provide useful information for further understanding the function of CDK6 and developing new promising inhibitors targeting CDK6.
Collapse
Affiliation(s)
- Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| | | | | | | | | | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (K.Z.); (Q.S.)
| |
Collapse
|
5
|
Chen J, Wang J, Yang W, Zhao L, Zhao J, Hu G. Molecular Mechanism of Phosphorylation-Mediated Impacts on the Conformation Dynamics of GTP-Bound KRAS Probed by GaMD Trajectory-Based Deep Learning. Molecules 2024; 29:2317. [PMID: 38792177 PMCID: PMC11123822 DOI: 10.3390/molecules29102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The phosphorylation of different sites produces a significant effect on the conformational dynamics of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations were combined with deep learning (DL) to explore the molecular mechanism of the phosphorylation-mediated effect on conformational dynamics of the GTP-bound KRAS. The DL finds that the switch domains are involved in obvious differences in conformation contacts and suggests that the switch domains play a key role in the function of KRAS. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of pY32, pY64, and pY137 leads to more disordered states of the switch domains than the wild-type (WT) KRAS and induces conformational transformations between the closed and open states. The results from principal component analysis (PCA) indicate that principal motions PC1 and PC2 are responsible for the closed and open states of the phosphorylated KRAS. Interaction networks were analyzed and the results verify that the phosphorylation alters interactions of GTP and magnesium ion Mg2+ with the switch domains. It is concluded that the phosphorylation pY32, pY64, and pY137 tune the activity of KRAS through changing conformational dynamics and interactions of the switch domains. We anticipated that this work could provide theoretical aids for deeply understanding the function of KRAS.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
6
|
Wang J, Yang W, Zhao L, Wei B, Chen J. Binding Mechanism of Inhibitors to BRD4 and BRD9 Decoded by Multiple Independent Molecular Dynamics Simulations and Deep Learning. Molecules 2024; 29:1857. [PMID: 38675678 PMCID: PMC11054187 DOI: 10.3390/molecules29081857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Bromodomain 4 and 9 (BRD4 and BRD9) have been regarded as important targets of drug designs in regard to the treatment of multiple diseases. In our current study, molecular dynamics (MD) simulations, deep learning (DL) and binding free energy calculations are integrated to probe the binding modes of three inhibitors (H1B, JQ1 and TVU) to BRD4 and BRD9. The MD trajectory-based DL successfully identify significant functional function domains, such as BC-loop and ZA-loop. The information from the post-processing analysis of MD simulations indicates that inhibitor binding highly influences the structural flexibility and dynamic behavior of BRD4 and BRD9. The results of the MM-GBSA calculations not only suggest that the binding ability of H1B, JQ1 and TVU to BRD9 are stronger than to BRD4, but they also verify that van der Walls interactions are the primary forces responsible for inhibitor binding. The hot spots of BRD4 and BRD9 revealed by residue-based free energy estimation provide target sites of drug design in regard to BRD4 and BRD9. This work is anticipated to provide useful theoretical aids for the development of selective inhibitors over BRD family members.
Collapse
Affiliation(s)
- Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
7
|
Bao H, Wang W, Sun H, Chen J. The switch states of the GDP-bound HRAS affected by point mutations: a study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. J Biomol Struct Dyn 2024; 42:3363-3381. [PMID: 37216340 DOI: 10.1080/07391102.2023.2213355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
Point mutations play a vital role in the conformational transformation of HRAS. In this work, Gaussian accelerated molecular dynamics (GaMD) simulations followed by constructions of free energy landscapes (FELs) were adopted to explore the effect of mutations D33K, A59T and L120A on conformation states of the GDP-bound HRAS. The results from the post-processing analyses on GaMD trajectories suggest that mutations alter the flexibility and motion modes of the switch domains from HRAS. The analyses from FELs show that mutations induce more disordered states of the switch domains and affect interactions of GDP with HRAS, implying that mutations yield a vital effect on the binding of HRAS to effectors. The GDP-residue interaction network revealed by our current work indicates that salt bridges and hydrogen bonding interactions (HBIs) play key roles in the binding of GDP to HRAS. Furthermore, instability in the interactions of magnesium ions and GDP with the switch SI leads to the extreme disorder of the switch domains. This study is expected to provide the energetic basis and molecular mechanism for further understanding the function of HRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huayin Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
8
|
Shen C, Yin J, Wang M, Yu Z, Xu X, Zhou Z, Hu Y, Xia C, Hu G. Mutations influence the conformational dynamics of the GDP/KRAS complex. J Biomol Struct Dyn 2024:1-14. [PMID: 38529923 DOI: 10.1080/07391102.2024.2331627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Mutations near allosteric sites can have a significant impact on the function of KRAS. Three specific mutations, K104Q, G12D/K104Q, and G12D/G75A, which are located near allosteric positions, were selected to investigate the molecular mechanisms behind mutation-induced influences on the activity of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations followed by the principal component analysis (PCA) were performed to improve the sampling of conformational states. The results revealed that these mutations significantly alter the structural flexibility, correlated motions, and dynamic behavior of the switch regions that are essential for KRAS binding to effectors or regulators. Furthermore, the mutations have a significant impact on the hydrogen bonding interactions between GDP and the switch regions, as well as on the electrostatic interactions of magnesium ions (Mg2+) with these regions. Our results verified that these mutations strongly influence the binding of KRAS to its effectors or regulators and allosterically regulate the activity. We believe that this work can provide valuable theoretical insights into a deeper understanding of KRAS function.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Congcong Shen
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Jie Yin
- Qingyun People's Hospital, Dezhou, China
| | - Min Wang
- Qingyun People's Hospital, Dezhou, China
| | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Xin Xu
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Zhongshun Zhou
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Yingshi Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| | - Caijuan Xia
- School of Science, Xi'an Polytechnic University, Xi'an, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
9
|
Yu Z, Wang Z, Cui X, Cao Z, Zhang W, Sun K, Hu G. Conformational States of the GDP- and GTP-Bound HRAS Affected by A59E and K117R: An Exploration from Gaussian Accelerated Molecular Dynamics. Molecules 2024; 29:645. [PMID: 38338389 PMCID: PMC10856033 DOI: 10.3390/molecules29030645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/01/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The HRAS protein is considered a critical target for drug development in cancers. It is vital for effective drug development to understand the effects of mutations on the binding of GTP and GDP to HRAS. We conducted Gaussian accelerated molecular dynamics (GaMD) simulations and free energy landscape (FEL) calculations to investigate the impacts of two mutations (A59E and K117R) on GTP and GDP binding and the conformational states of the switch domain. Our findings demonstrate that these mutations not only modify the flexibility of the switch domains, but also affect the correlated motions of these domains. Furthermore, the mutations significantly disrupt the dynamic behavior of the switch domains, leading to a conformational change in HRAS. Additionally, these mutations significantly impact the switch domain's interactions, including their hydrogen bonding with ligands and electrostatic interactions with magnesium ions. Since the switch domains are crucial for the binding of HRAS to effectors, any alterations in their interactions or conformational states will undoubtedly disrupt the activity of HRAS. This research provides valuable information for the design of drugs targeting HRAS.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Zhen Wang
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Xiuzhen Cui
- Pingyin People’s Hospital, Jinan 250400, China; (Z.W.); (X.C.)
| | - Zanxia Cao
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| | - Wanyunfei Zhang
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Kunxiao Sun
- School of Science, Xi’an Polytechnic University, Xi’an 710048, China; (W.Z.); (K.S.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China; (Z.Y.); (Z.C.)
| |
Collapse
|
10
|
Jia K, Li C, Xu M, Dai G, Zhou J, Chen B, Zou J, Li J, Zhang Q, Ju W. Exploring the mechanism of Si-Ni-San against depression by UPLC-Q-TOF-MS/MS integrated with network pharmacology: experimental research. Ann Med Surg (Lond) 2024; 86:172-189. [PMID: 38222693 PMCID: PMC10783272 DOI: 10.1097/ms9.0000000000001464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 01/16/2024] Open
Abstract
Background Depression is becoming an urgent mental health problem. Si-Ni-San has been widely used to treat depression, yet its underlying pharmacological mechanism is poorly understood. Thus, we aim to explore the antidepressant mechanism of Si-Ni-San by chemical analysis and in-silico methods. Methods Compounds in Si-Ni-San were determined by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Then, bioactive compounds were obtained from Traditional Chinese Medicines for Systems Pharmacology Database and Analysis Platform and SwissADME, and the potential targets of which were acquired from SwissTargetPrediction. Depression-related targets were collected from GeneCards. The intersection between compound-related targets and depression-related targets were screened out, and the overlapped targets were further performed protein-protein interaction, biological functional and pathway enrichment analysis. Finally, networks of Si-Ni-San against depression were constructed and visualized by Cytoscape. Results One hundred nineteen compounds in Si-Ni-San were determined, of which 24 bioactive compounds were obtained. Then, 137 overlapped targets of Si-Ni-San against depression were collected. AKT1, PIK3R1, PIK3CA, mTOR, MAPK1 and MAPK8 were the key targets. Furthermore, PI3K-Akt signalling pathway, serotonergic synapse, MAPK signalling pathway and neurotrophin signalling pathway were involved in the antidepressant mechanism of Si-Ni-San. It showed that components like sinensetin, hesperetin, liquiritigenin, naringenin, quercetin, albiflorin and paeoniflorin were the mainly key active compounds for the antidepressant effect of Si-Ni-San. Conclusions This study demonstrated the key components, key targets and potential pharmacological mechanisms of Si-Ni-San against depression. These results indicate that Si-Ni-San is a promising therapeutic approach for treatment of depression, and may provide evidence for the research and development of drugs for treating depression.
Collapse
Affiliation(s)
- Keke Jia
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
- Department of Clinical Pharmacology
| | | | | | | | - Jinyong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Biqing Chen
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | | | - Jia Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | - Qingyu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine
| | | |
Collapse
|
11
|
Chen J, Wang W, Sun H, He W. Roles of Accelerated Molecular Dynamics Simulations in Predictions of Binding Kinetic Parameters. Mini Rev Med Chem 2024; 24:1323-1333. [PMID: 38265367 DOI: 10.2174/0113895575252165231122095555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 01/25/2024]
Abstract
Rational predictions on binding kinetics parameters of drugs to targets play significant roles in future drug designs. Full conformational samplings of targets are requisite for accurate predictions of binding kinetic parameters. In this review, we mainly focus on the applications of enhanced sampling technologies in calculations of binding kinetics parameters and residence time of drugs. The methods involved in molecular dynamics simulations are applied to not only probe conformational changes of targets but also reveal calculations of residence time that is significant for drug efficiency. For this review, special attention are paid to accelerated molecular dynamics (aMD) and Gaussian aMD (GaMD) simulations that have been adopted to predict the association or disassociation rate constant. We also expect that this review can provide useful information for future drug design.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| | - Weikai He
- School of Science, Shandong Jiaotong University, Jinan-250357, China
| |
Collapse
|
12
|
Xu B, Chen Y, Xue W. Computational Protein Design - Where it goes? Curr Med Chem 2024; 31:2841-2854. [PMID: 37272467 DOI: 10.2174/0929867330666230602143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 06/06/2023]
Abstract
Proteins have been playing a critical role in the regulation of diverse biological processes related to human life. With the increasing demand, functional proteins are sparse in this immense sequence space. Therefore, protein design has become an important task in various fields, including medicine, food, energy, materials, etc. Directed evolution has recently led to significant achievements. Molecular modification of proteins through directed evolution technology has significantly advanced the fields of enzyme engineering, metabolic engineering, medicine, and beyond. However, it is impossible to identify desirable sequences from a large number of synthetic sequences alone. As a result, computational methods, including data-driven machine learning and physics-based molecular modeling, have been introduced to protein engineering to produce more functional proteins. This review focuses on recent advances in computational protein design, highlighting the applicability of different approaches as well as their limitations.
Collapse
Affiliation(s)
- Binbin Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
13
|
Abedi Dorcheh F, Balmeh N, Hejazi SH, Allahyari Fard N. Investigation of the mutated antimicrobial peptides to inhibit ACE2, TMPRSS2 and GRP78 receptors of SARS-CoV-2 and angiotensin II type 1 receptor (AT1R) as well as controlling COVID-19 disease. J Biomol Struct Dyn 2023:1-24. [PMID: 38109185 DOI: 10.1080/07391102.2023.2292307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/23/2023] [Indexed: 12/19/2023]
Abstract
SARS-CoV-2 is a global problem nowadays. Based on studies, some human receptors are involved in binding to SARS-CoV-2. Thus, the inhibition of these receptors can be effective in the treatment of Covid-19. Because of the proven benefits of antimicrobial peptides (AMPs) and the side effects of chemical drugs, they can be known as an alternative to recent medicines. RCSB PDB to obtain PDB id, StraPep and PhytAMP to acquire Bio-AMPs information and 3-D structure, and AlgPred, Toxinpred, TargetAntiAngio, IL-4pred, IL-6pred, ACPred and Hemopred databases were used to find the best score peptide features. HADDOCK 2.2 was used for molecular docking analysis, and UCSF Chimera software version 1.15, SWISS-MODEL and BIOVIA Discovery Studio Visualizer4.5 were used for mutation and structure modeling. Furthermore, MD simulation results were achieved from GROMACS 4.6.5. Based on the obtained results, the Moricin peptide was found to have the best affinity for ACE2. Moreover, Bacteriocin leucocin-A had the highest affinity for GRP78, Cathelicidin-6 had the best affinity for AT1R, and Bacteriocin PlnK had the best binding affinity for TMPRSS2. Additionally, Bacteriocin glycocin F, Bacteriocin lactococcin-G subunit beta and Cathelicidin-6 peptides were the most common compounds among the four receptors. However, these peptides also have some side effects. Consequently, the mutation eliminated the side effects, and MD simulation results indicated that the mutation proved the result of the docking analysis. The effect of AMPs on ACE2, GRP78, TMPRSS2 and AT1R receptors can be a novel treatment for Covid-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Abedi Dorcheh
- Department of Biotechnology, School of Bioscience and Biotechnology, Shahid Ashrafi Esfahani University of Isfahan, Sepahan Shahr, Iran
| | - Negar Balmeh
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najaf Allahyari Fard
- Department of Systems Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
14
|
Eltaib L, Alzain AA. Targeting the omicron variant of SARS-CoV-2 with phytochemicals from Saudi medicinal plants: molecular docking combined with molecular dynamics investigations. J Biomol Struct Dyn 2023; 41:9732-9744. [PMID: 36369836 DOI: 10.1080/07391102.2022.2146203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/05/2022] [Indexed: 11/14/2022]
Abstract
The new health crises caused by SARS-CoV-2 have resulted in millions of deaths worldwide. First discovered in November 2021, the omicron variant is more transmissible and is able to evade the immune system better than other previously identified SARS-CoV-2 variants, leading to a spike in cases. Great efforts have been made to discover inhibitors against SARS-CoV-2. Main protease (Mpro) inhibitors are considered promising anti-SARS-CoV-2 agents. The U.S. FDA has issued an Emergency Use Authorization for ritonavir-boosted nirmatrelvir. Nirmatrelvir is the first orally bioavailable inhibitor of SARS-CoV-2 Mpro. There is an urgent need to monitor the mutations and solve the problem of resistance, especially omicron Mpro, which contains one mutation - P132H. In the present study, 132,57 phytochemicals from 80 medicinal plants grown in Saudi Arabia were docked into the active site of Mpro omicron variant. Free binding energies were also calculated. This led to the discovery of five phytochemicals that showed better docking scores than the bound ligand nirmatrelvir. In addition, these molecules exhibited favorable free binding energies. The stability of compounds 1-5 with the protein was studied using molecular dynamics (MD) simulations. These compounds showed acceptable ADMET properties. The results were compared with the wild type. These candidates could be envisioned as new hits against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Arar, Saudi Arabia
| | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| |
Collapse
|
15
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|
16
|
Hu G, Zhang Y, Yu Z, Cui T, Cui W. Dynamical characterization and multiple unbinding paths of two PreQ 1 ligands in one pocket. Phys Chem Chem Phys 2023; 25:24004-24015. [PMID: 37646322 DOI: 10.1039/d3cp03142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Riboswitches naturally regulate gene expression in bacteria by binding to specific small molecules. Class 1 preQ1 riboswitch aptamer is an important model not only for RNA folding but also as a target for designing small molecule antibiotics due to its well-known minimal aptamer domain. Here, we ran a total of 62.4 μs conventional and enhanced-sampling molecular dynamics (MD) simulations to characterize the determinants underlying the binding of the preQ1-II riboswitch aptamer to two preQ1 ligands in one binding pocket. Decomposition of binding free energy suggested that preQ1 ligands at α and β sites interact with four nucleotides (G5, C17, C18, and A30) and two nucleotides (A12 and C31), respectively. Mg2+ ions play a crucial role in both stabilizing the binding pocket and facilitating ligand binding. The flexible preQ1 ligand at the β site leads to the top of the binding pocket loosening and thus pre-organizes the riboswitch for ligand entry. Enhanced sampling simulations further revealed that the preQ1 ligand at the α site unbinds through two orthogonal pathways, which are dependent on whether or not a β site preQ1 ligand is present. One of the two preQ1 ligands has been identified in the binding pocket, which will aid to identify the second preQ1 Ligand. Our work provides new information for designing robust ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| | | | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Tiejun Cui
- Laoling People's Hospital, Dezhou 253600, China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| |
Collapse
|
17
|
Delre P, Contino M, Alberga D, Saviano M, Corriero N, Mangiatordi GF. ALPACA: A machine Learning Platform for Affinity and selectivity profiling of CAnnabinoids receptors modulators. Comput Biol Med 2023; 164:107314. [PMID: 37572442 DOI: 10.1016/j.compbiomed.2023.107314] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
The development of small molecules that selectively target the cannabinoid receptor subtype 2 (CB2R) is emerging as an intriguing therapeutic strategy to treat neurodegeneration, as well as to contrast the onset and progression of cancer. In this context, in-silico tools able to predict CB2R affinity and selectivity with respect to the subtype 1 (CB1R), whose modulation is responsible for undesired psychotropic effects, are highly desirable. In this work, we developed a series of machine learning classifiers trained on high-quality bioactivity data of small molecules acting on CB2R and/or CB1R extracted from ChEMBL v30. Our classifiers showed strong predictive power in accurately determining CB2R affinity, CB1R affinity, and CB2R/CB1R selectivity. Among the built models, those obtained using random forest as algorithm proved to be the top-performing ones (AUC in validation ≥0.96) and were made freely accessible through a user-friendly web platform developed ad hoc and called ALPACA (https://www.ba.ic.cnr.it/softwareic/alpaca/). Due to its user-friendly interface and robust predictive power, ALPACA can be a valuable tool in saving both time and resources involved in the design of selective CB2R modulators.
Collapse
Affiliation(s)
- Pietro Delre
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Marialessandra Contino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", via E. Orabona, 4, I-70125, Bari, Italy
| | - Domenico Alberga
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy
| | - Michele Saviano
- CNR - Institute of Crystallography, Via Vivaldi 43, 81100, Caserta, Italy
| | - Nicola Corriero
- CNR - Institute of Crystallography, Via Amendola 122/o, 70126, Bari, Italy.
| | | |
Collapse
|
18
|
Deng S, Zhang H, Gou R, Luo D, Liu Z, Zhu F, Xue W. Structure-Based Discovery of a Novel Allosteric Inhibitor against Human Dopamine Transporter. J Chem Inf Model 2023. [PMID: 37410882 DOI: 10.1021/acs.jcim.3c00477] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Human dopamine transporter (hDAT) regulates the reuptake of extracellular dopamine (DA) and is an essential therapeutic target for central nervous system (CNS) diseases. The allosteric modulation of hDAT has been identified for decades. However, the molecular mechanism underlying the transportation is still elusive, which hinders the rational design of allosteric modulators against hDAT. Here, a systematic structure-based method was performed to explore allosteric sites on hDAT in inward-open (IO) conformation and to screen compounds with allosteric affinity. First, the model of the hDAT structure was constructed based on the recently reported Cryo-EM structure of the human serotonin transporter (hSERT) and Gaussian-accelerated molecular dynamics (GaMD) simulation was further utilized for the identification of intermediate energetic stable states of the transporter. Then, with the potential druggable allosteric site on hDAT in IO conformation, virtual screening of seven enamine chemical libraries (∼440,000 compounds) was processed, resulting in 10 compounds being purchased for in vitro assay and with Z1078601926 discovered to allosterically inhibit hDAT (IC50 = 0.527 [0.284; 0.988] μM) when nomifensine was introduced as an orthosteric ligand. Finally, the synergistic effect underlying the allosteric inhibition of hDAT by Z1078601926 and nomifensine was explored using additional GaMD simulation and postbinding free energy analysis. The hit compound discovered in this work not only provides a good starting point for lead optimization but also demonstrates the usability of the method for the structure-based discovery of novel allosteric modulators of other therapeutic targets.
Collapse
Affiliation(s)
- Shengzhe Deng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Haiwei Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Department of Pathology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Rongpei Gou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical Co., Ltd., Luzhou 646000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
19
|
Yang F, Wang Y, Yan D, Liu Z, Wei B, Chen J, He W. Binding Mechanism of Inhibitors to Heat Shock Protein 90 Investigated by Multiple Independent Molecular Dynamics Simulations and Prediction of Binding Free Energy. Molecules 2023; 28:4792. [PMID: 37375347 DOI: 10.3390/molecules28124792] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The heat shock protein (HSP90) has been an import target of drug design in the treatment of human disease. An exploration of the conformational changes in HSP90 can provide useful information for the development of efficient inhibitors targeting HSP90. In this work, multiple independent all-atom molecular dynamics (AAMD) simulations followed by calculations of the molecular mechanics generalized Born surface area (MM-GBSA) were performed to explore the binding mechanism of three inhibitors (W8Y, W8V, and W8S) to HSP90. The dynamics analyses verified that the presence of inhibitors impacts the structural flexibility, correlated movements, and dynamics behavior of HSP90. The results of the MM-GBSA calculations suggest that the selection of GB models and empirical parameters has important influences on the predicted results and verify that van der Waals interactions are the main forces that determine inhibitor-HSP90 binding. The contributions of separate residues to the inhibitor-HSP90 binding process indicate that hydrogen-bonding interactions (HBIs) and hydrophobic interactions play important roles in HSP90-inhibitor identifications. Moreover, residues L34, N37, D40, A41, D79, I82, G83, M84, F124, and T171 are recognized as hot spots of inhibitor-HSP90 binding and provide significant target sites of for the design of drugs related to HSP90. This study aims to contribute to the development of efficient inhibitors that target HSP90 by providing an energy-based and theoretical foundation.
Collapse
Affiliation(s)
- Fen Yang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Yiwen Wang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| | - Dongliang Yan
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Zhongtao Liu
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Weikai He
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
20
|
Wang Y, Yang F, Yan D, Zeng Y, Wei B, Chen J, He W. Identification Mechanism of BACE1 on Inhibitors Probed by Using Multiple Separate Molecular Dynamics Simulations and Comparative Calculations of Binding Free Energies. Molecules 2023; 28:4773. [PMID: 37375328 DOI: 10.3390/molecules28124773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
β-amyloid cleaving enzyme 1 (BACE1) is regarded as an important target of drug design toward the treatment of Alzheimer's disease (AD). In this study, three separate molecular dynamics (MD) simulations and calculations of binding free energies were carried out to comparatively determine the identification mechanism of BACE1 for three inhibitors, 60W, 954 and 60X. The analyses of MD trajectories indicated that the presence of three inhibitors influences the structural stability, flexibility and internal dynamics of BACE1. Binding free energies calculated by using solvated interaction energy (SIE) and molecular mechanics generalized Born surface area (MM-GBSA) methods reveal that the hydrophobic interactions provide decisive forces for inhibitor-BACE1 binding. The calculations of residue-based free energy decomposition suggest that the sidechains of residues L91, D93, S96, V130, Q134, W137, F169 and I179 play key roles in inhibitor-BACE1 binding, which provides a direction for future drug design toward the treatment of AD.
Collapse
Affiliation(s)
- Yiwen Wang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| | - Fen Yang
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Dongliang Yan
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Yalin Zeng
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Jianzhong Chen
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Weikai He
- School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250357, China
| |
Collapse
|
21
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [DOI: https:/doi.org/10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
|
22
|
Hossain A, Rahman ME, Rahman MS, Nasirujjaman K, Matin MN, Faruqe MO, Rabbee MF. Identification of medicinal plant-based phytochemicals as a potential inhibitor for SARS-CoV-2 main protease (M pro) using molecular docking and deep learning methods. Comput Biol Med 2023; 157:106785. [PMID: 36931201 PMCID: PMC10008098 DOI: 10.1016/j.compbiomed.2023.106785] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Highly transmissive and rapidly evolving Coronavirus disease-2019 (COVID-19), a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), triggered a global pandemic, which is one of the most researched viruses in the academia. Effective drugs to treat people with COVID-19 have yet to be developed to reduce mortality and transmission. Studies on the SARS-CoV-2 virus identified that its main protease (Mpro) might be a potential therapeutic target for drug development, as this enzyme plays a key role in viral replication. In search of potential inhibitors of Mpro, we developed a phytochemical library consisting of 2431 phytochemicals from 104 Korean medicinal plants that exhibited medicinal and antioxidant properties. The library was screened by molecular docking, followed by revalidation by re-screening with a deep learning method. Recurrent Neural Networks (RNN) computing system was used to develop an inhibitory predictive model using SARS coronavirus Mpro dataset. It was deployed to screen the top 12 compounds based on their docked binding affinity that ranged from -8.0 to -8.9 kcal/mol. The top two lead compounds, Catechin gallate and Quercetin 3-O-malonylglucoside, were selected depending on inhibitory potency against Mpro. Interactions with the target protein active sites, including His41, Met49, Cys145, Met165, and Thr190 were also examined. Molecular dynamics simulation was performed to analyze root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (RG), solvent accessible surface area (SASA), and number of hydrogen bonds. Results confirmed the inflexible nature of the docked complexes. Absorption, distribution, metabolism, excretion, and toxicity (ADMET), as well as bioactivity prediction confirmed the pharmaceutical activities of the lead compound. Findings of this research might help scientists to optimize compatible drugs for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Siddiqur Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Khondokar Nasirujjaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
23
|
Gul K, Zaman N, Azam SS. Roxadustat and its failure: A comparative dynamic study. J Mol Graph Model 2023; 120:108422. [PMID: 36708643 DOI: 10.1016/j.jmgm.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Roxadustat, a small-molecule inhibitor of hypoxia-inducible factor prolyl hydroxylase domain 2 (HIF-PHD2) has been recently overruled by the American Food and Drug Administration (FDA) in Phase 3 clinical trials. This study provides insights into the dynamics of Roxadustat with PHD2 and proposes two FDA-approved drugs; Pemetrexed and Valrubicin to treat chronic kidney disease (CKD). Role of chemical scaffolds such as synthetic pyrimidine-based antifolate is found critical for PHD2 inhibitory activity, which is concurrent with the experimental findings for stimulating Endogenous erythropoietin (EPO) gene expression. Furthermore, Fe+2 and Mn+2 in solution are essential for imparting structural stability to the screened carboxylic and non-carboxylic acid drugs. Comparative analysis of FDA-approved drugs namely, Roxadustat, two-hit carboxylic, and non-carboxylic-acid type compounds (Pemetrexed and Valrubicin), as well as the control ligands (KU1 and 4JR), unveil structural dynamics of Roxadustat and its failure. However, the proposed FDA compounds, Pemetrexed and Valrubicin, used to treat mesothelioma, non-small cell lung cancer, and bladder cancer should be subjected to in vitro analysis for renal anemia.
Collapse
Affiliation(s)
- Kainat Gul
- Computational Biology Lab, National Centre for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naila Zaman
- Computational Biology Lab, National Centre for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan.
| | - Syed Sikander Azam
- Computational Biology Lab, National Centre for Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
24
|
Gosu V, Sasidharan S, Saudagar P, Radhakrishnan K, Lee HK, Shin D. Deciphering the intrinsic dynamics of unphosphorylated IRAK4 kinase bound to type I and type II inhibitors. Comput Biol Med 2023; 160:106978. [PMID: 37172355 DOI: 10.1016/j.compbiomed.2023.106978] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a vital protein involved in Toll-like and interleukin-1 receptor signal transduction. Several studies have reported regarding the crystal structure, dynamic properties, and interactions with inhibitors of the phosphorylated form of IRAK4. However, no dynamic properties of inhibitor-bound unphosphorylated IRAK4 have been previously studied. Herein, we report the intrinsic dynamics of unphosphorylated IRAK4 (uIRAK4) bound to type I and type II inhibitors. The corresponding apo and inhibitor-bound forms of uIRAK4 were subjected to three independent simulations of 500 ns (total 1.5 μs) each, and their trajectories were analyzed. The results indicated that all three systems were relatively stable, except for the type II inhibitor-bound form of uIRAK4, which exhibited less compact folding and higher solvent surface area. The intra-hydrogen bonds corroborated the structural deformation of the type-II inhibitor-bound complex, which could be attributed to the long molecular structure of the type-II inhibitor. Moreover, the type II inhibitor bound to uIRAK4 showed higher binding free energy with uIRAK4 than the type I inhibitor. The free energy landscape analysis showed a reorientation of Phe330 side chain from the DFG motif at different metastable states for all the systems. The intra-residual distance between residues Lys213, Glu233, Tyr262, and Phe330 suggests a functional interplay when the inhibitors are bound to uIRAK4, thereby hinting at their crucial role in the inhibition mechanism. Ultimately, the intrinsic dynamics study observed between type I/II inhibitor-bound forms of uIRAK4 may assist in better understanding the enzyme and designing therapeutic compounds.
Collapse
Affiliation(s)
- Vijayakumar Gosu
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeonnam, 58128, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
25
|
Tu G, Xu B, Luo D, Liu J, Liu Z, Chen G, Xue W. Multi-state Model-Based Identification of Cryptic Allosteric Sites on Human Serotonin Transporter. ACS Chem Neurosci 2023; 14:1686-1694. [PMID: 37067527 DOI: 10.1021/acschemneuro.3c00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Serotonin transporter (SERT) plays a fundamental role in taking the synaptic cleft serotonin back to the presynaptic neuron. The discovery of allosteric SERT modulators represents the next-generation medication for psychiatric disorders such as depression. Here, based on the cryo-EM structures of ibogaine in complex with SERT in distinct conformations, the multiple functional structures of the transporter bound to serotonin, including outward-open (OOholo), outward-occluded (OCholo), and inward-open (IOholo and IOholo'), were carefully characterized by induced-fit docking Gaussian-accelerated molecular dynamics (IFD-GaMD) simulation and the free-energy landscape analysis. Further MM/GBSA binding free energy, per-residue contribution, and molecular interaction fingerprint calculations revealed the interaction variations of serotonin with SERT in functional structures, which confirmed the allostery of SERT during serotonin reuptake. Moreover, five unique cryptic allosteric sites, which are druggable and capable of targeting by small molecules, were identified on the characterized multistate structures. These results provide structural and energetic information for the molecular mechanism of serotonin reuptake and will provide opportunities for the development of novel therapeutics based on the identified new allosteric sites on SERT.
Collapse
Affiliation(s)
- Gao Tu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Binbin Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ding Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jin Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou 646000, China
| | - Gang Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou 646000, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
26
|
Shi S, Zheng L, Ren Y, Wang Z. Impacts of Mutations in the P-Loop on Conformational Alterations of KRAS Investigated with Gaussian Accelerated Molecular Dynamics Simulations. Molecules 2023; 28:molecules28072886. [PMID: 37049650 PMCID: PMC10095679 DOI: 10.3390/molecules28072886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
G12 mutations heavily affect conformational transformation and activity of KRAS. In this study, Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the GDP-bound wild-type (WT), G12A, G12D, and G12R KRAS to probe mutation-mediated impacts on conformational alterations of KRAS. The results indicate that three G12 mutations obviously affect the structural flexibility and internal dynamics of the switch domains. The analyses of the free energy landscapes (FELs) suggest that three G12 mutations induce more conformational states of KRAS and lead to more disordered switch domains. The principal component analysis shows that three G12 mutations change concerted motions and dynamics behavior of the switch domains. The switch domains mostly overlap with the binding region of KRAS to its effectors. Thus, the high disorder states and concerted motion changes of the switch domains induced by G12 mutations affect the activity of KRAS. The analysis of interaction network of GDP with KRAS signifies that the instability in the interactions of GDP and magnesium ion with the switch domain SW1 drives the high disordered state of the switch domains. This work is expected to provide theoretical aids for understanding the function of KRAS.
Collapse
Affiliation(s)
- Shuhua Shi
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Linqi Zheng
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Yonglian Ren
- School of Science, Shandong Jianzhu University, Jinan 250101, China
| | - Ziyu Wang
- School of Science, Shandong Jianzhu University, Jinan 250101, China
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
27
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS OMEGA 2023; 8:10565-10590. [PMID: 36969457 PMCID: PMC10035023 DOI: 10.1021/acsomega.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme (GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened plant-based natural product panels intending to identify novel drugs without elevating drug resistance. We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The functional enrichment analysis demonstrated genes associated with GBM, further PPI network was constructed, and biological pathways associated with them were explored. Seven webtools, including GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9, and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood-brain barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9 protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported flavonoids, 7,4'-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4'-hydroxy-7-methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical applications, including GBM diagnosis, prognosis, and targeted therapy.
Collapse
|
28
|
Babaoglu ZY, Kilic D. Virtual screening, molecular simulations and bioassays: Discovering novel microsomal prostaglandin E Synthase-1 (mPGES-1) inhibitors. Comput Biol Med 2023; 155:106616. [PMID: 36780799 DOI: 10.1016/j.compbiomed.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/05/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase expressed following exposure to pro-inflammatory stimuli. The mPGES-1 enzyme represents a new target for the therapeutic treatment of acute and chronic inflammatory disorders and cancer. In the present study, compounds from the ZINC15 database with an indole scaffold were docked at the mPGES-1 binding site using Glide (high-throughput virtual screening [HTVS], standard precision [SP] and extra precision [XP]), and the stabilities of the complexes were determined by molecular simulation studies. Following HTVS, the top 10% compounds were retained and further screened by SP. Again, the top 10% of these compounds were retained. Finally, the Glide XP scores of the compounds were determined, 20% were analyzed, and the Prime MM-GBSA total free binding energies of the compounds were calculated. The molecular simulations (100 ns) of the reference ligand, LVJ, and the two best-scoring compounds were performed with the Desmond program to analyze the dynamics of the target protein-ligand complexes. In human lung cells treated with the hit compounds, cell viability by colorimetric method and PGE2 levels by immunoassay method were determined. These in vitro experiments demonstrated that the two indole-containing hit compounds are potential novel inhibitors of mPGES-1 and are, therefore, potential therapeutic agents for cancer/inflammation therapies. Moreover, the compounds are promising lead mPGES-1 inhibitors for novel molecule design.
Collapse
Affiliation(s)
| | - Deryanur Kilic
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
29
|
Yan TC, Yue ZX, Xu HQ, Liu YH, Hong YF, Chen GX, Tao L, Xie T. A systematic review of state-of-the-art strategies for machine learning-based protein function prediction. Comput Biol Med 2023; 154:106446. [PMID: 36680931 DOI: 10.1016/j.compbiomed.2022.106446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
New drug discovery is inseparable from the discovery of drug targets, and the vast majority of the known targets are proteins. At the same time, proteins are essential structural and functional elements of living cells necessary for the maintenance of all forms of life. Therefore, protein functions have become the focus of many pharmacological and biological studies. Traditional experimental techniques are no longer adequate for rapidly growing annotation of protein sequences, and approaches to protein function prediction using computational methods have emerged and flourished. A significant trend has been to use machine learning to achieve this goal. In this review, approaches to protein function prediction based on the sequence, structure, protein-protein interaction (PPI) networks, and fusion of multi-information sources are discussed. The current status of research on protein function prediction using machine learning is considered, and existing challenges and prominent breakthroughs are discussed to provide ideas and methods for future studies.
Collapse
Affiliation(s)
- Tian-Ci Yan
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zi-Xuan Yue
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hong-Quan Xu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Hong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Feng Hong
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Gong-Xing Chen
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
30
|
Bao HY, Wang W, Sun HB, Chen JZ. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:65-89. [PMID: 36762439 DOI: 10.1080/1062936x.2023.2165542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Probing binding modes of GDP, GTP and GNP to NRAS are of significance for understanding the regulation mechanism on the activity of RAS proteins. Four separate Gaussian accelerated molecular dynamics (GaMD) simulations were performed on the apo, GDP-, GTP- and GNP-bound NRAS. Dynamics analyses suggest that binding of three ligands highly affects conformational states of the switch domains from NRAS, which disturbs binding of NRAS to its effectors. The analyses of free energy landscapes (FELs) indicate that binding of GDP, GTP and GNP induces more energetic states of NRAS compared to the apo NRAS but the presence of GNP makes the switch domains more ordered than binding of GDP and GNP. The information of interaction networks of ligands with NRAS reveals that the π-π interaction of residue F28 and the salt bridge interactions of K16 and D119 with ligands stabilize binding of GDP, GTP and GNP to NRAS. Meanwhile magnesium ion plays a bridge role in interactions of ligands with NRAS, which is favourable for associations of GDP, GTP and GNP with NRAS. This work is expected to provide useful information for deeply understanding the function and activity of NRAS.
Collapse
Affiliation(s)
- H Y Bao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - J Z Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
31
|
Chen J, Zeng Q, Wang W, Sun H, Hu G. Decoding the Identification Mechanism of an SAM-III Riboswitch on Ligands through Multiple Independent Gaussian-Accelerated Molecular Dynamics Simulations. J Chem Inf Model 2022; 62:6118-6132. [PMID: 36440874 DOI: 10.1021/acs.jcim.2c00961] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S-Adenosyl-l-methionine (SAM)-responsive riboswitches play a central role in the regulation of bacterial gene expression at the level of transcription attenuation or translation inhibition. In this study, multiple independent Gaussian-accelerated molecular dynamics simulations were performed to decipher the identification mechanisms of SAM-III (SMK) on ligands SAM, SAH, and EEM. The results reveal that ligand binding highly affects the structural flexibility, internal dynamics, and conformational changes of SAM-III. The dynamic analysis shows that helices P3 and P4 as well as two junctions J23 and J24 of SAM-III are highly susceptible to ligand binding. Analyses of free energy landscapes suggest that ligand binding induces different free energy profiles of SAM-III, which leads to the difference in identification sites of SAM-III on ligands. The information on ligand-nucleotide interactions not only uncovers that the π-π, cation-π, and hydrogen bonding interactions drive identification of SAM-III on the three ligands but also reveals that different electrostatic properties of SAM, SAH, and EEM alter the active sites of SAM-III. Meanwhile, the results also verify that the adenine group of SAM, SAH, and EEM is well recognized by conserved nucleotides G7, A29, U37, A38, and G48. We expect that this study can provide useful information for understanding the applications of SAM-III in chemical, synthetic RNA biology, and biomedical fields.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou253023, China
| |
Collapse
|
32
|
Liu J, Sun T, Liu S, Liu J, Fang S, Tan S, Zeng Y, Zhang B, Li W. Dissecting the molecular mechanism of cepharanthine against COVID-19, based on a network pharmacology strategy combined with RNA-sequencing analysis, molecular docking, and molecular dynamics simulation. Comput Biol Med 2022; 151:106298. [PMID: 36403355 PMCID: PMC9671524 DOI: 10.1016/j.compbiomed.2022.106298] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Recently, it has been reported that cepharanthine (CEP) is highly likely to be an agent against Coronavirus disease 2019 (COVID-19). In the present study, a network pharmacology-based approach combined with RNA-sequencing (RNA-seq), molecular docking, and molecular dynamics (MD) simulation was performed to determine hub targets and potential pharmacological mechanism of CEP against COVID-19. METHODS Targets of CEP were retrieved from public databases. COVID-19-related targets were acquired from databases and RNA-seq datasets GSE157103 and GSE155249. The potential targets of CEP and COVID-19 were then validated by GSE158050. Hub targets and signaling pathways were acquired through bioinformatics analysis, including protein-protein interaction (PPI) network analysis and enrichment analysis. Subsequently, molecular docking was carried out to predict the combination of CEP with hub targets. Lastly, MD simulation was conducted to further verify the findings. RESULTS A total of 700 proteins were identified as CEP-COVID-19-related targets. After the validation by GSE158050, 97 validated targets were retained. Enrichment results indicated that CEP acts on COVID-19 through multiple pathways, multiple targets, and overall cooperation. Specifically, PI3K-Akt signaling pathway is the most important pathway. Based on PPI network analysis, 9 central hub genes were obtained (ACE2, STAT1, SRC, PIK3R1, HIF1A, ESR1, ERBB2, CDC42, and BCL2L1). Molecular docking suggested that the combination between CEP and 9 central hub genes is extremely strong. Noteworthy, ACE2, considered the most important gene in CEP against COVID-19, binds to CEP most stably, which was further validated by MD simulation. CONCLUSION Our study comprehensively illustrated the potential targets and underlying molecular mechanism of CEP against COVID-19, which further provided the theoretical basis for exploring the potential protective mechanism of CEP against COVID-19.
Collapse
Affiliation(s)
- Jiaqin Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China
| | - Senbiao Fang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Shengyu Tan
- Department of Gerontology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yucheng Zeng
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
33
|
Hajji H, Alaqarbeh M, Lakhlifi T, Ajana MA, Alsakhen N, Bouachrine M. Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters. Comput Biol Med 2022; 150:106209. [PMID: 36257276 PMCID: PMC9554895 DOI: 10.1016/j.compbiomed.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/23/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
SARS-COV-2 virus causes (COVID-19) disease; it has become a global pandemic since 2019 and has negatively affected all aspects of human life. Scientists have made great efforts to find a reliable cure, vaccine, or treatment for this emerging disease. Efforts have been directed towards using medicinal plants as alternative medicines, as the active chemical compounds in them have been discovered as potential antiviral or anti-inflammatory agents. In this research, the potential of Saussurea costus (S. Costus) or QUST Al Hindi chemical consistent as potential antiviral agents was investigated by using computational methods such as Reverse Docking, ADMET, and Molecular Dynamics with different proteases COVID-19 such as PDB: 2GZ9; 6LU7; 7AOL, 6Y2E, 6Y84. The results of Reverse Docking the complex between 6LU7 proteases and Cynaropicrin compound being the best complex, as the same result, is achieved by molecular dynamics. Also, the toxicity testing result from ADMET method proved that the complex is the least toxic and the safest possible drug. In addition, 6LU7-Cynaropicrin complex obeyed Lipinski rule; it formed ≤5 H-bond donors and ≤10 H bond acceptors, MW < 500 Daltons, and octanol/water partition coefficient <5.
Collapse
Affiliation(s)
- Halima Hajji
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381, Jordan.
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Nada Alsakhen
- Department of Chemistry, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco; Superior School of Technology - Khenifra (EST-Khenifra), University of Sultan Moulay Sliman, PB 170, Khenifra, 54000, Morocco.
| |
Collapse
|
34
|
Liao J, Chen H, Wei L, Wei L. GSAML-DTA: An interpretable drug-target binding affinity prediction model based on graph neural networks with self-attention mechanism and mutual information. Comput Biol Med 2022; 150:106145. [PMID: 37859276 DOI: 10.1016/j.compbiomed.2022.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 09/24/2022] [Indexed: 11/03/2022]
Abstract
Identifying drug-target affinity (DTA) has great practical importance in the process of designing efficacious drugs for known diseases. Recently, numerous deep learning-based computational methods have been developed to predict drug-target affinity and achieved impressive performance. However, most of them construct the molecule (drug or target) encoder without considering the weights of features of each node (atom or residue). Besides, they generally combine drug and target representations directly, which may contain irrelevant-task information. In this study, we develop GSAML-DTA, an interpretable deep learning framework for DTA prediction. GSAML-DTA integrates a self-attention mechanism and graph neural networks (GNNs) to build representations of drugs and target proteins from the structural information. In addition, mutual information is introduced to filter out redundant information and retain relevant information in the combined representations of drugs and targets. Extensive experimental results demonstrate that GSAML-DTA outperforms state-of-the-art methods for DTA prediction on two benchmark datasets. Furthermore, GSAML-DTA has the interpretation ability to analyze binding atoms and residues, which may be conducive to chemical biology studies from data. Overall, GSAML-DTA can serve as a powerful and interpretable tool suitable for DTA modelling.
Collapse
Affiliation(s)
- Jiaqi Liao
- School of Software, Shandong University, Jinan, China
| | - Haoyang Chen
- School of Software, Shandong University, Jinan, China
| | - Lesong Wei
- Department of Computer Science, University of Tsukuba, Tsukuba, 3058577, Japan.
| | - Leyi Wei
- School of Software, Shandong University, Jinan, China.
| |
Collapse
|
35
|
Manish M, Mishra S, Anand A, Subbarao N. Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Comput Biol Med 2022; 150:106125. [PMID: 36240593 PMCID: PMC9507791 DOI: 10.1016/j.compbiomed.2022.106125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 12/04/2022]
Abstract
Our objective was to identify the molecule which can inhibit SARS-CoV-2 main protease and can be easily procured. Natural products may provide such molecules and can supplement the current custom chemical synthesis-based drug discovery for this objective. A combination of docking approaches, scoring functions, classical molecular dynamic simulation, binding pose metadynamics, and free energy perturbation calculations have been employed in this study. Theaflavin digallate has been observed in top-scoring compounds after the three independent virtual screening simulations of 598435 compounds (unique 27256 chemical entities). The main protease-theaflavin digallate complex interacts with critical active site residues of the main protease in molecular dynamics simulation independent of the explored computational framework, simulation time, initial structure, and force field used. Theaflavin digallate forms approximately three hydrogen bonds with Glutamate166 of main protease, primarily through hydroxyl groups in the benzene ring of benzo(7)annulen-6-one, along with other critical residues. Glu166 is the most critical amino acid for main protease dimerization, which is necessary for catalytic activity. The estimated binding free energy, calculated by Amber and Schrodinger MMGBSA module, reflects a high binding free energy between theaflavin digallate and main protease. Binding pose metadynamics simulation shows the highly persistent H-bond and a stable pose for the theaflavin digallate-main protease complex. Using method control, experimental controls, and test set, alchemical transformation studies confirm high relative binding free energy of theaflavin digallate with the main protease. Computational molecular interaction suggests that theaflavin digallate can inhibit the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Manish Manish
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Smriti Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| | - Ayush Anand
- BP Koirala Institute of Health Sciences, Dharan, Nepal.
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
36
|
Sun X, Zhang Y, Li H, Zhou Y, Shi S, Chen Z, He X, Zhang H, Li F, Yin J, Mou M, Wang Y, Qiu Y, Zhu F. DRESIS: the first comprehensive landscape of drug resistance information. Nucleic Acids Res 2022; 51:D1263-D1275. [PMID: 36243960 PMCID: PMC9825618 DOI: 10.1093/nar/gkac812] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Widespread drug resistance has become the key issue in global healthcare. Extensive efforts have been made to reveal not only diverse diseases experiencing drug resistance, but also the six distinct types of molecular mechanisms underlying this resistance. A database that describes a comprehensive list of diseases with drug resistance (not just cancers/infections) and all types of resistance mechanisms is now urgently needed. However, no such database has been available to date. In this study, a comprehensive database describing drug resistance information named 'DRESIS' was therefore developed. It was introduced to (i) systematically provide, for the first time, all existing types of molecular mechanisms underlying drug resistance, (ii) extensively cover the widest range of diseases among all existing databases and (iii) explicitly describe the clinically/experimentally verified resistance data for the largest number of drugs. Since drug resistance has become an ever-increasing clinical issue, DRESIS is expected to have great implications for future new drug discovery and clinical treatment optimization. It is now publicly accessible without any login requirement at: https://idrblab.org/dresis/.
Collapse
Affiliation(s)
| | | | | | | | - Shuiyang Shi
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin He
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China,Zhejiang University–University of Edinburgh Institute, Zhejiang University, Haining 314499, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiayi Yin
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunzhu Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yunqing Qiu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
37
|
Li F, Yin J, Lu M, Mou M, Li Z, Zeng Z, Tan Y, Wang S, Chu X, Dai H, Hou T, Zeng S, Chen Y, Zhu F. DrugMAP: molecular atlas and pharma-information of all drugs. Nucleic Acids Res 2022; 51:D1288-D1299. [PMID: 36243961 PMCID: PMC9825453 DOI: 10.1093/nar/gkac813] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023] Open
Abstract
The efficacy and safety of drugs are widely known to be determined by their interactions with multiple molecules of pharmacological importance, and it is therefore essential to systematically depict the molecular atlas and pharma-information of studied drugs. However, our understanding of such information is neither comprehensive nor precise, which necessitates the construction of a new database providing a network containing a large number of drugs and their interacting molecules. Here, a new database describing the molecular atlas and pharma-information of drugs (DrugMAP) was therefore constructed. It provides a comprehensive list of interacting molecules for >30 000 drugs/drug candidates, gives the differential expression patterns for >5000 interacting molecules among different disease sites, ADME (absorption, distribution, metabolism and excretion)-relevant organs and physiological tissues, and weaves a comprehensive and precise network containing >200 000 interactions among drugs and molecules. With the great efforts made to clarify the complex mechanism underlying drug pharmacokinetics and pharmacodynamics and rapidly emerging interests in artificial intelligence (AI)-based network analyses, DrugMAP is expected to become an indispensable supplement to existing databases to facilitate drug discovery. It is now fully and freely accessible at: https://idrblab.org/drugmap/.
Collapse
Affiliation(s)
| | | | - Mingkun Lu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba–Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xinyi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Haibin Dai
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Su Zeng
- Correspondence may also be addressed to Su Zeng.
| | - Yuzong Chen
- Correspondence may also be addressed to Yuzong Chen.
| | - Feng Zhu
- To whom correspondence should be addressed.
| |
Collapse
|
38
|
Yu YX, Wang W, Sun HB, Zhang LL, Wang LF, Yin YY. Decoding drug resistant mechanism of V32I, I50V and I84V mutations of HIV-1 protease on amprenavir binding by using molecular dynamics simulations and MM-GBSA calculations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:805-831. [PMID: 36322686 DOI: 10.1080/1062936x.2022.2140708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Mutations V32I, I50V and I84V in the HIV-1 protease (PR) induce drug resistance towards drug amprenavir (APV). Multiple short molecular dynamics (MSMD) simulations and molecular mechanics generalized Born surface area (MM-GBSA) method were utilized to investigate drug-resistant mechanism of V32I, I50V and I84V towards APV. Dynamic information arising from MSMD simulations suggest that V32I, I50V and I84V highly affect structural flexibility, motion modes and conformational behaviours of two flaps in the PR. Binding free energies calculated by MM-GBSA method suggest that the decrease in binding enthalpy and the increase in binding entropy induced by mutations V32I, I50V and I84V are responsible for drug resistance of the mutated PRs on APV. The energetic contributions of separate residues on binding of APV to the PR show that V32I, I50V and I84V highly disturb the interactions of two flaps with APV and mostly drive the decrease in binding ability of APV to the PR. Thus, the conformational changes of two flaps in the PR caused by V32I, I50V and I84V play key roles in drug resistance of three mutated PR towards APV. This study can provide useful dynamics information for the design of potent inhibitors relieving drug resistance.
Collapse
Affiliation(s)
- Y X Yu
- School of Science, Shandong Jiaotong University, Jinan, China
| | - W Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - H B Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L L Zhang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - L F Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Y Y Yin
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
39
|
Agrawal S, Pathak E, Mishra R, Mishra V, Parveen A, Mishra SK, Byadgi PS, Dubey SK, Chaudhary AK, Singh V, Chaurasia RN, Atri N. Computational exploration of the dual role of the phytochemical fortunellin: Antiviral activities against SARS-CoV-2 and immunomodulatory abilities against the host. Comput Biol Med 2022; 149:106049. [PMID: 36103744 PMCID: PMC9452420 DOI: 10.1016/j.compbiomed.2022.106049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections generate approximately one million virions per day, and the majority of available antivirals are ineffective against it due to the virus's inherent genetic mutability. This necessitates the investigation of concurrent inhibition of multiple SARS-CoV-2 targets. We show that fortunellin (acacetin 7-O-neohesperidoside), a phytochemical, is a promising candidate for preventing and treating coronavirus disease (COVID-19) by targeting multiple key viral target proteins. Fortunellin supports protective immunity while inhibiting pro-inflammatory cytokines and apoptosis pathways and protecting against tissue damage. Fortunellin is a phytochemical found in Gojihwadi kwath, an Indian traditional Ayurvedic formulation with an antiviral activity that is effective in COVID-19 patients. The mechanistic action of its antiviral activity, however, is unknown. The current study comprehensively evaluates the potential therapeutic mechanisms of fortunellin in preventing and treating COVID-19. We have used molecular docking, molecular dynamics simulations, free-energy calculations, host target mining of fortunellin, gene ontology enrichment, pathway analyses, and protein-protein interaction analysis. We discovered that fortunellin reliably binds to key targets that are necessary for viral replication, growth, invasion, and infectivity including Nucleocapsid (N-CTD) (-54.62 kcal/mol), Replicase-monomer at NSP-8 binding site (-34.48 kcal/mol), Replicase-dimer interface (-31.29 kcal/mol), Helicase (-30.02 kcal/mol), Papain-like-protease (-28.12 kcal/mol), 2'-O-methyltransferase (-23.17 kcal/mol), Main-protease (-21.63 kcal/mol), Replicase-monomer at dimer interface (-22.04 kcal/mol), RNA-dependent-RNA-polymerase (-19.98 kcal/mol), Nucleocapsid-NTD (-16.92 kcal/mol), and Endoribonuclease (-16.81 kcal/mol). Furthermore, we identify and evaluate the potential human targets of fortunellin and its effect on the SARS-CoV-2 infected tissues, including normal-human-bronchial-epithelium (NHBE) and lung cells and organoids such as pancreatic, colon, liver, and cornea using a network pharmacology approach. Thus, our findings indicate that fortunellin has a dual role; multi-target antiviral activities against SARS-CoV-2 and immunomodulatory capabilities against the host.
Collapse
Affiliation(s)
- Shivangi Agrawal
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Ekta Pathak
- Institute of Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Rajeev Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India.
| | - Vibha Mishra
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | - Afifa Parveen
- Bioinformatics, MMV, Institute of Science, Banaras Hindu University, India
| | | | | | - Sushil Kumar Dubey
- Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, India
| | | | | | | | - Neelam Atri
- Department of Botany, MMV, Banaras Hindu University, India
| |
Collapse
|
40
|
Yu Z, Su H, Chen J, Hu G. Deciphering Conformational Changes of the GDP-Bound NRAS Induced by Mutations G13D, Q61R, and C118S through Gaussian Accelerated Molecular Dynamic Simulations. Molecules 2022; 27:5596. [PMID: 36080363 PMCID: PMC9457619 DOI: 10.3390/molecules27175596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
The conformational changes in switch domains significantly affect the activity of NRAS. Gaussian-accelerated molecular dynamics (GaMD) simulations of three separate replicas were performed to decipher the effects of G13D, Q16R, and C118S on the conformational transformation of the GDP-bound NRAS. The analyses of root-mean-square fluctuations and dynamics cross-correlation maps indicated that the structural flexibility and motion modes of the switch domains involved in the binding of NRAS to effectors are highly altered by the G13D, Q61R, and C118Smutations. The free energy landscapes (FELs) suggested that mutations induce more energetic states in NRAS than the GDP-bound WT NRAS and lead to high disorder in the switch domains. The FELs also indicated that the different numbers of sodium ions entering the GDP binding regions compensate for the changes in electrostatic environments caused by mutations, especially for G13D. The GDP-residue interactions revealed that the disorder in the switch domains was attributable to the unstable hydrogen bonds between GDP and two residues, V29 and D30. This work is expected to provide information on the energetic basis and dynamics of conformational changes in switch domains that can aid in deeply understanding the target roles of NRAS in anticancer treatment.
Collapse
Affiliation(s)
- Zhiping Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongyi Su
- Laoling People’s Hospital, Dezhou 253600, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
- Laoling People’s Hospital, Dezhou 253600, China
| |
Collapse
|
41
|
Chen J, Wang J, Zeng Q, Wang W, Sun H, Wei B. Exploring the deactivation mechanism of human β2 adrenergic receptor by accelerated molecular dynamic simulations. Front Mol Biosci 2022; 9:972463. [PMID: 36111136 PMCID: PMC9468641 DOI: 10.3389/fmolb.2022.972463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
The β2 adrenergic receptor (β2AR), one of important members of the G protein coupled receptors (GPCRs), has been suggested as an important target for cardiac and asthma drugs. Two replicas of Gaussian accelerated molecular dynamics (GaMD) simulations are performed to explore the deactivation mechanism of the active β2AR bound by three different substrates, including the agonist (P0G), antagonist (JTZ) and inverse agonist (JRZ). The simulation results indicate that the Gs protein is needed to stabilize the active state of the β2AR. Without the Gs protein, the receptor could transit from the active state toward the inactive state. During the transition process, helix TM6 moves toward TM3 and TM5 in geometric space and TM5 shrinks upwards. The intermediate state is captured during the transition process of the active β2AR toward the inactive one, moreover the changes in hydrophobic interaction networks between helixes TM3, TM5, and TM6 and the formation of a salt bridge between residues Arg3.50 and Glu6.30 drive the transition process. We expect that this finding can provide energetic basis and molecular mechanism for further understanding the function and target roles of the β2AR.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
- *Correspondence: Jianzhong Chen, ; Benzheng Wei,
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Qingkai Zeng
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Haibo Sun
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- *Correspondence: Jianzhong Chen, ; Benzheng Wei,
| |
Collapse
|
42
|
Contractor D, Globisch C, Swaroop S, Jain A. Structural basis of Omicron immune evasion: A comparative computational study. Comput Biol Med 2022; 147:105758. [PMID: 35763933 PMCID: PMC9212419 DOI: 10.1016/j.compbiomed.2022.105758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The vaccines used against SARS-CoV-2 by now have been able to develop some neutralising antibodies in the vaccinated population and their effectiveness has been challenged by the emergence of the new strains with numerous mutations in the spike protein of SARS-CoV-2. Since S protein is the major immunogenic protein of the virus which contains Receptor Binding Domain (RBD) that interacts with the human Angiotensin-Converting Enzyme 2 (ACE2) receptors, any mutations in this region should affect the neutralisation potential of the antibodies leading to the immune evasion. Several variants of concern of the virus have emerged so far, amongst which the most critical are Delta and recently reported Omicron. In this study, we have mapped and reported mutations on the modelled RBD and evaluated binding affinities of various human antibodies with it. METHOD Docking and molecular dynamics simulation studies have been used to explore the effect of mutations on the structure of RBD and RBD-antibody interaction. RESULTS These analyses show that the mutations mostly at the interface of a nearby region lower the binding affinity of the antibody by ten to forty percent, with a downfall in the number of interactions formed as a whole. It implies the generation of immune escape variants. CONCLUSIONS Notable mutations and their effect was characterised that explain the structural basis of antibody efficacy in Delta and a compromised neutralisation effect for the Omicron variant. Thus, our results pave the way for robust vaccine design that can be effective for many variants.
Collapse
Affiliation(s)
- Darshan Contractor
- Department of Bioengineering and Biotechnology, Birla Institute of Technology (BIT), Mesra, Ranchi, 835215, Jharkhand, India; Department of Biotechnology, Sun Pharmaceutical Industries Ltd., Tandalja, Vadodara, 390012, Gujarat, India
| | | | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandar Sindri, Ajmer, 305817, Rajasthan, India.
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology (BIT), Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
43
|
Bayani F, Safaei Hashkavaei N, Uversky VN, Mozaffari-Jovin S, Sefidbakht Y. Insights into the structural peculiarities of the N-terminal and receptor binding domains of the spike protein from the SARS-CoV-2 Omicron variant. Comput Biol Med 2022; 147:105735. [PMID: 35767919 PMCID: PMC9220253 DOI: 10.1016/j.compbiomed.2022.105735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022]
|
44
|
Design, Synthesis, and biological evaluation of HDAC6 inhibitors based on Cap modification strategy. Bioorg Chem 2022; 125:105874. [DOI: 10.1016/j.bioorg.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022]
|
45
|
Zhang S, Sun X, Mou M, Amahong K, Sun H, Zhang W, Shi S, Li Z, Gao J, Zhu F. REGLIV: Molecular regulation data of diverse living systems facilitating current multiomics research. Comput Biol Med 2022; 148:105825. [PMID: 35872412 DOI: 10.1016/j.compbiomed.2022.105825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 12/24/2022]
Abstract
Multiomics is a powerful technique in molecular biology that facilitates the identification of new associations among different molecules (genes, proteins & metabolites). It has attracted tremendous research interest from the scientists worldwide and has led to an explosive number of published studies. Most of these studies are based on the regulation data provided in available databases. Therefore, it is essential to have molecular regulation data that are strictly validated in the living systems of various cell lines and in vivo models. However, no database has been developed yet to provide comprehensive molecular regulation information validated by living systems. Herein, a new database, Molecular Regulation Data of Living System Facilitating Multiomics Study (REGLIV) is introduced to describe various types of molecular regulation tested by the living systems. (1) A total of 2996 regulations describe the changes in 1109 metabolites triggered by alterations in 284 genes or proteins, and (2) 1179 regulations describe the variations in 926 proteins induced by 125 endogenous metabolites. Overall, REGLIV is unique in (a) providing the molecular regulation of a clearly defined regulatory direction other than simple correlation, (b) focusing on molecular regulations that are validated in a living system not simply in an in vitro test, and (c) describing the disease/tissue/species specific property underlying each regulation. Therefore, REGLIV has important implications for the future practice of not only multiomics, but also other fields relevant to molecular regulation. REGLIV is freely accessible at: https://idrblab.org/regliv/.
Collapse
Affiliation(s)
- Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiuna Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kuerbannisha Amahong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuiyang Shi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
46
|
Xie J, Chen R, Wang Q, Mao H. Exploration and validation of Taraxacum mongolicum anti-cancer effect. Comput Biol Med 2022; 148:105819. [PMID: 35810695 DOI: 10.1016/j.compbiomed.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
Taraxacum mongolicum gained a lot of concern and was applied in 93 formulas in China due to its fame as a traditional Chinese medicine. The earliest recorded application of Taraxacum mongolicum was traced back to the Han dynasty. Generations of doctors boosted the usage and enriched the pharmacological mechanism. Clinical application of the Taraxacum mongolicum is flourishing as it treats multiple diseases. This study aims to explore the anti-cancer effect, retrieve the active ingredients and screen the key targets of Taraxacum mongolicum in cancer therapy. We collected and evaluated 10 key active compounds to investigate the anti-cancer effect via 69 significant targets and a variety of biological processes and pathways. Gene Ontology (GO) enrichment analysis uncovered targets associated with protein phosphorylation, cell proliferation and apoptotic processes via regulation of kinases, ATP and enzyme binding activities. Half of the top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were directly involved in cancer. Based on standard selection criteria, seven hub targets were obtained. These targets functioned through distinct patterns and pathways in realizing the anti-cancer effect. Molecular docking was conducted to validate the potential combination between compounds and hub targets to explore the pharmacological mechanism of key compounds in Taraxacum mongolicum against cancer. In summary, our findings indicate that the famous and widely used Chinese herb, Taraxacum mongolicum, shows good anti-cancer effect through its active compounds, targeted genes, and multiple involved biological processes. The results may provide a theoretical basis for subsequent experimental validation and drug development of Taraxacum mongolicum extract against cancer.
Collapse
Affiliation(s)
- Jumin Xie
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Ruxi Chen
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, Hubei, 435003, PR China
| | - Qingzhi Wang
- Medical College of YiChun University, Xuefu Road No 576, Yichun, Jiangxi, 336000, PR China.
| | - Hui Mao
- Department of Dermatology, Huangshi Central Hospital, Huangshi, Hubei, 435000, PR China.
| |
Collapse
|
47
|
Khan A, Li W, Ambreen A, Wei DQ, Wang Y, Mao Y. A protein coupling and molecular simulation analysis of the clinical mutants of androgen receptor revealed a higher binding for Leupaxin, to increase the prostate cancer invasion and motility. Comput Biol Med 2022; 146:105537. [DOI: 10.1016/j.compbiomed.2022.105537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
|
48
|
Damale MG, Patil R, Ansari SA, Alkahtani HM, Ahmed S, Nur-e-Alam M, Arote R, Sangshetti J. Insilico structure based drug design approach to find potential hits in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Comput Biol Med 2022; 146:105597. [DOI: 10.1016/j.compbiomed.2022.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
49
|
Singh R, Bhardwaj VK, Das P, Bhattacherjee D, Zyryanov GV, Purohit R. Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Comput Biol Med 2022; 146:105572. [PMID: 35551011 PMCID: PMC9052739 DOI: 10.1016/j.compbiomed.2022.105572] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND The SARS-CoV-2 main protease (Mpro) is an attractive target in the COVID-19 drug development process. It catalyzes the polyprotein's translation from viral RNA and specifies a particular cleavage site. Due to the absence of identical cleavage specificity in human cell proteases, targeting Mpro with chemical compounds can obstruct the replication of the virus. METHODS To explore the potential binding mechanisms of 1,2,3-triazole scaffolds in comparison to co-crystallized inhibitors 11a and 11b towards Mpro, we herein utilized molecular dynamics and enhanced sampling simulation studies. RESULTS AND CONCLUSION All the 1,2,3-triazole scaffolds interacted with catalytic residues (Cys145 and His41) and binding pocket residues of Mpro involving Met165, Glu166, Ser144, Gln189, His163, and Met49. Furthermore, the adequate binding free energy and potential mean force of the topmost compound 3h was comparable to the experimental inhibitors 11a and 11b of Mpro. Overall, the current analysis could be beneficial in developing the SARS-CoV-2 Mpro potential inhibitors.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India,Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India,Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pralay Das
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India,Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dhananjay Bhattacherjee
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002, Ekaterinburg, Russian Federation
| | - Grigory V. Zyryanov
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 ul. Mira, 620002, Ekaterinburg, Russian Federation,I. Ya. Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 ul. S. Kovalevskoi, 620219, Ekaterinburg, Russian Federation
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India,Biotechnology Division, CSIR-IHBT, Palampur, HP, 176061, India,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India,Corresponding author. Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India
| |
Collapse
|
50
|
Nag A, Banerjee R, Paul S, Kundu R. Curcumin inhibits spike protein of new SARS-CoV-2 variant of concern (VOC) Omicron, an in silico study. Comput Biol Med 2022; 146:105552. [PMID: 35508082 PMCID: PMC9044632 DOI: 10.1016/j.compbiomed.2022.105552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Omicron (B.1.1.529), a variant of SARS-CoV-2 is currently spreading globally as a dominant strain. Due to multiple mutations at its Spike protein, including 15 amino acid substitutions at the receptor binding domain (RBD), Omicron is a variant of concern (VOC) and capable of escaping vaccine generated immunity. So far, no specific treatment regime is suggested for this VOC. METHODS The three-dimensional structure of the Spike RBD domain of Omicron variant was constructed by incorporating 15 amino acid substitutions to the Native Spike (S) structure and structural changes were compared that of the Native S. Seven phytochemicals namely Allicin, Capsaicin, Cinnamaldehyde, Curcumin, Gingerol, Piperine, and Zingeberene were docked with Omicron S protein and Omicron S-hACE2 complex. Further, molecular dynamic simulation was performed between Crcumin and Omicron S protein to evaluate the structural stability of the complex in the physiological environment and compared with that of the control drug Chloroquine. RESULTS Curcumin, among seven phytochemicals, was found to have the most substantial inhibitory potential with Omicron S protein. Further, it was found that curcumin could disrupt the Omicron S-hACE2 complex. The molecular dynamic simulation demonstrated that Curcumin could form a stable structure with Omicron S in the physiological environment. CONCLUSION To conclude, Curcumin can be considered as a potential therapeutic agent against the highly infectious Omicron variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India,Corresponding author
| | - Ritesh Banerjee
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Subhabrata Paul
- School of Biotechnology, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, West Bengal, 700156, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India
| |
Collapse
|