1
|
Liu Y, Xue GH, He Z, Yue JP, Pan M, Song L, Zhang W, Ye JH, Yu DG. Visible-Light Photoredox-Catalyzed Direct Carboxylation of Tertiary C(sp 3)-H Bonds with CO 2: Facile Synthesis of All-Carbon Quaternary Carboxylic Acids. J Am Chem Soc 2024. [PMID: 39374105 DOI: 10.1021/jacs.4c09558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Direct carboxylation of C-H bonds with CO2 represents an attractive strategy to synthesize valuable carboxylic acids with high atom, step, and redox economy. Although great progress has been achieved in this field, catalytic carboxylation of tertiary C(sp3)-H bonds still remains challenging due to their inherent inertness and significant steric hindrance. Herein, we report a direct carboxylation of tertiary benzylic C(sp3)-H bonds with CO2 via visible-light photoredox catalysis. Various all-carbon quaternary carboxylic acids, which are of significant importance in medicinal chemistry, are successfully obtained with high yields. This direct carboxylation is characterized by good functional group tolerance, broad substrate scope, and mild operational conditions. Furthermore, our methodology enables the efficient and rapid synthesis of key drug or bioactive molecules, such as carbetapentane, caramiphen, and PRE-084 (σ1 receptor agonist), and facilitates various functionalizations of C(sp2)-H bonds using the directing ability of target carboxylic acids, thus highlighting its practical applications. Mechanistic studies indicate that a carbanion, which serves as the key intermediate to react with CO2, is catalytically generated via a single electron reduction of a benzylic radical through a consecutive photoinduced electron transfer process.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Guan-Hua Xue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Min Pan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Lei Song
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
2
|
Liu WD, Gao J, Mo JN, Zhou Y, Zhao J. Cooperative NHC and Photoredox Catalyzed Radical Aminoacylation of Alkenes to Tetrahydropyridazines. Chemistry 2024; 30:e202402288. [PMID: 39072808 DOI: 10.1002/chem.202402288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Tetrahydropyridazines constitute an important structural motif found in numerous natural products and pharmaceutical compounds. Herein, we report an aminoacylation reaction of alkenes that enables the synthesis of 1,4,5,6-tetrahydropyridazines through cooperative N-heterocyclic carbene (NHC) and photoredox catalysis. This approach involves the 6-endo-trig cyclization of N-centered hydrazonyl radicals, generated via single-electron oxidation of hydrazones, followed by a radical-radical coupling step. The mild process tolerates a wide range of common functional groups and affords a variety of tetrahydropyridazines in moderate to high yields. Preliminary investigations using chiral NHC catalysts demonstrate the potential of this protocol for asymmetric radical reactions.
Collapse
Affiliation(s)
- Wen-Deng Liu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiyuan Gao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jia-Nan Mo
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Jiannan Zhao
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
3
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
4
|
Feng S, Nguyen PTT, Ma X, Yan N. Photorefinery of Biomass and Plastics to Renewable Chemicals using Heterogeneous Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408504. [PMID: 38884612 DOI: 10.1002/anie.202408504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
The photocatalytic conversion of biomass and plastic waste provides opportunities for sustainable fuel and chemical production. Heterogeneous photocatalysts, typically composed of semiconductors with distinctive redox properties in their conduction band (CB) and valence band (VB), facilitate both the oxidative and reductive valorization of organic feedstocks. This article provides a comprehensive overview of recent advancements in the photorefinery of biomass and plastics from the perspective of the redox properties of photocatalysts. We explore the roles of the VB and CB in enhancing the value-added conversion of biomass and plastics via various pathways. Our aim is to bridge the gap between photocatalytic mechanisms and renewable carbon feedstock valorization, inspiring further development in photocatalytic refinery of biomass and plastics.
Collapse
Affiliation(s)
- Shixiang Feng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Phuc T T Nguyen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, 117580, Singapore
| |
Collapse
|
5
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
6
|
Zhao Y, Zhang Y, Huang Y. Enantioselective Relay Coupling of Perfluoroalkyl and Vinylogous Ketyl Radicals. Angew Chem Int Ed Engl 2024; 63:e202409566. [PMID: 38865105 DOI: 10.1002/anie.202409566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/13/2024]
Abstract
β-Chiral carboxylic acids and their derivatives are highly valuable structural motifs in the fields of asymmetric synthesis and medicinal chemistry. However, the introduction of a sterically demanding sidechain to the β-carbon, such as an all-carbon quaternary center, remains a significant challenge in classical polar processes. Recently, N-heterocyclic carbene (NHC) mediated coupling reactions involving persistent ketyl radicals have emerged as a promising strategy to assemble highly crowded carbon-carbon bonds. Nevertheless, achieving enantioselectivity in these reactions remains highly challenging. In this work, we report our recent progress in controlling enantioselectivity for relay coupling of perfluoroalkyl and persistent vinylogous ketyl radicals. We developed a chiral bifunctional NHC-squaramide catalyst that achieves high facial selectivity in a critical bond-forming event involving the coupling of a congested tertiary carbon radical and vinylogous ketyl radical. Chiral carboxylates bearing an all-carbon quaternary center at the β-position can be prepared in good yield and excellent enantiomeric excess. Results from density functional theory (DFT) calculations and nuclear Overhauser effect (NOE) experiments indicate that the N,N'-diaryl squaramide motif adopts an unusual syn-syn conformation, enabling hydrogen bonding interactions with the enolate oxygen, thereby rigidifying the overall conformation of the transition state.
Collapse
Affiliation(s)
- Yuxin Zhao
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Sheng XX, Qiu CY, Wang LN, Du YJ, Tang LN, Chen JM, Liu GY, Yang S, Zheng PF, Chen M. Transition-Metal-Free Radical Relay Cascade Annulation of Amides: Access to Antitumor Active Benzo[b]azepine and Oxindole Derivatives. Chemistry 2024:e202402402. [PMID: 39186035 DOI: 10.1002/chem.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
Efficient transition-metal-free synthesis of benzo[b]azepines and oxindoles is achieved via a radical relay cascade strategy employing halogen atom transfer (XAT) for aryl radical generation followed by intramolecular hydrogen atom transfer (HAT). Optimization yielded moderate to substantial yields under visible light irradiation. Preliminary biological assessments revealed promising anti-tumor activity for select compounds. This study underscores the potential of XAT-mediated radical relay cascades in medicinal chemistry and anticancer drug discovery.
Collapse
Affiliation(s)
- Xia-Xin Sheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Li-Na Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Yu-Jia Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Lu-Ning Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Jia-Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Guo-Ying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| | - Peng-Fei Zheng
- College of Pharmacy, Army Medical University, No. 30 Gaotanyan Street, Chongqing, 400038, China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 21 Gehu Road, Changzhou, 213164, China
| |
Collapse
|
8
|
Kommoju A, Snehita K, Sowjanya K, Mukkamala SB, Padala K. Recent advances in dual photoredox/nickel catalyzed alkene carbofunctionalised reactions. Chem Commun (Camb) 2024; 60:8946-8977. [PMID: 39086201 DOI: 10.1039/d4cc02914c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Alkene carbofunctionalization reactions have great potential for synthesizing complex molecules and constructing complex structures in natural products and medicinal chemistry. Recently, dual photoredox/nickel catalysis has emerged as a novel strategy for alkene carbofunctionalization. Nickel offers numerous advantages over other transition metals, such as cost-effectiveness, abundance, and low toxicity, and moreover, it has many oxidation states. Nickel catalysts exhibit excellent catalytic activity in dual photoredox/transition metal catalysis, facilitating the formation of carbon-carbon or carbon-heteroatom bonds in organic transformations. This review highlights the latest advancements in dual photoredox/nickel-catalyzed alkene carbofunctionalizations and includes the literature published from 2020 to 2024.
Collapse
Affiliation(s)
- Anilkumar Kommoju
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kattamuri Snehita
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kandi Sowjanya
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Saratchandra Babu Mukkamala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh-535003, India.
| |
Collapse
|
9
|
Qiu S, Guo H, Xu P. Photocatalyzed Selective Hydrocarbonation of Alkenes with Hantzsch Esters toward 4-Alkyl-Hantzsch Esters. Org Lett 2024; 26:6730-6735. [PMID: 39078309 DOI: 10.1021/acs.orglett.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Here, we describe a mild photoredox-neutral reaction system that enables the selective hydrocarbonation of alkenes with Hantzsch esters, affording structurally diverse 4-alkyl-Hantzsch esters. This straightforward protocol can be performed under an air atmosphere without the need for any transition metals. The synthetic potential of this method is well exemplified by the late-stage structural modification of a series of pharmaceutically relevant complex molecules.
Collapse
Affiliation(s)
- Shiqin Qiu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Huaixuan Guo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Peng Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Ling B, Yao S, Ouyang S, Bai H, Zhai X, Zhu C, Li W, Xie J. Nickel-Catalyzed Highly Selective Radical C-C Coupling from Carboxylic Acids with Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405866. [PMID: 38787803 DOI: 10.1002/anie.202405866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Controlling the cross-coupling reaction between two different radicals is a long-standing challenge due to the process occurring statistically, which would lead to three products, including two homocoupling products and one cross-coupling product. Generally, the cross-coupling selectivity is achieved by the persistent radical effect (PRE) that requires the presence of a persistent radical and a transient radical, thus resulting in limited radical precursors. In this paper, a highly selective cross-coupling of alkyl radicals with acyl radicals to construct C(sp2)-C(sp3) bonds, or with alkyl radicals to construct C(sp3)-C(sp3) bonds have been achieved with the readily available carboxylic acids and their derivatives (NHPI ester) as coupling partners. The success originates from the use of tridentate ligand (2,2' : 6',2''-terpyridine) to enable radical cross-coupling process to Ni-mediated organometallic mechanism. This protocol offers a facile and flexible access to structurally diverse ketones (up to 90 % yield), and also a new solution for the challenging double decarboxylative C(sp3)-C(sp3) coupling. The broad utility and functional group tolerance are further illustrated by the late-stage functionalization of natural-occurring carboxylic acids and drugs.
Collapse
Affiliation(s)
- Bo Ling
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shunruo Yao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shengmao Ouyang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haonan Bai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinyi Zhai
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
11
|
Jhun BH, Jang J, Lee S, Cho EJ, You Y. Efficient photoredox catalysis in C-C cross-coupling reactions by two-coordinated Au(I) complex. Nat Commun 2024; 15:6586. [PMID: 39097596 PMCID: PMC11297913 DOI: 10.1038/s41467-024-50979-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/05/2024] Open
Abstract
Photocatalysis provides a versatile approach to redox activation of various organic substrates for synthetic applications. To broaden the scope of photoredox catalysis, developing catalysts with strong oxidizing or reducing power in the excited state is imperative. Catalysts that feature highly cathodic oxidation potentials and long lifetimes in their excited states are particularly in demand. In this research, we demonstrate the catalytic utility of two-coordinate Au(I) complex photocatalysts that exhibit an exclusive ligand-to-ligand charge-transfer (LLCT) transition in C-C cross-coupling reactions between N-heterocycles and (hetero)aryl halides, including redox-resistant (hetero)aryl chlorides. Our photocatalysis system can steer reactions under visible-light irradiation at a catalyst loading as low as 0.1 mol% and exhibits a broad substrate scope with high chemo- and regioselectivity. Our mechanistic investigations provide direct spectroscopic evidence for each step in the catalysis cycle and demonstrate that the LLCT-active Au(I) complex catalysts offer several benefits, including strong visible-light absorption, a 210 ns-long excited-state lifetime without short-lived components, and a 91% yield in the production of free-radical intermediates. Given the wide structural versatility of the proposed catalysts, we envision that our research will provide useful insights into the future utilization of the LLCT-active Au(I) complex for organic transformations.
Collapse
Affiliation(s)
- Byung Hak Jhun
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihoon Jang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Shinae Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Youngmin You
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Dong CL, Liu HC, Guan Z, He YH. Photoredox-Neutral Radical-Radical Cross-Coupling of Isatins and Benzyl Carboxylic Acids. J Org Chem 2024; 89:10929-10938. [PMID: 39034667 DOI: 10.1021/acs.joc.4c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A photoredox-neutral radical-radical cross-coupling is described for the synthesis of 3-hydroxy-3-alkyloxindoles using isatins and benzyl carboxylic acids as substrates and 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as the photocatalyst. The method features a broad substrate scope and good functional group tolerance, providing 30 sterically hindered alcohols with moderate to excellent yields. This approach utilizes inexpensive and commercially available starting materials, avoiding the use of transition metals, extra oxidants/reductants, and harsh reaction conditions, showcasing significant applicability and environmental friendliness.
Collapse
Affiliation(s)
- Chun-Lin Dong
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Han-Chi Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Díaz-Salazar H, Osorio-Ocampo G, Porcel S. Straightforward Access to Isoindoles and 1,2-Dihydrophthalazines Enabled by a Gold-Catalyzed Three-Component Reaction. J Org Chem 2024; 89:10163-10174. [PMID: 38989839 DOI: 10.1021/acs.joc.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
We describe herein a gold-catalyzed three-component reaction of o-alkynylbenzaldehydes, aryldiazonium salts, and trimethoxybenzene. This process enables the one-pot formation of valuable isoindoles and 1,2-dihydrophathalazines. The regioselectivity of the reaction is dictated by the nature of the aryldiazonium salt. Noticeably, the reaction is performed at room temperature under mild conditions and tolerates a variety of functional groups on both the o-alkynylbenzaldehyde and the aryldiazonium salt. Experimental mechanistic studies suggest that it is catalyzed by arylAu(III) species.
Collapse
Affiliation(s)
- Howard Díaz-Salazar
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Gabriel Osorio-Ocampo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| | - Susana Porcel
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
14
|
Liang T, Yuan Q, Xu L, Liu JQ, Kärkäs MD, Wang XS. Silver-Catalyzed Radical Umpolung Cross-Coupling of Silyl Enol Ethers with Activated Methylene Compounds: Access to Diverse Tricarbonyl Derivatives. J Org Chem 2024; 89:9298-9302. [PMID: 38877984 PMCID: PMC11232002 DOI: 10.1021/acs.joc.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A silver-catalyzed protocol for the intermolecular radical umpolung cross-coupling protocol of silyl enol ethers with activated methylene compounds is disclosed. The protocol exhibits excellent functional group tolerance, enabling the expedient preparation of a variety of tricarbonyl compounds. Preliminary mechanistic investigations suggest that the reaction proceeds through a process involving free radicals in which silver oxide has a dual role, acting as both a catalyst and a base.
Collapse
Affiliation(s)
- Tongwei Liang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qingjia Yuan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Li Xu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jian-Quan Liu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
15
|
Hota SK, Singh G, Murarka S. Direct C-H alkylation of 3,4-dihydroquinoxaline-2-ones with N-(acyloxy)phthalimides via radical-radical cross coupling. Chem Commun (Camb) 2024; 60:6268-6271. [PMID: 38808396 DOI: 10.1039/d4cc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
We present an organophotoredox-catalyzed direct Csp3-H alkylation of 3,4-dihydroquinoxalin-2-ones employing N-(acyloxy)pthalimides to provide corresponding products in good yields. A broad spectrum of NHPI esters (1°, 2°, 3°, and sterically encumbered) participates in the photoinduced alkylation of a variety of 3,4-dihydroquinoxalin-2-ones. In general, mild conditions, broad scope with good functional group tolerance, and scalability are the salient features of this direct alkylation process.
Collapse
Affiliation(s)
- Sudhir Kumar Hota
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Gulshan Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar-342037, Rajasthan, India.
| |
Collapse
|
16
|
Debnath C, Bhoi SR, Gandhi S. N-Heterocyclic carbene/palladium synergistic catalysis in organic synthesis. Org Biomol Chem 2024; 22:4613-4624. [PMID: 38804684 DOI: 10.1039/d4ob00525b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The cooperation of two distinct catalytic cycles to activate different reactive centers leading to a chemical transformation has been classified as synergistic catalysis. The synergistic combination of NHC with palladium catalysis has emerged as a powerful strategy in the last few years. Merging the ability of NHCs to inverse the polarity of a functional group with the unique reactivity of palladium enables transformations that cannot be accomplished by either of these catalysts alone. Despite the associated challenges, such as quenching of catalysts, reactivity mismatch etc., significant development has been achieved in the field of NHC/Pd synergistic catalysis. The recent incorporation of photoredox catalysis with NHC/Pd synergistic catalysis has further advanced this area. This review highlights the developments made in the area of NHC/Pd synergistic catalysis.
Collapse
Affiliation(s)
- Chhanda Debnath
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Saswat Ranjan Bhoi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| | - Shikha Gandhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, 760010, India.
| |
Collapse
|
17
|
Yang M, Meng YX, Mehfooz H, Zhao YL. Visible light-promoted [3+2] cyclization reaction of vinyl azides with perfluoroalkyl-substituted-imidoyl sulfoxonium ylides. Chem Commun (Camb) 2024; 60:5407-5410. [PMID: 38683050 DOI: 10.1039/d4cc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Visible-light-induced [3+2] cyclization of vinyl azides with perfluoroalkyl-substituted imidoyl sulfoxonium ylides has been developed for the first time. In this transformation, perfluoroalkyl-substituted imidoyl sulfoxonium ylides are firstly employed as a carbon radical precursor under visible light irradiation, providing a new and efficient method for the construction of perfluoroalkyl-substituted 1-pyrrolines.
Collapse
Affiliation(s)
- Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Xuan Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Haroon Mehfooz
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
18
|
Hess KM, Leach IF, Wijtenhorst L, Lee H, Klein JEMN. Valence Tautomerism Induced Proton Coupled Electron Transfer:X-H Bond Oxidation with a Dinuclear Au(II) Hydroxide Complex. Angew Chem Int Ed Engl 2024; 63:e202318916. [PMID: 38324462 DOI: 10.1002/anie.202318916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/09/2024]
Abstract
We report the preparation and characterization of the dinuclear AuII hydroxide complex AuII 2(L)2(OH)2 (L=N,N'-bis (2,6-dimethyl) phenylformamidinate) and study its reactivity towards weak X-H bonds. Through the interplay of kinetic analysis and computational studies, we demonstrate that the oxidation of cyclohexadiene follows a concerted proton-coupled electron transfer (cPCET) mechanism, a rare type of reactivity for Au complexes. We find that the Au-Au σ-bond undergoes polarization in the PCET event leading to an adjustment of oxidation levels for both Au centers prior to C(sp3)-H bond cleavage. We thus describe the oxidation event as a valence tautomerism-induced PCET where the basicity of one reduced Au-OH unit provides a proton acceptor and the second more oxidized Au center serves as an electron acceptor. The coordination of these events allows for unprecedented radical-type reactivity by a closed shell AuII complex.
Collapse
Affiliation(s)
- Kristopher M Hess
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Lisa Wijtenhorst
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Hangyul Lee
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
19
|
Feng W, Chen Z, Xue F, Zhang Z, Wang B, Zhang Y, Xia Y, Jin W, Wu S, Liu C. Visible-Light-Promoted and EDA Complex-Driven [4 + 2] Annulation for the Construction of Naphtho[1',2':4,5]imidazo[1,2- a]pyridines. Org Lett 2024. [PMID: 38507739 DOI: 10.1021/acs.orglett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A green visible-light-promoted and electron donor-acceptor (EDA) complex-driven synthetic strategy for the construction of value-added naphtho[1',2':4,5]imidazo[1,2-a]pyridines from 2-arylimidazo[1,2-a]pyridines with Z-α-bromocinnamaldehydes has been accomplished under photocatalyst- and transition-metal-free conditions. This efficient annulation approach provides a new and straightforward pathway for the annulative π-extension of imidazo[1,2-a]pyridine-based aromatics. Moreover, the sustainable methodology exhibits simple operation, a wide range of substrates, benign conditions, and good functional group compatibility.
Collapse
Affiliation(s)
- Wanting Feng
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Zuozhi Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
20
|
Shen J, Li J, Chen M, Yue X, Shi X. Photoinduced Radical Desulfurative C(sp 3)-C(sp 2) Coupling via Electron Donor-Acceptor Complexes. Org Lett 2024; 26:1495-1500. [PMID: 38334317 DOI: 10.1021/acs.orglett.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Herein, we disclose a radical desulfurative C-C coupling protocol for the synthesis of 4-alkylpyridines. A variety of substituents on both benzyl thiols and 4-cyanopyridines are tolerated. The reaction is carried out under mild and photocatalyst- and transition-metal-free conditions. Preliminary mechanistic studies show that an electron donor-acceptor complex is formed between benzyl thiols and 4-cyanopyridines under alkaline conditions. Then, a variety of 1°, 2°, and 3° C(sp3)-centered radicals was formed by cleavage of the C-S bond, and the 4-alkylpyridines were achieved through a radical-radical coupling with the pyridyl radical anion.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Jincan Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Meijun Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| | - Xuerong Yue
- Chongqing Ensky Chemical CO., LTD., North New Zone, Chongqing 401121, China
| | - Xin Shi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, State Key Laboratory of Antiviral Drugs, Henan Normal University School of Chemistry and Chemical Engineering, Xinxiang, Henan 453007, China
| |
Collapse
|
21
|
Wu S, Huang J, Kang L, Zhang Y, Yuan K. Transition-Metal-Free, Reductive Csp 2-Csp 3 Bond Constructions via Electrochemically Induced Alkyl Radicals. Org Lett 2024; 26:763-768. [PMID: 38227333 DOI: 10.1021/acs.orglett.3c04307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Construction of the Csp2-Csp3 bond without the aid of transition metal catalysts has been achieved by coupling the electrogenerated alkyl radicals with electron deficient (hetero)arenes in an undivided cell. Simultaneous cathodic reduction of both unactivated alkyl halides and cyanobenzenes under high potential enables radical-radical cross-coupling to deliver alkylarenes in the absence of transition metals. Depending on the coupling partner, the electrogenerated alkyl radicals can also proceed the Minisci-type reaction with N-heteroarenes without redox agents.
Collapse
Affiliation(s)
- Shuhua Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiahui Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Lulu Kang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiyi Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Kedong Yuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
22
|
Xu GQ, Wang WD, Xu PF. Photocatalyzed Enantioselective Functionalization of C(sp 3)-H Bonds. J Am Chem Soc 2024; 146:1209-1223. [PMID: 38170467 DOI: 10.1021/jacs.3c06169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT), visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)-H bonds under mild conditions. Over the past decade, there have been remarkable advances in the enantioselective functionalization of the C(sp3)-H bond via photocatalysis combined with conventional asymmetric catalysis. Herein, we summarize the advances in asymmetric C(sp3)-H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral π-SOMOphile reagents, (ii) stereoselective transition-metal complexes, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design, catalyst development, and mechanistic understanding, to provide new insights into this rapidly evolving area of research.
Collapse
Affiliation(s)
- Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, MOE Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
23
|
Huang C, Xiao P, Ye ZM, Wang CL, Kang C, Tang S, Wei Z, Cai H. Direct C(sp 3)-H Arylation of Unprotected Benzyl Anilines and Alkylarenes by Organocatalysis under Visible Light. Org Lett 2024; 26:304-309. [PMID: 38165162 DOI: 10.1021/acs.orglett.3c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Reported herein is direct C(sp3)-H arylation of unprotected benzyl anilines and alkylarenes via consecutive photoinduced electron transfer by visible light irradiation. Reductive quenching cycles and radical-radical cross-coupling were involved, and electron paramagnetic resonance experiments provide evidence for the formation of radical intermediates formed in situ. The protocol highlights transition metal free, external oxidant free, broad substrate scope, and high efficiency (>60 examples, up to 96%).
Collapse
Affiliation(s)
- Cheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Peng Xiao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhong-Ming Ye
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Chen-Lu Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Chen Kang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Sheng Tang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Zhenhong Wei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| |
Collapse
|
24
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
25
|
Arndt CM, Bitai J, Brunner J, Opatz T, Martinelli P, Gollner A, Sokol KR, Krumb M. One-Pot Synthesis of Cereblon Proteolysis Targeting Chimeras via Photoinduced C(sp 2)-C(sp 3) Cross Coupling and Amide Formation for Proteolysis Targeting Chimera Library Synthesis. J Med Chem 2023; 66:16939-16952. [PMID: 38096359 DOI: 10.1021/acs.jmedchem.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In this study, a one-pot synthesis via photoinduced C(sp2)-C(sp3) coupling followed by amide formation to access proteolysis targeting chimeras (PROTACs) was developed. The described protocol was studied on cereblon (CRBN)-based E3-ligase binders and (+)-JQ-1, a bromodomain inhibitor, to generate BET (bromodomain and extra terminal domain) targeting protein degraders. The generated PROTACs were profiled in vitro and tested for their degradation ability with several potent candidates identified. Upfront, the individual reactions of the one-pot transformation were carefully optimized for CRBN binder functionalization and multiple heterobifunctional linker moieties were designed and synthesized. Separate scopes detailing the C(sp2)-C(sp3) coupling and one-pot PROTAC synthesis are described in this report as well as a library miniaturization study showing the high-throughput compatibility. Overall, the developed protocol provides rapid access to PROTACs in a single process, thereby allowing efficient generation of CRBN-based PROTAC libraries.
Collapse
Affiliation(s)
- Christine M Arndt
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Jacqueline Bitai
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Jessica Brunner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Paola Martinelli
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Kevin R Sokol
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| | - Matthias Krumb
- Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, Vienna 1121, Austria
| |
Collapse
|
26
|
Gao Y, Gao L, Zhu E, Yang Y, Jie M, Zhang J, Pan Z, Xia C. Nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes. Nat Commun 2023; 14:7917. [PMID: 38036527 PMCID: PMC10689762 DOI: 10.1038/s41467-023-43748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Alkene dicarbofunctionalization is an efficient strategy and operation-economic fashion for introducing complexity in molecules. A nickel/photoredox dual catalyzed arylalkylation of nonactivated alkenes for the simultaneous construction of one C(sp3)-C(sp3) bond and one C(sp3)-C(sp2) bond has been developed. The mild catalytic method provided valuable indanethylamine derivatives with wide substrate scope and good functional group compatibility. An enantioselective dicarbofunctionalization was also achieved with pyridine-oxazoline as a ligand. The efficiency of metallaphotoredox dicarbofunctionalization was demonstrated for the concise synthesis of pharmaceutically active compounds.
Collapse
Affiliation(s)
- Yuxi Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Lijuan Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Endiao Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yunhong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Mi Jie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jiaqian Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Zhiqiang Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
27
|
Zhang Y, Sun H, Chen Y, Shi Y, Yu L. Polyaniline-Supported Tungsten-Catalyzed α-H Alkylation Reaction of Ketone with Alcohol. Org Lett 2023; 25:7928-7932. [PMID: 37870283 DOI: 10.1021/acs.orglett.3c03245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
α-H alkylation of carbonyls is a significant reaction in the pharmaceutical industry because it can directly form a C-C bond in an environmentally benign manner. Thus, developing a novel catalyst for this reaction is a hot and practical topic in catalysis, organic synthesis, and materials science. In this paper, we found that polyaniline-supported tungsten could catalyze the α-H alkylation reaction of ketone with alcohol generating water as the only byproduct. Polyaniline support is the key for promoting the catalytic activity of tungsten, which is relatively cheaper than the traditionally employed noble metals. The reaction occurred under mild conditions with a wide substrate scope. The substrate initial concentration was enhanced to 1 mol/L, while the reaction speed was accelerated to reduce the reaction time to only 6 h; these improvements could significantly enhance the production capacity. The advantages make this reaction practical for synthesis with industrial purposes.
Collapse
Affiliation(s)
- Yiyang Zhang
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Hong Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Ying Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Yaocheng Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| | - Lei Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
| |
Collapse
|
28
|
Rourke MJ, McGill MJ, Yang D, Farnam EJ, Zhu JL, Scheidt KA. Photoredox-Catalyzed Radical-Radical Coupling of Potassium Trifluoroborates with Acyl Azoliums. Synlett 2023; 34:2175-2180. [PMID: 38948905 PMCID: PMC11210951 DOI: 10.1055/s-0041-1738448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Potassium trifluoroborates have gained significant utility as coupling partners in organic synthesis, particularly in the Suzuki-Miyaura coupling reaction. Recently, they have also been used as radical precursors under oxidative conditions to generate carbon-centered radicals. These versatile reagents have found new applications in photoredox catalysis, including radical substitution, conjugate addition reactions, and transition metal dual catalysis. In addition, this photomediated redox neutral process has enabled radical-radical coupling with persistent radicals in the absence of a metal, and this process remains to be fully explored. In this study, we report the radical-radical coupling of benzylic potassium trifluoroborate salts with isolated acyl azolium triflates, which are persistent radical precursors. The reaction is catalyzed by an organic photocatalyst and forms isolable tertiary alcohol species. These compounds can be transformed into a range of substituted ketone products by simple treatment with a mild base.
Collapse
Affiliation(s)
- Michael J. Rourke
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Matthew J. McGill
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Daniel Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Emelia J. Farnam
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Joshua L. Zhu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| | - Karl A. Scheidt
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (USA
| |
Collapse
|
29
|
Sreenivasulu G, Sridhar B, Karunakar GV. Dual gold-catalyzed regioselective synthesis of benzofulvenes via 5- endo dig cyclization. Org Biomol Chem 2023; 21:7799-7807. [PMID: 37712351 DOI: 10.1039/d3ob01079a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An efficient dual gold-catalyzed regioselective synthesis of benzofulvenes has been developed from substituted allyloxy 1,5-diynes via 5-endo dig cyclization. In this intramolecular organic transformation a new C-C bond formation occurs and moderate to very good yields are obtained in one pot.
Collapse
Affiliation(s)
- Gottam Sreenivasulu
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
30
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
31
|
Zhang X, Zhang Y, Li X, Li B, Xiao S, Tang Y, Xie P, Loh TP. Fluoroalkylation of Activated Allylic Acetates through Radical-Radical Coupling: Organophotoredox/DABCO Catalytic System. Org Lett 2023; 25:6863-6868. [PMID: 37681688 DOI: 10.1021/acs.orglett.3c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
A novel organophotoredox/DABCO catalytic system for the fluoroalkylation of activated allylic acetates via radical-radical coupling is described. The method offers mild reaction conditions, high selectivity, and broad substrate compatibility and enabled diverse bioactive molecules, FDA-approved drugs, and amino acid derivatives to be incorporated into transformation. This study expands the synthetic toolbox for the construction of fluorine-containing molecules.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yinlei Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohong Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Bowen Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shiji Xiao
- Jiangsu BioGuide Laboratory Co., Ltd, Wujin Economic Development Zone, Changzhou 213000, Jiangsu, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
32
|
Ma C, Shen J, Qu C, Shao T, Cao S, Yin Y, Zhao X, Jiang Z. Enantioselective Chemodivergent Three-Component Radical Tandem Reactions through Asymmetric Photoredox Catalysis. J Am Chem Soc 2023; 145:20141-20148. [PMID: 37639692 DOI: 10.1021/jacs.3c08883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Chemodivergent synthesis has been achieved in asymmetric photocatalysis. Under a dual catalyst system consisting of a chiral phosphoric acid and DPZ as a photosensitizer, different inorganic bases enabled the formation of two sets of valuable products from the three-component radical tandem transformations of 2-bromo-1-arylenthan-1-ones, styrenes, and quinoxalin-2(1H)-ones. The key to success was the distinct pKa environment, in which the radicals that formed on the quinoxalin-2(1H)-one rings after two radical addition processes underwent either single-electron oxidation or single-electron reduction. In addition, this work represents the first use of quinoxalin-2(1H)-ones in asymmetric photoredox catalysis.
Collapse
Affiliation(s)
- Chaorui Ma
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyu Shen
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Chaofan Qu
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tianju Shao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shanshan Cao
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yanli Yin
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Zhiyong Jiang
- Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- International S&T Cooperation Base of Chiral Chemistry, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
33
|
Liu Y, Zhang L, Zhang Y, Cao S, Ban X, Yin Y, Zhao X, Jiang Z. Asymmetric Olefin Isomerization via Photoredox Catalytic Hydrogen Atom Transfer and Enantioselective Protonation. J Am Chem Soc 2023; 145:18307-18315. [PMID: 37552539 DOI: 10.1021/jacs.3c03732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Asymmetric olefin isomerization can be appreciated as an ideal synthetic approach to access valuable enantioenriched C═C-containing molecules due to the excellent atom economy. Nonetheless, its occurrence usually requires a thermodynamic advantage, namely, a higher stability of the product to the substrate. It has thus led to rather limited examples of success. Herein, we report a photoredox catalytic hydrogen atom transfer (HAT) and enantioselective protonation strategy for the challenging asymmetric olefin isomerization. As a paradigm, by establishing a dual catalyst system involving a visible light photosensitizer DPZ and a chiral phosphoric acid, with the assistance of N-hydroxyimide to perform HAT, a wide array of allylic azaarene derivatives, featuring α-tertiary carbon stereocenters and β-C═C bonds, was synthesized with high yields, ees, and E/Z ratios starting from the conjugated α-substituted alkenylazaarene E/Z-mixtures. The good compatibility of assembling deuterium on stereocenters by using inexpensive D2O as a deuterium source further underscores the broad applicability and promising utility of this strategy. Moreover, mechanistic studies have provided clear insights into its challenges in terms of reactivity and enantioselectivity. The exploration will robustly inspire the development of thermodynamically unfavorable asymmetric olefin isomerizations.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Linghong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yong Zhang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Shanshan Cao
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Xu Ban
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Yanli Yin
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 451001, Henan, P. R. China
| | - Xiaowei Zhao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Zhiyong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
34
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
Liu M, Zhu J, Jiang X, Yang X, Chen Q. Visible light irradiated photocatalytic C(sp 3)-H phosphorylation of xanthenes and 9,10-dihydroacridines with P(O)-H compounds. Org Biomol Chem 2023; 21:6488-6492. [PMID: 37526567 DOI: 10.1039/d3ob01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Photocatalytic C(sp3)-H phosphorylation of xanthenes and 9,10-dihydroacridines with P(O)-H compounds under the irradiation of 18 W blue LEDs at room temperature using fluorescein as the photocatalyst and molecular oxygen (O2) as the sole oxidant has been achieved. The newly developed reaction provides direct access to 9-phosphorylated xanthene derivatives with good functional group compatibility.
Collapse
Affiliation(s)
- Mingjun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiarui Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xuming Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiangyun Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
36
|
Takekawa Y, Nakagawa M, Nagao K, Ohmiya H. A Quadruple Catalysis Enabling Intermolecular Branch-Selective Hydroacylation of Styrenes. Chemistry 2023; 29:e202301484. [PMID: 37260048 DOI: 10.1002/chem.202301484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/02/2023]
Abstract
A quadruple N-heterocyclic carbene/cobalt/photoredox/Brønsted base catalysis to realize branch-selective hydroacylation of styrenes with aromatic and aliphatic aldehydes is demonstrated. This protocol allows access to branched ketones from readily available materials in an atom-economical manner. The quadruple catalysis can transfer a formyl hydrogen of aldehydes as a hydrogen radical equivalent onto the terminal carbon of an alkene by controlled electron and proton transfers.
Collapse
Affiliation(s)
- Yunosuke Takekawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masanari Nakagawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kazunori Nagao
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hirohisa Ohmiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
37
|
Yuan T, Radefeld K, Shan C, Wegner C, Nichols E, Ye X, Tang Q, Wojtas L, Shi X. Asymmetric Hydrative Aldol Reaction (HAR) via Vinyl-Gold Promoted Intermolecular Ynamide Addition to Aldehydes. Angew Chem Int Ed Engl 2023; 62:e202305810. [PMID: 37276357 PMCID: PMC10527335 DOI: 10.1002/anie.202305810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
Herein, we reported an intermolecular asymmetric hydrative aldol reaction through vinyl-gold intermediate under ambient conditions. This tandem alkyne hydration and sequential nucleophilic addition afforded a "base-free" approach to β-hydroxy amides with high efficiency (up to 95 % yields, >50 examples). Vinyl gold intermediate was applied as reactive nucleophile and Fe(acac)3 was used as the critical co-catalyst to prevent undesired protodeauration, allowing this transformation to proceed under mild conditions with good functional group tolerance and excellent stereoselectivity (>20 : 1 d.r. and up to 99 % ee).
Collapse
Affiliation(s)
- Teng Yuan
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Kelton Radefeld
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Carter Wegner
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Erin Nichols
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Xiaohan Ye
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Qi Tang
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, FL 33620, Tampa, USA
| |
Collapse
|
38
|
Ghosh S, Majumder S, Ghosh D, Hajra A. Redox-neutral carbon-heteroatom bond formation under photoredox catalysis. Chem Commun (Camb) 2023. [PMID: 37171250 DOI: 10.1039/d3cc01873c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Recently, visible-light-mediated photoredox catalysis has been emerging as one of the fastest growing fields in organic chemistry because of its low cost, easy availability and environmental benignness. In the past five years, a new yet challenging trend, visible-light-induced redox-neutral carbon-heteroatom bond formation reaction involving presumed radical intermediates, has been flourishing rapidly. Although mostly transition metal-based photoredox catalysts were reported, a few organophotoredox catalysts have also shown efficacy towards carbon-heteroatom bond formation reactions. This review intends to summarize the recent research progress in redox-neutral carbon-heteroatom bond formations based on active intermediate(s) involved under photoredox catalysis.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Debashis Ghosh
- Department of Chemistry, St. Joseph's University, Bangalore 560027, Karnataka, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
39
|
Tozawa K, Makino K, Tanaka Y, Nakamura K, Inagaki A, Tabata H, Oshitari T, Natsugari H, Kuroda N, Kanemaru K, Oda Y, Takahashi H. Conversion of Racemic Alkyl Aryl Sulfoxides into Pure Enantiomers Using a Recycle Photoreactor: Tandem Use of Chromatography on Chiral Support and Photoracemization on Solid Support. J Org Chem 2023. [PMID: 37155937 DOI: 10.1021/acs.joc.3c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Chiral sulfoxides are valuable in the fields of medicinal chemistry and organic synthesis. A recycle photoreactor utilizing the concept of deracemization, where a racemate is converted into a pure enantiomer, is developed and successfully applied in the syntheses of chiral alkyl aryl sulfoxides. The recycling system consists of rapid photoracemization using an immobilized photosensitizer and separation of the enantiomers via chiral high-performance liquid chromatography, and the desired pure chiral sulfoxides are obtained after 4-6 cycles. The key to the success of the system is the photoreactor site, wherein the photosensitizer 2,4,6-triphenylpyrylium is immobilized on the resin and irradiated (405 nm) to enable the rapid photoracemizations of the sulfoxides. As the green recycle photoreactor requires no chiral components, it should be a useful alternative system for application in producing chiral compounds.
Collapse
Affiliation(s)
- Kumi Tozawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kosho Makino
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Yuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Kayo Nakamura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | - Akiko Inagaki
- Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji Kitamachi, Musashino-shi, Tokyo 180-8633, Japan
| | - Hidetsugu Tabata
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tetsuta Oshitari
- Faculty of Pharma Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hideaki Natsugari
- Graduate School of Pharmaceutical Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Noritaka Kuroda
- YMC Co., Ltd., 284 Daigo, Karasuma Nishiiru Gojo-dori, Shimogyo-ku, Kyoto 600-8106, Japan
| | - Kunio Kanemaru
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Yuji Oda
- IWASAKI ELECTRIC CO., LTD., 1-1, Ichiriyama-cho, Gyoda-shi, Saitama 361-8505, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| |
Collapse
|
40
|
Zhu K, Ma Y, Wu Z, Wu J, Lu Y. Energy-Transfer-Enabled Regioconvergent Alkylation of Azlactones via Photocatalytic Radical–Radical Coupling. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
41
|
Zhao X, Yu X, Liu M, Huo Y, Ji S, Li X, Chen Q. Direct Benzylic C-H Functionalization with Fluorenones under Visible-Light Irradiation. J Org Chem 2023; 88:2612-2620. [PMID: 36725672 DOI: 10.1021/acs.joc.2c02766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
An external photocatalyst-free benzylic C-H functionalization with fluorenones under visible-light irradiation has been achieved. This transformation provides an efficient synthetic approach to 9-benzylated fluorenols in ≤91% yield with 100% atom economy under mild conditions. Spectroscopic studies suggest that a reductive quenching of photoexcited fluorenones with toluene derivatives generates ketyl radicals and benzyl radicals, which undergo a cross-coupling to afford the desired fluorenols.
Collapse
Affiliation(s)
- Xi Zhao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiaofeng Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Mingjun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Shaomin Ji
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
42
|
Tang N, Zachmann RJ, Xie H, Zheng J, Breit B. Visible-light induced metal-free intramolecular reductive cyclisations of ketones with alkynes and allenes. Chem Commun (Camb) 2023; 59:2122-2125. [PMID: 36723349 DOI: 10.1039/d2cc06972e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A visible-light-induced, intramolecular, reductive cyclisation of ketones with an unsaturated hydrocarbon moiety was developed. In contrast to conventional protocols requiring resource precious or hazardous metal sources, this method enables facile access to ketyl radicals under metal-free and mild reaction conditions. By polarity-reversed, ketyl radical hydroalkoxylation of alkynes and allenes, a variety of five-membered (hetero-)cyclic products were generated in good yields with good to excellent stereoselectivities. The embedded homoallylic tertiary alcohol could be transformed into other useful functionalities, highlighting the synthetic utility of this reaction. This efficient and sustainable ketyl-alkyne/allene cross coupling also features broad functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nana Tang
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Raphael J Zachmann
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, Freiburg im Breisgau 79104, Germany.
| |
Collapse
|
43
|
Controlling the reactions of free radicals with metal-radical interaction. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Li H, Li S, Hu H, Sun R, Liu M, Ding A, Liu X, Luo W, Fu Z, Guo S, Cai H. Visible-light-induced C(sp 3)-C(sp 3) bond formation via radical/radical cross-coupling. Chem Commun (Camb) 2023; 59:1205-1208. [PMID: 36629273 DOI: 10.1039/d2cc05840e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Radical/radical cross-coupling remains challenging due to diffusion control issues. Herein, we report a visible-light-induced radical/radical cross-coupling reaction of quaternary ammonium salts and Hantzschs via C-N and C-C bond cleavage. The current synthetic approach furnishes 1,2-diphenylethanes in moderate to good yields and provides a method for the construction of the C(sp3)-C(sp3) bond.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Sen Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Wenlin Luo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China.
| |
Collapse
|
45
|
Wang L, Sun J, Xia J, Ma R, Zheng G, Zhang Q. Visible light-mediated NHC and photoredox co-catalyzed 1,2-sulfonylacylation of allenes via acyl and allyl radical cross-coupling. Org Chem Front 2023. [DOI: 10.1039/d2qo01993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light-mediated NHC and photoredox co-catalyzed radical 1,2-sulfonylacylation of allenes via cross-coupling between an allyl radical and an NHC-stabilized acyl radical.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiuli Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
46
|
Dixit VA, Kulkarni A. Applications of Bond Energy‐Based Thermodynamic Analysis to the Feasibility of Unfunctionalized C−C Cross‐Coupling Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vaibhav A. Dixit
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research Guwahati NIPER Guwahati) Department of Pharmaceuticals Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halu-gurisuk) Changsari Kamrup 781101 Guwahati Assam India
| | - Aniket Kulkarni
- Department of Pharmacy Birla Institute of Technology and Sciences Pilani (BITS Pilani) Vidya Vihar Campus, 41 Pilani 333031 Rajasthan India
| |
Collapse
|
47
|
Li JL, Yang XL, Shen S, Niu X. Synthesis of 10-Phenanthrenols via Photosensitized Triplet Energy Transfer, Photoinduced Electron Transfer, and Cobalt Catalysis. J Org Chem 2022; 87:16458-16472. [PMID: 36441578 DOI: 10.1021/acs.joc.2c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the inert redox activity and high triplet energy, radical chemistry of 1,3-dicarbonyl compounds usually requires prefunctionalization substrates, external oxidant, and high-energy UV light. Here, we report a visible-light-driven photocatalyst/cobaloxime system composed of a photosensitized energy transfer reaction (PEnT) and photoinduced electron transfer reaction (PET) and with an interrupted 6π-photocyclization/dehydrogenative aromatization in one pot to synthesize 10-phenanthrenols. Preliminary mechanistic studies revealed that fac-Ir(ppy)3 plays the dual roles of energy transfer catalysis for photocycloaddition via 1,2-biradical intermediates of 1,3-dicarbonyl compounds and photoredox/cobaloxime catalysis dehydrogenative aromatization of 1,4-biradical rather than the intermediates via 6π photocyclization in the tandem reaction. In contrast to previous well-established radical chemistry of 1,3-dicarbonyl compounds, we provide a new strategy for the activation of 1,3-dicarbonyl compounds under visible light catalysis, affording a novel cyclization strategy with extremely high atom economy for the synthesis of 10-phenanthrenols.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
48
|
Ding Y, Shen L, Liang K, Xia C. Synthesis of C2-Carbonyl Indoles via Visible Light-Induced Oxidative Cleavage of an Aminomethylene Group. J Org Chem 2022; 87:16644-16654. [PMID: 36445203 DOI: 10.1021/acs.joc.2c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A strategy for photochemical oxidative cleavage of the aminomethylene group at the C2 position of indole was developed to synthesize C2-carbonyl indoles. The reaction was initiated by the photochemical oxidation of N1, followed by a water-assisted concerted H-shift by abstracting hydrogen from aminomethylene. Bromopyridine was discovered to play dual roles as an oxidant for the regeneration of photocatalysts and as an accelerant for the single-electron transfer process.
Collapse
Affiliation(s)
- Yuzhen Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Lei Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650091, China
| |
Collapse
|
49
|
Shi Z, Li R, Lan W, Wei H, Sheng S, Chen J. Visible-light-induced intramolecular C–S bond formation for practical synthesis of 2,5-disubstituted 1,3,4-thiadiazoles. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2149342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Zhaocheng Shi
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Ruohan Li
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Wenqing Lan
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Haishan Wei
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Shouri Sheng
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Junmin Chen
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
50
|
Wang J, Ye Y, Sang T, Zhou C, Bao X, Yuan Y, Huo C. C(sp 3)-H/C(sp 3)-H Dehydrogenative Radical Coupling of Glycine Derivatives. Org Lett 2022; 24:7577-7582. [PMID: 36214657 DOI: 10.1021/acs.orglett.2c02951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we report a general C(sp3)-H/C(sp3)-H dehydrogenative coupling strategy for the preparation of various natural or unnatural amino acids from readily available glycine derivatives and hydrocarbons through a combination of SET and HAT process.
Collapse
Affiliation(s)
- Jiayuan Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Youwan Ye
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Tongzhi Sang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Chenxing Zhou
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xiazhen Bao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Yong Yuan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Congde Huo
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China
| |
Collapse
|