1
|
Abouzayed FI, Fathy RM, Hussien SG, El-Sayyad GS, Abouel-Enein SA. Synthesis, theoretical studies, antibacterial, and antibiofilm activities of novel azo-azomethine chelates against the pathogenic bacterium Proteus mirabilis. Biometals 2024; 37:1255-1278. [PMID: 38811521 DOI: 10.1007/s10534-024-00608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
2-((1-(4-((2,4,6-trioxohexahydropyrimidin-5-yl)diazenyl) phenyl) ethylidene) amino) benzoic acid (H3L), and its V(IV), Co(II), Ni(II), Cu(II), Pd(II) and Ag(I) chelates were synthesized. They were defined using multiple spectral and analytical techniques. With the exception of Ag(I) chelate, all chelates possessed non-electrolytic character. Square pyramidal shape was proposed for V(IV) chelate and Square planar for the other chelates. The analysis of functional group bands of H3L and its coordination compounds alludes that H3L chelated as neutral tetradentate via nitrogen atoms of azo and azomethine groups, oxygen atom of carbonyl of barbituric acid and OH of the carboxylic group. TG/DTG predicted the thermal behaviors of all compounds. The antibacterial activity of H3L and its coordination compounds was conducted against Proteus mirabilis at concentrations of 250, 500, and 1000 µg/mL. Ag(I) at 1000 µg/mL, showed the most inhibiting potency against P. mirabilis and registered zone of inhibition of 28.33 ± 0.84 mm and highest biofilm inhibition of 70.31%. At 50 Gy of gamma irradiation, the reducing effect of Ag(I) chelate was improved. The protein interruption of P. mirabilis was greatly interrupted by increasing the concentration of the chaletes. Also, Ag(I) showed the highest cytotoxicity with IC50 value of 11.5 µg/ mL. The novelty of this study is the synthesis of a new azo-Schiff base and this is almost the first publication of the effect of azo-Schiff ligands against that bacterial strain P. mirabilis.
Collapse
Affiliation(s)
- Fatma I Abouzayed
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Rasha Mohammad Fathy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Shimaa G Hussien
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Gharieb S El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Saeyda A Abouel-Enein
- Chemistry Department, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
2
|
He M, Ma Z, Zhang L, Zhao Z, Zhang Z, Liu W, Wang R, Fan J, Peng X, Sun W. Sonoinduced Tumor Therapy and Metastasis Inhibition by a Ruthenium Complex with Dual Action: Superoxide Anion Sensitization and Ligand Fracture. J Am Chem Soc 2024; 146:25764-25779. [PMID: 39110478 DOI: 10.1021/jacs.4c08278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoresponsive ruthenium(II) complexes have recently emerged as a promising tool for synergistic photodynamic therapy and chemotherapy in oncology, as well as for antimicrobial applications. However, the limited penetration power of photons prevents the treatment of deep-seated lesions. In this study, we introduce a sonoresponsive ruthenium complex capable of generating superoxide anion (O2•-) via type I process and initiating a ligand fracture process upon ultrasound triggering. Attaching hydroxyflavone (HF) as an "electron reservoir" to the octahedral-polypyridyl-ruthenium complex resulted in decreased highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and triplet-state metal to ligand charge transfer (3MLCT) state energy (0.89 eV). This modification enhanced the generation of O2•- under therapeutic ultrasound irradiation at a frequency of 1 MHz. The produced O2•- rapidly induced an intramolecular cascade reaction and HF ligand fracture. As a proof-of-concept, we engineered the Ru complex into a metallopolymer platform (PolyRuHF), which could be activated by low-power ultrasound (1.5 W cm-2, 1.0 MHz, 50% duty cycle) within a centimeter range of tissue. This activation led to O2•- generation and the release of cytotoxic ruthenium complexes. Consequently, PolyRuHF induced cellular apoptosis and ferroptosis by causing mitochondrial dysfunction and excessive toxic lipid peroxidation. Furthermore, PolyRuHF effectively inhibited subcutaneous and orthotopic breast tumors and prevented lung metastasis by downregulating metastasis-related proteins in mice. This study introduces the first sonoresponsive ruthenium complex for sonodynamic therapy/sonoactivated chemotherapy, offering new avenues for deep tumor treatment.
Collapse
Affiliation(s)
- Maomao He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyu Zhao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Zongwei Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ran Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Casula L, Elena Giacomazzo G, Conti L, Fornasier M, Manca B, Schlich M, Sinico C, Rheinberger T, Wurm FR, Giorgi C, Murgia S. Polyphosphoester-stabilized cubosomes encapsulating a Ru(II) complex for the photodynamic treatment of lung adenocarcinoma. J Colloid Interface Sci 2024; 670:234-245. [PMID: 38761576 DOI: 10.1016/j.jcis.2024.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
The clinical translation of photosensitizers based on ruthenium(II) polypyridyl complexes (RPCs) in photodynamic therapy of cancer faces several challenges. To address these limitations, we conducted an investigation to assess the potential of a cubosome formulation stabilized in water against coalescence utilizing a polyphosphoester analog of Pluronic F127 as a stabilizer and loaded with newly synthesized RPC-based photosensitizer [Ru(dppn)2(bpy-morph)](PF6)2 (bpy-morph = 2,2'-bipyridine-4,4'-diylbis(morpholinomethanone)), PS-Ru. The photophysical characterization of PS-Ru revealed its robust capacity to induce the formation of singlet oxygen (1O2). Furthermore, the physicochemical analysis of the PS-Ru-loaded cubosomes dispersion demonstrated that the encapsulation of the photosensitizer within the nanoparticles did not disrupt the three-dimensional arrangement of the lipid bilayer. The biological tests showed that PS-Ru-loaded cubosomes exhibited significant phototoxic activity when exposed to the light source, in stark contrast to empty cubosomes and to the same formulation without irradiation. This promising outcome suggests the potential of the formulation in overcoming the drawbacks associated with the clinical use of RPCs in photodynamic therapy for anticancer treatments.
Collapse
Affiliation(s)
- Luca Casula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Gina Elena Giacomazzo
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Luca Conti
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Fornasier
- Department of Chemistry, Lund University, SE-22100 Lund, Sweden; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy
| | - Benedetto Manca
- Department of Mathematics and Computer Science, University of Cagliari, via Ospedale 72, 09124 Cagliari, CA, Italy
| | - Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy
| | - Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Claudia Giorgi
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Sergio Murgia
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria Monserrato, S.P. 8 Km 0.700, 09042 Monserrato, CA, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, FI, Italy.
| |
Collapse
|
4
|
Pandya C, Sivaramakrishna A. Exploring the binding properties of DNA/BSA and cytotoxicity studies with new terpyridine-ester-based metal complexes (M = Fe(III), Ni(II), Cu(II) and Ru(III)) - A comparative analysis. Int J Biol Macromol 2024; 274:132792. [PMID: 38834110 DOI: 10.1016/j.ijbiomac.2024.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ± 1.75 μM among all synthesized compounds and comparable with cisplatin.
Collapse
Affiliation(s)
- Chayan Pandya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
5
|
Nandhini S, Ranjani M, Thiruppathi G, Jaithanya YM, Kalaiarasi G, Ravi M, Prabusankar G, Malecki JG, Sundararaj P, Prabhakaran R. Organoruthenium metallocycle induced mutation in gld-1 tumor suppression gene in JK1466 strain and appreciable lifespan expansion. J Inorg Biochem 2024; 257:112593. [PMID: 38754275 DOI: 10.1016/j.jinorgbio.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Four Ru(II) complexes (A2-A5) were synthesized from the reaction of coumarin Schiff base ligands (7da2-tsc, 7da3-mtsc, 7da4-etsc and 7da5-ptsc) with [RuHCl(CO)(PPh3)3]. The compounds were characterized by FT-IR, UV-Vis, 1H, 13C and 31P NMR, mass spectrometry and crystallographic analysis. Calf Thymus DNA (CT-DNA) binding studies revealed the intercalative mode of binding of the complexes with DNA. The results of Bovine serum albumin (BSA) binding studies established the interaction between BSA followed static quenching mechanism. The cytotoxic effects of the complexes and the ligands were evaluated against breast (MCF-7 and MDA-MB-231) and lung carcinoma cell lines (A549 and NCI-H460) using MTT assay. Complex A4 demonstrated potent cytotoxic effects on both breast and lung cancer cells. Furthermore, morphological observations and FACS analysis showed the decrease in cell density by complex A4 by induced morphological changes and apoptotic body formation and cell death in both breast and lung cancer cells. Moreover, the invertebrate model Caenorhabditis elegans was employed to assess the in vivo anticancer activity of compound A4. The findings indicated that the treatment with A4 reduced tumor development and significantly extended organismal lifespan by 64 % in the tumoral strain JK1466 without adversely affecting essential physiological functions of the worm. Additionally, A4 demonstrated an upregulation of two crucial antioxidant defense genes. Overall, these results suggested that the compound A4 can be a potential candidate with novel chemotherapeutic applications.
Collapse
Affiliation(s)
- S Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - M Ranjani
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - G Thiruppathi
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - Y M Jaithanya
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India
| | - G Kalaiarasi
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India
| | - M Ravi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, India.
| | - G Prabusankar
- Department of Chemistry, Indian Institute of Technology, Hyderabad 502285, India
| | - J G Malecki
- Department of Crystallography, Silesia University, Szkolna 9, 40-006 Katowice, Poland
| | - P Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore 641 046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
6
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
8
|
Noakes F, Smitten KL, Maple LEC, Bernardino de la Serna J, Robertson CC, Pritchard D, Fairbanks SD, Weinstein JA, Smythe CGW, Thomas JA. Phenazine Cations as Anticancer Theranostics †. J Am Chem Soc 2024; 146:12836-12849. [PMID: 38683943 PMCID: PMC11082890 DOI: 10.1021/jacs.4c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.
Collapse
Affiliation(s)
- Felicity
F. Noakes
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Kirsty L. Smitten
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
- Department
of Molecular Biology and Biotechnology, The University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Laura E. C. Maple
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jorge Bernardino de la Serna
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
- Central
Laser
Facility, Rutherford Appleton Laboratory, Research Complex at Harwell, Science and Technology Facilities Council, Harwell-Oxford, Didcot OX11 0QX, U.K.
| | - Craig C. Robertson
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Dylan Pritchard
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Simon D. Fairbanks
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Julia A. Weinstein
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| | - Carl G. W. Smythe
- Department
of Biomedical Science, The University of
Sheffield, Western Bank, Sheffield S10 2TN, U.K.
| | - Jim A. Thomas
- Department
of Chemistry, The University of Sheffield, Western Bank, Sheffield S3 7HF, U.K.
| |
Collapse
|
9
|
Wang W, Wang L, Zhang Y, Shi Y, Zhang R, Chen L, Shi Z, Yuan S, Li X, He C, Li X. Chiral Iridium-Based TLD-1433 Analogues: Exploration of Enantiomer-Dependent Behavior in Photodynamic Cancer Therapy. Inorg Chem 2024; 63:7792-7798. [PMID: 38619892 DOI: 10.1021/acs.inorgchem.4c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, Δ-Ir-3T and Λ-Ir-3T, and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.03 × 104 M-1 cm-1), and good 1O2 relative quantum yields (ΦΔ ≈ 47%). Δ- and Λ-Ir-3T showed potent efficacy against MCF-7 cancer cells, with a photocytotoxicity index of ≤44 238. This impressive result, to the best of our knowledge, represents the highest value among reported mononuclear Ir(III)-based PDT agents. Remarkably, Λ-Ir-3T tended to be more potent than Δ-Ir-3T when tested against SK-MEL-28, HepG2, and LO2 cells, with consistent results across multiple test repetitions.
Collapse
Affiliation(s)
- Wen Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yangming Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Rong Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Liyong Chen
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| | - Zhuolin Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Shuai Yuan
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Xiaoxi Li
- Central Laboratory, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong District, Shenyang 110042, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xuezhao Li
- Cancer Hospital of Dalian University of Technology, School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, Bengbu, Anhui 233030, China
| |
Collapse
|
10
|
Mandal AA, Singh V, Saha S, Peters S, Sadhukhan T, Kushwaha R, Yadav AK, Mandal A, Upadhyay A, Bera A, Dutta A, Koch B, Banerjee S. Green Light-Triggered Photocatalytic Anticancer Activity of Terpyridine-Based Ru(II) Photocatalysts. Inorg Chem 2024; 63:7493-7503. [PMID: 38578920 DOI: 10.1021/acs.inorgchem.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The relentless increase in drug resistance of platinum-based chemotherapeutics has opened the scope for other new cancer therapies with novel mechanisms of action (MoA). Recently, photocatalytic cancer therapy, an intrusive catalytic treatment, is receiving significant interest due to its multitargeting cell death mechanism with high selectivity. Here, we report the synthesis and characterization of three photoresponsive Ru(II) complexes, viz., [Ru(ph-tpy)(bpy)Cl]PF6 (Ru1), [Ru(ph-tpy)(phen)Cl]PF6 (Ru2), and [Ru(ph-tpy)(aip)Cl]PF6 (Ru3), where, ph-tpy = 4'-phenyl-2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, and aip = 2-(anthracen-9-yl)-1H-imidazo[4,5-f][1,10] phenanthroline, showing photocatalytic anticancer activity. The X-ray crystal structures of Ru1 and Ru2 revealed a distorted octahedral geometry with a RuN5Cl core. The complexes showed an intense absorption band in the 440-600 nm range corresponding to the metal-to-ligand charge transfer (MLCT) that was further used to achieve the green light-induced photocatalytic anticancer effect. The mitochondria-targeting photostable complex Ru3 induced phototoxicity with IC50 and PI values of ca. 0.7 μM and 88, respectively, under white light irradiation and ca. 1.9 μM and 35 under green light irradiation against HeLa cells. The complexes (Ru1-Ru3) showed negligible dark cytotoxicity toward normal splenocytes (IC50s > 50 μM). The cell death mechanistic study revealed that Ru3 induced ROS-mediated apoptosis in HeLa cells via mitochondrial depolarization under white or green light exposure. Interestingly, Ru3 also acted as a highly potent catalyst for NADH photo-oxidation under green light. This NADH photo-oxidation process also contributed to the photocytotoxicity of the complexes. Overall, Ru3 presented multitargeting synergistic type I and type II photochemotherapeutic effects.
Collapse
Affiliation(s)
- Arif Ali Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Silda Peters
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Tumpa Sadhukhan
- Departmentof Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Apurba Mandal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Aarti Upadhyay
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arpan Bera
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
11
|
Chakraborty A, Ghosh S, Chakraborty MP, Mukherjee S, Roy SS, Das R, Acharya M, Mukherjee A. Inhibition of NF-κB-Mediated Proinflammatory Transcription by Ru(II) Complexes of Anti-Angiogenic Ligands in Triple-Negative Breast Cancer. J Med Chem 2024; 67:5902-5923. [PMID: 38520399 DOI: 10.1021/acs.jmedchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Nuclear factor kappa beta (NF-κB) plays a pivotal role in breast cancer, particularly triple-negative breast cancer, by promoting inflammation, proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance. Upregulation of NF-κB boosts vascular endothelial growth factor (VEGF) expression, assisting angiogenesis. The Ru(II) complexes of methyl- and dimethylpyrazolyl-benzimidazole N,N donors inhibit phosphorylation of ser536 in p65 and translocation of the NF-κB heterodimer (p50/p65) to the nucleus, disabling transcription to upregulate inflammatory signaling. The methyl- and dimethylpyrazolyl-benzimidazole inhibit VEGFR2 phosphorylation at Y1175, disrupting downstream signaling through PLC-γ and ERK1/2, ultimately suppressing Ca(II)-signaling. Partial release of the antiangiogenic ligand in a reactive oxygen species-rich environment is possible as per our observation to inhibit both NF-κB and VEGFR2 by the complexes. The complexes are nontoxic to zebrafish embryos up to 50 μM, but the ligands show strong in vivo antiangiogenic activity at 3 μM during embryonic growth in Tg(fli1:GFP) zebrafish but no visible effect on the adult phase.
Collapse
Affiliation(s)
- Ayan Chakraborty
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Shilpendu Ghosh
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Sujato Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Rahul Das
- Department of Biological Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | | | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials (CAFM), Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| |
Collapse
|
12
|
Bright SA, Erby M, Poynton FE, Monteyne D, Pérez-Morga D, Gunnlaugsson T, Williams DC, Elmes RBP. Tracking the cellular uptake and phototoxicity of Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base conjugates. RSC Chem Biol 2024; 5:344-359. [PMID: 38576718 PMCID: PMC10989513 DOI: 10.1039/d3cb00206c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/07/2024] [Indexed: 04/06/2024] Open
Abstract
Ruthenium(ii) complexes are attracting significant research attention as a promising class of photosensitizers (PSs) in photodynamic therapy (PDT). Having previously reported the synthesis of two novel Ru(ii)-polypyridyl-1,8-naphthalimide Tröger's base compounds 1 and 2 with interesting photophysical properties, where the emission from either the Ru(ii) polypyridyl centres or the naphthalimide moieties could be used to monitor binding to nucleic acids, we sought to use these compounds to investigate further and in more detail their biological profiling, which included unravelling their mechanism of cellular uptake, cellular trafficking and cellular responses to photoexcitation. Here we demonstrate that these compounds undergo rapid time dependent uptake in HeLa cells that involved energy dependent, caveolae and lipid raft-dependent mediated endocytosis, as demonstrated by confocal imaging, and transmission and scanning electron microscopy. Following endocytosis, both compounds were shown to localise to mostly lysosomal and Golgi apparatus compartments with some accumulation in mitochondria but no localisation was found to the nucleus. Upon photoactivation, the compounds increased ROS production and induced ROS-dependent apoptotic cell death. The photo-activated compounds subsequently induced DNA damage and altered tubulin, but not actin structures, which was likely to be an indirect effect of ROS production and induced apoptosis. Furthermore, by changing the concentration of the compounds or the laser used to illuminate the cells, the mechanism of cell death could be changed from apoptosis to necrosis. This is the first detailed biological study of Ru(ii)-polypyridyl Tröger's bases and clearly suggests caveolae-dependent endocytosis is responsible for cell uptake - this may also explain the lack of nuclear uptake for these compounds and similar results observed for other Ru(ii)-polypyridyl complexes. These conjugates are potential candidates for further development as PDT agents and may also be useful in mechanistic studies on cell uptake and trafficking.
Collapse
Affiliation(s)
- Sandra A Bright
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - MariaLuisa Erby
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Fergus E Poynton
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
| | - Daniel Monteyne
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
| | - David Pérez-Morga
- Laboratoire de Parasitologie Moléculaire, IBMM-DBM Université Libre de Bruxelles Gosselies Belgium
- Center for Microscopy and Molecular Imaging CMMI Université Libre de Bruxelles Gosselies Belgium
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Centre for Synthesis and Chemical Biology, Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland +353 1 8963459
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
| | - D Clive Williams
- School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin 2 Ireland +353 1 8962596
| | - Robert B P Elmes
- Synthesis and Solid State Pharmaceutical Centre (SSPC), University of Limerick Ireland
- Department of Chemistry, Maynooth University, National University of Ireland Maynooth Co. Kildare Ireland +353 1708 4615
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University Maynooth Co. Kildare Ireland
| |
Collapse
|
13
|
Pan N, Zhang Y, Huang M, Liang Z, Gong Y, Chen X, Li Y, Wu C, Huang Z, Sun J. Lysosome-targeted ruthenium(II) complex encapsulated with pluronic ® F-127 induces oncosis in A549 cells. J Biol Inorg Chem 2024; 29:265-278. [PMID: 38189962 DOI: 10.1007/s00775-023-02039-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/09/2023] [Indexed: 01/09/2024]
Abstract
Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.
Collapse
Affiliation(s)
- Nanlian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Department of Pharmacy, Dongguan People's Hospital, Dongguan, 523059, China
| | - Yuqing Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Minying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zhijun Liang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yao Gong
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Xide Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| | - Yuling Li
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Ciling Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, Guangdong Medical University, Dongguan, 523808, China.
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China.
| |
Collapse
|
14
|
Taghizadeh Shool M, Amiri Rudbari H, Cuevas-Vicario JV, Rodríguez-Rubio A, Stagno C, Iraci N, Efferth T, Omer EA, Schirmeister T, Blacque O, Moini N, Sheibani E, Micale N. Investigating the Cytotoxicity of Ru(II) Polypyridyl Complexes by Changing the Electronic Structure of Salicylaldehyde Ligands. Inorg Chem 2024; 63:1083-1101. [PMID: 38156413 DOI: 10.1021/acs.inorgchem.3c03414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 μM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.
Collapse
Affiliation(s)
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Andrea Rodríguez-Rubio
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Tanja Schirmeister
- Department of Medicinal Chemistry, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nakisa Moini
- Department of Chemistry, Faculty Chemistry, Alzahra University, Vanak, P.O. Box 1993891176, 1993891176 Tehran, Iran
| | - Esmail Sheibani
- Department of Chemistry, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, I-98166 Messina, Italy
| |
Collapse
|
15
|
Hussan A, Moyo B, Amenuvor G, Meyer D, Sitole L. Investigating the antitumor effects of a novel ruthenium (II) complex on malignant melanoma cells: An NMR-based metabolomic approach. Biochem Biophys Res Commun 2023; 686:149169. [PMID: 37922571 DOI: 10.1016/j.bbrc.2023.149169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Metals have been used for many years in medicine, particularly for the treatment of cancer. Cisplatin is one of the most used drugs in the treatment of cancer. Although platinum-containing therapeutics have unparalleled efficacy in cancer treatment, they are coupled with adverse effects and the development of tumour resistance. This has led to the exploration of other metal-based modalities including ruthenium-based compounds. Thus, in our previous study, we synthesized and characterized a novel ruthenium (II) complex (referred to herein as GA113) containing a bis-amino-phosphine ligand. The complex was subsequently screened for its anti-cancerous potential against a human malignant melanoma A375 cell line and findings revealed favourable cytotoxicity. In the current study, a nuclear magnetic resonance (NMR)-based cellular metabolomics approach was applied to probe the possible mechanism of GA113 in A375 cells. In addition, other biological assays including light microscopy, Hoechst-33258 and MitoTracker Orange CM-H2TMRos stain were used to assess cellular viability and apoptosis in GA113-treated cells. Consequently, multivariate statistical data analysis was applied to the metabolomic data to identify potential biomarkers. Six signatory metabolites were altered after treatment. Changes in these metabolites were linked to two metabolic pathways, which include the alanine, aspartate, and glutamate metabolic pathway as well as the glycine, serine, and threonine pathway. By means of an NMR-based metabolomic approach, we identified the potential mechanism of action of complex GA113 in A375 cancer cells thus providing new insights into the metabolic pathways affected by complex GA113 and establishing a foundation for further development, research, and eventual application in cancer.
Collapse
Affiliation(s)
- Ayesha Hussan
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Brenden Moyo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Gershon Amenuvor
- Department of Chemistry, Faculty of Science and Computational Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Debra Meyer
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa
| | - Lungile Sitole
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, 2006, South Africa.
| |
Collapse
|
16
|
Patra SA, Sahu G, Das S, Dinda R. Recent Advances in Mitochondria-Localized Luminescent Ruthenium(II) Metallodrugs as Anticancer Agents. ChemMedChem 2023; 18:e202300397. [PMID: 37772783 DOI: 10.1002/cmdc.202300397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Presently, the most effective way to transport drugs specifically to mitochondria inside the cells is of pharmacophoric interest, as mitochondria are recognized as one of the most important targets for new drug design in cancer diagnosis. To date, there are many reviews covering the photophysical, photochemical, and anticancer properties of ruthenium(II) based metallodrugs owing to their high interest in biological applications. There are, however, no reviews specifically covering the mitochondria-localized luminescent Ru(II) complexes and their subsequent mitochondria-mediated anticancer activities. Therefore, this review describes the physicochemical basis for the mitochondrial accumulation of ruthenium complexes, their synthetic strategies to localize and monitor the mitochondria in living cells, and their related underlying anticancer results. Finally, we review the related areas from previous works describing the mitochondria-localized ruthenium complexes for the treatment of cancer-related diseases. Along with this, we also deliberate the perspectives and future directions for emerging more bifunctional Ru(II) complexes that can target, image, and kill tumors more efficiently in comparison with the existing mitochondria-targeted cancer therapeutics.
Collapse
Affiliation(s)
- Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
17
|
Reardon MM, Guerrero M, Alatrash N, MacDonnell FM. Exploration of the Pharmacophore for Cytoskeletal Targeting Ruthenium Polypyridyl Complexes. ChemMedChem 2023; 18:e202300347. [PMID: 37574460 DOI: 10.1002/cmdc.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Ruthenium(II) trisdiimine complexes of the formula, [Ru(dip)n (L-L)3-n ]2+ , where n=0-3; dip=4,7-diphenyl-1,10-phenanthroline; L-L=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) were prepared and tested for cytotoxicity in two cell lines (H358, MCF7). Cellular uptake and subcellular localization were determined by harvesting treated cells and determining the ruthenium concentration in whole or fractionated cells (cytosolic, nuclear, mitochondrial/ ER/Golgi, and cytoskeletal proteins) by Ru ICP-MS. The logP values for the chloride salts of these complexes were measured and the data were analyzed to determine the role of lipophilicity versus structure in the various biological assays. Cellular uptake increased with lipophilicity but shows the biggest jump when the complex contains two or more dip ligands. Significantly, preferential cytoskeletal localization is also correlated with increased cytotoxicity. All of the RPCs promote tubulin polymerization in vitro, but [Ru(dip)2 phen]2+ and [Ru(dip)3 ]2+ show the strongest activity. Analysis of the pellet formed by centrifugation of MTs formed in the presence of [Ru(dip)2 phen]2+ establish a binding stoichiometry of one RPC per tubulin heterodimer. Complexes of the general formula [Ru(dip)2 (L-L)]2+ possess the necessary characteristics to target the cytoskeleton in live cells and increase cytotoxicity, however the nature of the L-L ligand does influence the extent of the effect.
Collapse
Affiliation(s)
- Melissa M Reardon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Matthew Guerrero
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Nagham Alatrash
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| | - Frederick M MacDonnell
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, TX, 76109, USA
| |
Collapse
|
18
|
Nyong-Bassey EE, Hicks AL, Bergin P, Tuite EM, Kozhevnikov V, Veuger S. Effect of cyclic substituents on the anti-cancer activity and DNA interaction of ruthenium(II) bis-phenanthroline dipyridoquinoline. Front Mol Biosci 2023; 10:1252285. [PMID: 37920709 PMCID: PMC10619691 DOI: 10.3389/fmolb.2023.1252285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction: Ruthenium(II) complexes have emerged recently as candidates for anti-cancer therapy, where activity is related to lipohilicity, cellular localization, and specific interactions with biomolecules. Methods: In this work, two novel complexes were synthesized and are reported based on the [Ru(phen)2(dipyrido[3,2-f:2',3'-h]quinoxaline]2+ framework. Results: Compared to the parent complex, annealing of cyclopenteno and cyclohexeno rings to the extended ligand substantially increased cytotoxicity towards a number of cancer cell lines, and induced apoptosis. The complexes localize in the nuclei of cancer cells and co-locate with DAPI on DNA. DNA binding studies show that both complexes bind strongly to DNA and one complex intercalates DNA like the parent, whilst the other appears to have multiple modes of interaction. Discussion: It is likely that the increased lipophilicity of the novel complexes is a key factor for increasing their cytotoxicity, rather than their DNA binding mode.
Collapse
Affiliation(s)
- Etubonesi E. Nyong-Bassey
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew L. Hicks
- School of Natural and Environmental Science–Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Poppy Bergin
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Eimer M. Tuite
- School of Natural and Environmental Science–Chemistry, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Valery Kozhevnikov
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Stephany Veuger
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Yang Y, Gao Y, Sun Y, Zhao J, Gou S. Study on the Multimodal Anticancer Mechanism of Ru(II)/Ir(III) Complexes Bearing a Poly(ADP-ribose) Polymerase 1 Inhibitor. J Med Chem 2023; 66:13731-13745. [PMID: 37788351 DOI: 10.1021/acs.jmedchem.3c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A series of novel ruthenium(II) and iridium(III) complexes (Ru1-Ru3 and Ir1-Ir3) with different ancillary ligands and a PARP-1-inhibitory chelating ligand 2-(2,3-dibromo-4,5-dimethoxybenzylidene)hydrazine-1-carbothioamide (L1) were designed and prepared. The target complexes were structurally characterized by NMR and ESI-MS techniques. Among them, the crystal and molecular structures of Ir1 and Ir2 were also determined by X-ray crystallography. These complexes retained the PARP-1 enzyme inhibitory effect of L1 and showed potent antiproliferative activity on the tested cancer cell lines. The ruthenium(II) complexes Ru1-Ru3 were found to be more cytotoxic than the iridium(III) complexes Ir1-Ir3. Further investigations revealed that the most active complex Ru3 induced apoptosis in MCF-7 cells by multiple modes, inclusive of inducing DNA damage, suppressing DNA damage repair, disturbing cell cycle distribution, decreasing the mitochondrial membrane potential, and increasing the intracellular reactive oxygen species levels.
Collapse
Affiliation(s)
- Yuliang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ya Gao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
20
|
Tang H, Guo X, Yu W, Gao J, Zhu X, Huang Z, Ou W, Zhang H, Chen L, Chen J. Ruthenium(II) complexes as mitochondrial inhibitors of topoisomerase induced A549 cell apoptosis. J Inorg Biochem 2023; 246:112295. [PMID: 37348172 DOI: 10.1016/j.jinorgbio.2023.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Two new ruthenium(II) complexes [Ru(dip)2(PPβC)]PF6 (Ru1, dip = 4,7-diphenyl-1,10-phenanthroline, PPβC = N-(1,10-phenanthrolin-5-yl)-1-phenyl-9H-pyrido[3,4-b]indole-3-carboxamide) and [Ru(phen)2(PPβC)]PF6 (Ru2, phen = 1, 10-phenanthroline) with β-carboline derivative PPβC as the primary ligand, were designed and synthesized. Ru1 and Ru2 displayed higher antiproliferative activity than cisplatin against the test cancer cells, with IC50 values ranging from 0.5 to 3.6 μM. Moreover, Ru1 and Ru2 preferentially accumulated in mitochondria and caused a series of changes in mitochondrial events, including the depolarization of mitochondrial membrane potential, the damage of mitochondrial DNA, the depletion of cellular ATP, and the elevation of intracellular reactive oxygen species levels. Then, it induced caspase-3/7-mediated A549 cell apoptosis. More importantly, both complexes could act as topoisomerase I catalytic inhibitors to inhibit mitochondrial DNA synthesis. Accordingly, the developed Ru(II) complexes hold great potential to be developed as novel therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Hong Tang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Xinhua Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Wenzhu Yu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Jie Gao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Xufeng Zhu
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China
| | - Zunnan Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China
| | - Wenhui Ou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China
| | - Hanfu Zhang
- School of Molecular Science, The University of Western Australia, Perth 6009, WA, Australia
| | - Lanmei Chen
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| | - Jincan Chen
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, PR China; Key Laboratory of Computer-Aided Drug Design of Dongguan City, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, PR China.
| |
Collapse
|
21
|
Yuan F, Liu X, Li J, Tan L. Interactions of arene ruthenium(II) complexes [η 6-(C 6H 6)Ru(pprip)Cl] + and [η 6-(C 6H 6)Ru(H 2iiP)Cl] + with RNA triplex poly(U)•poly(A)*poly(U). J Biol Inorg Chem 2023; 28:559-570. [PMID: 37477757 DOI: 10.1007/s00775-023-02008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Two arene ruthenium(II) complexes [η6-(C6H6)Ru(pprip)Cl]PF6 (Ru1; pprip = 2-(3-phenyl-1H-pyrazol-4-yl)-imidazolo[4,5-f][1,10]phenanthroline) and [η6-(C6H6)Ru(H2iiP)Cl]PF6 (Ru2; H2iiP = 2-(indole-3-yl)-imidazolo[4,5-f][1,10]phenanthroline) have been synthesized and characterized in this work. Binding properties of Ru1 and Ru2 with the triplex RNA poly(U)•poly(A)*poly(U) were investigated by spectrophotometry and spectrofluorometry as well as viscosimetry. Analysis of spectroscopic titrations and viscosity measurements show that the two complexes bind with the triplex through intercalation, while the binding affinity for Ru2 toward the triplex is stronger than that for Ru1. Melting experiments indicate that the stabilizing effects of Ru1 and Ru2 toward the triplex differ from each other. Under the conditions used herein, Ru1 only stabilizes the Hoogsteen base-paired strand (third strand) without affecting stabilization of the Watson-Crick base-paired strand (the template duplex) of the triplex, while Ru2 stabilizes both the template duplex and the third strand. Although the two complexes prefer to stabilizing the third strand rather than the template duplex, the third-strand stabilization effect of Ru2 is stronger than that of Ru1. The obtained results of this work reveal that the planarity of the intercalative ligands plays an important role in the triplex stabilization by arene Ru(II) complexes.
Collapse
Affiliation(s)
- Feng Yuan
- College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Juan Li
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Lifeng Tan
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
22
|
Ahmad MG, Balamurali MM, Chanda K. Click-derived multifunctional metal complexes for diverse applications. Chem Soc Rev 2023; 52:5051-5087. [PMID: 37431583 DOI: 10.1039/d3cs00343d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The Click reaction that involves Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) serves as the most potent and highly dependable tool for the development of many complex architectures. It has paved the way for the synthesis of numerous drug molecules with enhanced synthetic flexibility, reliability, specificity and modularity. It is all about bringing two different molecular entities together to achieve the required molecular properties. The utilization of Click chemistry has been well demonstrated in organic synthesis, particularly in reactions that involve biocompatible precursors. In pharmaceutical research, Click chemistry is extensively utilized for drug delivery applications. The exhibited bio-compatibility and dormancy towards other biological components under cellular environments makes Click chemistry an identified boon in bio-medical research. In this review, various click-derived transition metal complexes are discussed in terms of their applications and uniqueness. The scope of this chemistry towards other streams of applied sciences is also discussed.
Collapse
Affiliation(s)
- Md Gulzar Ahmad
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| | - M M Balamurali
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai 600127, Tamilnadu, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
23
|
Wen B, Liu X, Tan L. Binding and stabilizating effect of RNA triplex poly(U)⋅poly(A)*poly(U) by enantiomers of ruthenium(II) polypyridyl complex [Ru(bpy) 2(dppx)] 2. J Biol Inorg Chem 2023:10.1007/s00775-023-02004-2. [PMID: 37452869 DOI: 10.1007/s00775-023-02004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/10/2023] [Indexed: 07/18/2023]
Abstract
Two chiral ruthenium(II) polypyridyl complexes, Λ-[Ru(bpy)2(dppx)]2+ (bpy = 2,2'-bipyridine, dppx = 7,8-dimethyldipyridophenazine; Λ-1) and Δ-[Ru(bpy)2(dppx)]2+ (Δ-1) have been synthesized and characterized in this work. Interactions of Λ-1 and Δ-1 with the RNA triplex poly(U)⋅poly(A)*poly(U) have been investigated by various biophysical techniques. Spectrophotometric titrations and viscosity measurements suggested that enantiomers Λ-1 and Δ-1 bind with the triplex through intercalation, while the binding strengths of the two enantiomers toward the triplex differed only slightly from each other. Fluorescence titrations showed that although enantiomers Λ-1 and Δ-1 exhibited molecular "light switch" effects toward the triplex, the effect of Δ-1 was more marked. Furthermore, Furthermore, thermal denaturation showed that the two enantiomers have significantly different stabilizing effects on the triplex. The obtained results indicate that the racemic complex [Ru(bpy)2(dppx)]2+ is similar to a non-specific metallointercalator for the triplex investigated in this study, and chiralities of Ru(II) polypyridine complexes have an important influence on the binding and stabilizing effects of enantiomers toward the triplex. Two chiral ruthenium(II) polypyridyl complexes, Λ-[Ru(bpy)2(dppx)]2+ (bpy = 2,2'-bipyridine, dppx = 7,8-dimethyldipyridophenazine; Λ-1) and Δ-[Ru(bpy)2(dppx)]2+ (Δ-1) have been synthesized and characterized in this work. Interactions of Λ-1 and Δ-1 with the RNA triplex poly(U)⋅poly(A)*poly(U) have been investigated by various biophysical techniques. The obtained results indicate that the racemic complex [Ru(bpy)2(dppx)]2+ is similar as a non-specific metallointercalator for the triplex investigated in this study, and chiralities of Ru(II) polypyridine complexes have an important influence on the binding and stabilizing effects of enantiomers toward the triplex.
Collapse
Affiliation(s)
- Bingxin Wen
- College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Xiaohua Liu
- Academic Affairs Office, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Lifeng Tan
- Key Lab of Environment-Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
24
|
Del Pino JMV, Scalambra F, Bermejo-Casadesús C, Massaguer A, García-Maroto F, Romerosa A. Study of the biological activity of photoactive bipyridyl-Ru(II) complexes containing 1,3,5-triaza-7-phosphaadamantane (PTA). J Inorg Biochem 2023; 246:112291. [PMID: 37352655 DOI: 10.1016/j.jinorgbio.2023.112291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
The water-soluble ruthenium complex cis-[Ru(dcbpyH)2(PTAH)2]Cl2·3H2O (1) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine; PTA = 1,3,5-triaza-7-phosphaadamantane) has been synthesized and characterised by NMR, IR spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The optical properties of 1 were studied, including photoactivation under visible light, as well as its biological properties, together with those of the previously published Ru complexes cis-[Ru(bpy)2(PTA)2]Cl2 (2), trans-[Ru(bpy)2(PTA)2](CF3SO3)2 (3) and cis-[Ru(bpy)2(H2O)(PTA)](CF3SO3)2 (4) (bpy = 2,2'-bipyridine). Anticancer activities of the complexes against human lung (A549), cervical (HeLa) and prostate (PC3) carcinoma cells were evaluated under dark conditions and upon photoactivation with visible light. None of the complexes exhibited cytotoxic activity in the absence of light irradiation (IC50 > 100 μM). However, after photoactivation, the cytotoxicity of complexes 1, 2 and 3 against the three cell lines markedly increased, resulting in IC50 values between 25.3 μM and 9.3 μM. Notably, these complexes did not show toxicity against red blood cells. These findings show the potential of complexes 1, 2 and, particularly, 3 for selective and controlled cancer photochemotherapy. The reactivity of the Ru complexes against DNA under UV-Vis irradiation was studied by analysing plasmid mobility. Experimental data shows that 4 unfolds supercoiled DNA (SC DNA) both in the dark and under visible irradiation, while 1 and 3 are only active under light, being 2 inactive in either case. The unfolding activities of complexes 3 and 4 were dependent on the air present in the reaction. The measured intracellular levels of reactive oxygen species (ROS) upon irradiation with complexes 1, 2 and 3 suggest that their mechanism of action is related to oxidative stress.
Collapse
Affiliation(s)
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain
| | | | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Girona, Spain
| | | | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL, Universidad de Almería, Almería, Spain.
| |
Collapse
|
25
|
Yang Y, Zou X, Sun Y, Chen F, Zhao J, Gou S. Naphthalene Diimide-Functionalized Half-Sandwich Ru(II) Complexes as Mitochondria-Targeted Anticancer and Antimetastatic Agents. Inorg Chem 2023. [PMID: 37267472 DOI: 10.1021/acs.inorgchem.3c01125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, four naphthalene diimide (NDI)-functionalized half-sandwich Ru(II) complexes Ru1-Ru4 bearing the general formula [(η6-arene)RuII(N^N)Cl]PF6, where arene = benzene (bn), p-cymene (p-cym), 1,3,5-trimethylbenzene (tmb), and hexamethylbenzene (hmb), have been synthesized and characterized. By introducing the NDI unit into the N,N-chelating ligand of these half-sandwich complexes, the poor luminescent half-sandwich complexes are endowed with excellent emission performance. Besides, modification on the arene ligand of arene-Ru(II) complexes can influence the electron density of the metal center, resulting in great changes in the kinetic properties, catalytic activities in the oxidative conversion of NADH to NAD+, and biological activities of these compounds. Particularly, Ru4 exhibits the highest reactivity and the strongest inhibitory activity against the growth of three tested cancer cell lines. Further study revealed that Ru4 can enter cells quickly in an energy-dependent manner and preferentially accumulate in the mitochondria of MDA-MB-231 cells, inducing cell apoptosis via reactive oxygen species overproduction and mitochondrial dysfunction. Significantly, Ru4 can effectively inhibit the cell migration and invasion. Overall, the complexation with NDI and modification on the arene ligand endowed the half-sandwich Ru(II) complexes with improved spectroscopic properties and anticancer activities, highlighting their potential applications for cancer treatment.
Collapse
Affiliation(s)
- Yuliang Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaofeng Zou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Jian Zhao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
26
|
Ma S, Kim JH, Chen W, Li L, Lee J, Xue J, Liu Y, Chen G, Tang B, Tao W, Kim JS. Cancer Cell-Specific Fluorescent Prodrug Delivery Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207768. [PMID: 37026629 PMCID: PMC10238224 DOI: 10.1002/advs.202207768] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Indexed: 06/04/2023]
Abstract
Targeting cancer cells with high specificity is one of the most essential yet challenging goals of tumor therapy. Because different surface receptors, transporters, and integrins are overexpressed specifically on tumor cells, using these tumor cell-specific properties to improve drug targeting efficacy holds particular promise. Targeted fluorescent prodrugs not only improve intracellular accumulation and bioavailability but also report their own localization and activation through real-time changes in fluorescence. In this review, efforts are highlighted to develop innovative targeted fluorescent prodrugs that efficiently accumulate in tumor cells in different organs, including lung cancer, liver cancer, cervical cancer, breast cancer, glioma, and colorectal cancer. The latest progress and advances in chemical design and synthetic considerations in fluorescence prodrug conjugates and how their therapeutic efficacy and fluorescence can be activated by tumor-specific stimuli are reviewed. Additionally, novel perspectives are provided on strategies behind engineered nanoparticle platforms self-assembled from targeted fluorescence prodrugs, and how fluorescence readouts can be used to monitor the position and action of the nanoparticle-mediated delivery of therapeutic agents in preclinical models. Finally, future opportunities for fluorescent prodrug-based strategies and solutions to the challenges of accelerating clinical translation for the treatment of organ-specific tumors are proposed.
Collapse
Affiliation(s)
- Siyue Ma
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- Key Laboratory of Emergency and Trauma, Ministry of EducationCollege of Emergency and TraumaHainan Medical UniversityHaikou571199China
| | - Ji Hyeon Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Wei Chen
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Lu Li
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Jieun Lee
- Department of ChemistryKorea UniversitySeoul02841South Korea
| | - Junlian Xue
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Yuxia Liu
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
| | - Guang Chen
- The Youth Innovation Team of Shaanxi UniversitiesShaanxi Key Laboratory of Chemical Additives for IndustryCollege of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'an710021China
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Bo Tang
- College of ChemistryChemical Engineering and Materials ScienceKey Laboratory of Molecular and Nano ProbesMinistry of EducationCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongInstitutes of Biomedical SciencesShandong Normal UniversityJinan250014China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Jong Seung Kim
- Department of ChemistryKorea UniversitySeoul02841South Korea
| |
Collapse
|
27
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
28
|
Yusoh NA, Tiley PR, James SD, Harun SN, Thomas JA, Saad N, Hii LW, Chia SL, Gill MR, Ahmad H. Discovery of Ruthenium(II) Metallocompound and Olaparib Synergy for Cancer Combination Therapy. J Med Chem 2023; 66:6922-6937. [PMID: 37185020 DOI: 10.1021/acs.jmedchem.3c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Synergistic drug combinations can extend the use of poly(ADP-ribose) polymerase inhibitors (PARPi) such as Olaparib to BRCA-proficient tumors and overcome acquired or de novo drug resistance. To identify new synergistic combinations for PARPi, we screened a "micro-library" comprising a mix of commercially available drugs and DNA-binding ruthenium(II) polypyridyl complexes (RPCs) for Olaparib synergy in BRCA-proficient triple-negative breast cancer cells. This identified three hits: the natural product Curcumin and two ruthenium(II)-rhenium(I) polypyridyl metallomacrocycles. All combinations identified were effective in BRCA-proficient breast cancer cells, including an Olaparib-resistant cell line, and spheroid models. Mechanistic studies indicated that synergy was achieved via DNA-damage enhancement and resultant apoptosis. Combinations showed low cytotoxicity toward non-malignant breast epithelial cells and low acute and developmental toxicity in zebrafish embryos. This work identifies RPC metallomacrocycles as a novel class of agents for cancer combination therapy and provides a proof of concept for the inclusion of metallocompounds within drug synergy screens.
Collapse
Affiliation(s)
- Nur Aininie Yusoh
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Paul R Tiley
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Steffan D James
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Siti Norain Harun
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Norazalina Saad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Ling-Wei Hii
- Center for Cancer and Stem Cell Research, Development and Innovation (IRDI), Institute for Research, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Suet Lin Chia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, U.K
| | - Haslina Ahmad
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Li C, Tu L, Yang J, Liu C, Xu Y, Li J, Tuo W, Olenyuk B, Sun Y, Stang PJ, Sun Y. Acceptor engineering of metallacycles with high phototoxicity indices for safe and effective photodynamic therapy. Chem Sci 2023; 14:2901-2909. [PMID: 36937588 PMCID: PMC10016620 DOI: 10.1039/d2sc06936a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Although metallacycle-based photosensitizers have attracted increasing attention in biomedicine, their clinical application has been hindered by their inherent dark toxicity and unsatisfactory phototherapeutic efficiency. Herein, we employ a π-expansion strategy for ruthenium acceptors to develop a series of Ru(ii) metallacycles (Ru1-Ru4), while simultaneously reducing dark toxicity and enhancing phototoxicity, thus obtaining a high phototoxicity index (PI). These metallacycles enable deep-tissue (∼7 mm) fluorescence imaging and reactive oxygen species (ROS) production and exhibit remarkable anti-tumor activity even under hypoxic conditions. Notably, Ru4 has the lowest dark toxicity, highest ROS generation ability and an optimal PI (∼146). Theoretical calculations verify that Ru4 exhibits the largest steric bulk and the lowest singlet-triplet energy gap (ΔE ST, 0.62 eV). In vivo studies confirm that Ru4 allows for effective and safe phototherapy against A549 tumors. This work thus is expected to open a new avenue for the design of high-performance metal-based photosensitizers for potential clinical applications.
Collapse
Affiliation(s)
- Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Le Tu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Jingfang Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Chang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Yuling Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| | - Wei Tuo
- Ministry of Education Key Laboratory for Special Functional Materials, Henan University Kaifeng 475004 China
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine 505 Coast Boulevard South La Jolla CA 92037 USA
| | - Yan Sun
- Ministry of Education Key Laboratory for Special Functional Materials, Henan University Kaifeng 475004 China
| | - Peter J Stang
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 China
| |
Collapse
|
30
|
Ma XR, Lu JJ, Huang B, Lu XY, Li RT, Ye RR. Heteronuclear Ru(II)-Re(I) complexes as potential photodynamic anticancer agents with anti-metastatic and anti-angiogenic activities. J Inorg Biochem 2023; 240:112090. [PMID: 36543061 DOI: 10.1016/j.jinorgbio.2022.112090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Herein, three heterometallic Ru(II)-Re(I) complexes, [Ru(NN)2(tpphz)Re(CO)3Cl](PF6)2 (N-N = 2,2'-bipyridine (bpy, in RuRe1), 1,10-phenanthroline (phen, in RuRe2), 4,7-diphenyl-1,10-phenanthroline (DIP, in RuRe3), tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2″-h:2″',3″'-j]phenazine), using tpphz as a bridging ligand to connect Ru(II) polypyridyl moiety and Re(I) tricarbonyl moiety were designed and synthesized. Cytotoxicity tests revealed that RuRe1-3 exhibited high phototoxicities against several cancer cell lines tested, with IC50 values ranging from 0.8 to 6.8 μM. Notably, RuRe2 exhibited the most significant increase in cytotoxicity against human prostate cancer (PC3) cells under light (450 nm) irradiation, with phototoxicity index (PI) value increasing by >112.3-fold. Further mechanistic studies of RuRe2 revealed that RuRe2-mediated PDT could induce tumor cell apoptosis through the mitochondrial pathway. Moreover, RuRe2-mediated PDT could inhibit PC3 cell scratch healing and reduce the expression levels of matrix metalloproteinases 2 (MMP-2), matrix metalloproteinases 9 (MMP-9) and vascular endothelial growth factor receptor VEGFR2. Finally, angiogenic activity assays performed in human umbilical vein endothelial cells (HUVECs) showed that RuRe2 exerted an anti-angiogenesis effect. Our study demonstrated that RuRe1-3 were promising PDT antitumor agents with potential anti-metastatic and anti-angiogenic activities.
Collapse
Affiliation(s)
- Xiu-Rong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jun-Jian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, PR China.
| | - Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
31
|
Smitten K, Southam HM, Fairbanks S, Graf A, Chauvet A, Thomas JA. Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella. Chemistry 2023; 29:e202203555. [PMID: 36420820 PMCID: PMC10946903 DOI: 10.1002/chem.202203555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
In previous studies we have described the therapeutic action of luminescent dinuclear ruthenium(II) complexes based on the tetrapyridylphenazine, tpphz, bridging ligand on pathogenic strains of Escherichia coli and Enterococcus faecalis. Herein, the antimicrobial activity of the complex against pernicious Gram-negative ESKAPE pathogenic strains of Acinetobacter baumannii (AB12, AB16, AB184 and AB210) and Pseudomonas aeruginosa (PA2017, PA_ 007_ IMP and PA_ 004_ CRCN) are reported. Estimated minimum inhibitory concentrations and minimum bactericidal concentrations for the complexes revealed the complex shows potent activity against all A. baumannii strains, in both glucose defined minimal media and standard nutrient rich Mueller-Hinton-II. Although the activity was lower in P. aureginosa, a moderately high potency was observed and retained in carbapenem-resistant strains. Optical microscopy showed that the compound is rapidly internalized by A. baumannii. As previous reports had revealed the complex exhibited no toxicity in Galleria Mellonella up to concentrations of 80 mg/kg, the ability to clear pathogenic infection within this model was explored. The pathogenic concentrations to the larvae for each bacterium were determined to be≥105 for AB184 and≥103 CFU/mL for PA2017. It was found a single dose of the compound totally cleared a pathogenic A. baumannii infection from all treated G. mellonella within 96 h. Uniquely, in these conditions thanks to the imaging properties of the complex the clearance of the bacteria within the hemolymph of G. mellonella could be directly visualized through both optical and transmission electron microscopy.
Collapse
Affiliation(s)
- Kirsty Smitten
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | | | - Simon Fairbanks
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Arthur Graf
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Adrien Chauvet
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| | - Jim A Thomas
- Department of ChemistryUniversity of SheffieldSheffieldS3 7HFUK
| |
Collapse
|
32
|
Raza A, Archer SA, Thomas JA, MacNeil S, Haycock JW. Selectively inhibiting malignant melanoma migration and invasion in an engineered skin model using actin-targeting dinuclear Ru II-complexes. RSC Med Chem 2023; 14:65-73. [PMID: 36755639 PMCID: PMC9890726 DOI: 10.1039/d2md00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the poor prognosis of metastatic cancers, there is a clinical need for agents with anti-metastatic activity. Here we report on the anti-metastatic effect of a previously reported Ru(ii) complex [{(phen)2Ru}2(tpphz)]4+, 14+, that has recently been shown to disrupt actin fiber assembly. In this study, we investigated the anti-migratory effect of +14+ and a close structural analogue+, 24+, on two highly invasive, metastatic human melanoma cell lines. Laser scanning confocal imaging was used to investigate the structure of actin filament and adhesion molecule vinculin and results show disassembly of central actin filaments and focal adhesions. The effect of both compounds on actin filaments was also found to be reversible. As these results revealed that the complexes were cytostatic and produced a significant inhibitory effect on the migration of both melanoma cell lines but not human dermal fibroblasts their effect on 3D-spheroids and a tissue-engineered living skin model were also investigated. These experiments demonstrated that the compounds inhibited the growth and invasiveness of the melanoma-based spheroidal tumor model and both complexes were found to penetrate the epidermis of the skin tissue model and inhibit the invasion of melanoma cells. Taken together, the cytostatic and antimigratory effects of the complexes results in an antimetastatic effect that totally prevent invasion of malignant melanoma into skin tissue.
Collapse
Affiliation(s)
- Ahtasham Raza
- Materials Science & Engineering, University of Sheffield Mappin St Sheffield S1 3JD UK
| | - Stuart A. Archer
- Department of Chemistry, University of SheffieldBrook HillSheffieldS3 7HFUK+44 (0)114 222 9325
| | - Jim A. Thomas
- Department of Chemistry, University of SheffieldBrook HillSheffieldS3 7HFUK+44 (0)114 222 9325
| | - Sheila MacNeil
- Materials Science & Engineering, University of Sheffield Mappin St Sheffield S1 3JD UK
| | - John W. Haycock
- Materials Science & Engineering, University of SheffieldMappin StSheffield S1 3JDUK
| |
Collapse
|
33
|
Jiang M, Zhang J, Xu S, Li Y, Li W, Liang H, Yang F. Designing a multitarget In(III) compound to overcome the resistance of lung cancer cells to cisplatin. Dalton Trans 2023; 52:269-280. [PMID: 36519582 DOI: 10.1039/d2dt03374g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing novel anticancer non-platinum metal agents is fully challenging. Herein, a series of little-known indium (In) 2-acetylpyridine thiosemicarbazone compounds as potential anticancer agents were designed, synthesized, and characterized. The hydrogen atoms at the N-4 position with the alkyl of the In compounds significantly increased cellular uptake and cytotoxicity. In(III) compounds showed significantly higher cytotoxicity toward cisplatin-resistant cell lines than cisplatin. More importantly, C4 greatly inhibited A549DDP tumor growth in a vaccinated mouse model. C4 exerted cytotoxic effects via a multitarget mechanism. First, it activated p53 and blocked the cell cycle at the S phase, which then led to weak expression levels of cyclin and related kinases and upregulation of the expression levels of cyclin-dependent kinase inhibitors. C4 also depolarized the mitochondrial membrane potential and regulated the expression of the Bcl-2 family, which then released cyt-c and activated caspase-3/8/9 to execute apoptotic pathways. Then, it inhibited telomerase through the inhibition of the expression of the c-Myc regulator gene and expression of the human telomerase reverse transcriptase. Furthermore, C4 showed excellent antimetastatic activity.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Yanping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| |
Collapse
|
34
|
Dömötör O, Teixeira RG, Spengler G, Avecilla F, Marques F, Lenis-Rojas OA, Matos CP, de Almeida RFM, Enyedy ÉA, Tomaz AI. Ruthenium(II) polypyridyl complexes with benzothiophene and benzimidazole derivatives: Synthesis, antitumor activity, solution studies and biospeciation. J Inorg Biochem 2023; 238:112058. [PMID: 36375357 DOI: 10.1016/j.jinorgbio.2022.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
With the aim to incorporate pharmacophore motifs into the Ru(II)-polypyridyl framework, compounds [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzo[b]thiophene)](CF3SO3)2 (1) and [Ru(II)(1,10-phenantroline)2(2-(2-pyridyl)benzimidazole)](CF3SO3)2 (2) were prepared, characterized and tested for their antitumor potential. The solid-state structure of the compounds was confirmed by single-crystal X-ray diffraction analysis. The solution behavior of both complexes was investigated, namely their solubility, stability, and lipophilicity in physiological mimetic conditions, as well as an eventual uptake by passive diffusion. In vitro anticancer activity of the complexes on ovarian and different colon cancer cells and apoptosis induction by the complexes were studied. A slow transformation process was observed for complex 1 in aqueous solution when exposed to sunlight, while complex 2 undergoes deprotonation (pKa = 7.59). The lipophilicity of this latter complex depends strongly on the pH and ionic strength. In contrast, 1 is rather hydrophilic under various conditions. Complex 1 was highly cytotoxic on Colo-205 human colon (IC50 = 7.87 μM) and A2780 ovarian (IC50 = 2.2 μM) adenocarcinoma cell lines, while 2 displayed moderate anticancer activity (30.9 μM and 18.0 μM, respectively). The complexes induced late apoptosis and necrosis. Only a weak binding of the complexes to human serum albumin, the main transport protein in blood serum, was found. However, a more significant binding to calf thymus DNA was observed in UV-visible titrations and fluorometric dye displacement studies. Detailed analysis of fluorescence lifetime data collected for the latter systems reveals not only the partial intercalation of the complexes, but goes beyond the usual simplified interpretations.
Collapse
Affiliation(s)
- Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071A Coruña, Spain
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, EN 10 (km 139,7), 2695-066 Bobadela, Loures, Portugal
| | - Oscar A Lenis-Rojas
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Cristina P Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal.
| |
Collapse
|
35
|
Construction of a 980 nm laser-activated Pt(II) metallacycle nanosystem for efficient and safe photo-induced bacteria sterilization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
De Grandis RA, Costa AR, Moraes CAF, Sampaio NZ, Cerqueira IH, Marques WG, Guedes APM, de Araujo-Neto JH, Pavan FR, Demidoff FC, Netto CD, Batista AA, Resende FA. Novel Ru(II)-bipyridine/phenanthroline-lapachol complexes as potential anti-cancer agents. J Inorg Biochem 2022; 237:112005. [PMID: 36155170 DOI: 10.1016/j.jinorgbio.2022.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
For the first time, we herein report on the syntheses of two new Ru(II)/bipyridine/phenanthroline complexes containing lapachol as ligand: complex (1), [Ru (bipy)2(Lap)]PF6 and complex (2), [Ru(Lap)(phen)2]PF6, where bipy = 2,2'-bipyridine and ph en = 1,10-phenanthroline; Lap = lapachol (2-hydroxy-3-(3-methylbut-2-en-1- yl)naphthalene-1,4-dione). The complexes were synthesized and characterized by elemental analyses, molar conductivity, mass spectrometry, ultraviolet-visible and infrared spectroscopies, nuclear magnetic resonance (1H, 13C), and single crystal X-ray diffraction, for complex (2). In addition, in vitro cytotoxicity was tested against six cancer cells: A549 (lung carcinoma); DU-145 (human prostate carcinoma); HepG2 (human hepatocellular carcinoma), PC-3 (human prostate adenocarcinoma); MDA-MB-231 (human breast adenocarcinoma); Caco-2 (human colorectal adenocarcinoma), and against two non-cancer cells, FGH (human gingival normal fibroblasts) and PNT-2 (prostate epithelial cells). Complex (1) was slightly more toxic and selective than complex (2) for all cell lines, except against the A549 cells, where (2) was more potent than complex (1). The complexes induced an increase in the reactive oxygen species, and the co-treatment with N-acetyl-L-cysteine remarkably suppressed the ROS generation and prevented the reduction of cell viability, suggesting that the cytotoxicity of the complexes is related to the ROS-mediated pathway. Further studies indicated that the complexes may bind to DNA via minor groove interaction. Our studies also revealed that free Lap induces gene mutations in Salmonella Typhimurium, nevertheless, the complexes demonstrated the absence of genotoxicity by the Ames test. The present study provides a relevant contribution to understanding the anti-cancer potential and genetic toxicological events of new ruthenium complexes containing the lapachol molecule as a ligand.
Collapse
Affiliation(s)
- Rone Aparecido De Grandis
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil; UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil.
| | - Analu Rocha Costa
- UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil
| | | | - Natália Zaneti Sampaio
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | - Igor Henrique Cerqueira
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | - Wellington Garcia Marques
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil
| | | | | | - Fernando Rogério Pavan
- UNESP - São Paulo State University, Department of Biological Sciences, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Chaquip Daher Netto
- UFRJ - Federal University of Rio de Janeiro, Institute of Chemistry, Macaé, Rio de Janeiro, Brazil
| | - Alzir Azevedo Batista
- UFSCar - Federal University of São Carlos, Department of Chemistry, São Carlos, São Paulo, Brazil.
| | - Flávia Aparecida Resende
- UNIARA - University of Araraquara, Department of Biological Sciences and Health, Araraquara, São Paulo, Brazil.
| |
Collapse
|
37
|
Maikoo S, Xulu B, Mambanda A, Mkhwanazi N, Davison C, de la Mare J, Booysen IN. Biomolecular Interactions of Cytotoxic Ruthenium Compounds with Thiosemicarbazone or Benzothiazole Schiff Base Chelates. ChemMedChem 2022; 17:e202200444. [PMID: 36041073 PMCID: PMC9826503 DOI: 10.1002/cmdc.202200444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Herein we illustrate the formation and characterization of new paramagnetic ruthenium compounds, trans-P-[RuCl(PPh3 )2 (pmt)]Cl (1) (Hpmt=1-((pyridin-2-yl)methylene)thiosemicarbazide), trans-P-[RuCl(PPh3 )2 (tmc)]Cl (2) (Htmc=1-((thiophen-2-yl)methylene)thiosemicarbazide) and a diamagnetic ruthenium complex, cis-Cl, trans-P-[RuCl2 (PPh3 )2 (btm)] (3) (btm=2-((5-hydroxypentylimino)methyl)benzothiazole). Agarose gel electrophoresis experiments of the metal compounds illustrated dose-dependent binding to gDNA by 1-3, while methylene blue competition assays suggested that 1 and 2 are also DNA intercalators. Assessment of the effects of the compounds on topoisomerase function indicated that 1-3 are capable of inhibiting topoisomerase I activity in terms of the ability to nick supercoiled plasmid DNA. The cytotoxic activities of the metal complexes were determined against a range of cancer cell lines versus a non-tumorigenic control cell line, and the complexes were, in general, more cytotoxic towards the cancer cells, displaying IC50 values in the low micromolar range. Time-dependent stability studies showed that in the presence of strong nucleophilic species (such as DMSO), the chloride co-ligands of 1-3 are rapidly substituted by the former as proven by the suppression of the substitution reactions in the presence of an excess amount of chloride ions. The metal complexes are significantly stable in both DCM and an aqueous phosphate buffer containing 2 % DMSO.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Bheki Xulu
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Allen Mambanda
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| | - Ntando Mkhwanazi
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Candace Davison
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Jo‐Anne de la Mare
- Centre for Chemico and Biomedicinal ResearchDepartment of Biochemistry and MicrobiologyFaculty of ScienceRhodes UniversityPO Box 94Grahamstown6140South Africa
| | - Irvin Noel Booysen
- School of Chemistry and PhysicsUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
| |
Collapse
|
38
|
Gandioso A, Vidal A, Burckel P, Gasser G, Alessio E. Ruthenium(II) Polypyridyl Complexes Containing Simple Dioxo Ligands: a Structure-Activity Relationship Study Shows the Importance of the Charge. Chembiochem 2022; 23:e202200398. [PMID: 35924883 DOI: 10.1002/cbic.202200398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Indexed: 01/07/2023]
Abstract
Cancer is one of the main causes of death worldwide. Platinum complexes (i. e., cisplatin, carboplatin, and others) are currently heavily used for the treatment of different types of cancer, but unwanted effects occur. Ruthenium complexes have been shown to be potential promising alternatives to these metal-based drugs. In this work, we performed a structure-activity relationship (SAR) study on two small series of Ru(II) polypyridyl complexes of the type [Ru(L1)2 (O^O)]Cln (3-8), where L1 is 4,7-diphenyl-1,10-phenantroline (DIP) or 1,10-phenantroline (phen), and O^O is a symmetrical anionic dioxo ligand: oxalate (ox, n=0), malonate (mal, n=0), or acetylacetonate (acac, n=1). These two self-consistent series of compounds allowed us to perform a systematic investigation for establishing how the nature of the ligands and the charge affect the anticancer properties of the complexes. Cytotoxicity tests on different cell lines demonstrated that some of the six compounds 3-8 have a promising anticancer activity. More specifically, the cationic complex [Ru(DIP)2 (η2 -acac)]Cl (4) has IC50 values in the mid-nanomolar concentration range, lower than those of cisplatin on the same cell lines. Interestingly, [Ru(DIP)2 (η2 -acac)]Cl was found to localize mainly in the mitochondria, whereas a smaller fraction was detected in the nucleus. Overall, our SAR investigation demonstrates the importance of combining the positive charge of the complex with the highly lipophilic diimine ligand DIP.
Collapse
Affiliation(s)
- Albert Gandioso
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Alessio Vidal
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, 75005, Paris, France.,Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, F-, 75005, Paris, France
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127, Trieste, Italy
| |
Collapse
|
39
|
Dalla Pozza M, Abdullrahman A, Cardin CJ, Gasser G, Hall JP. Three's a crowd - stabilisation, structure, and applications of DNA triplexes. Chem Sci 2022; 13:10193-10215. [PMID: 36277639 PMCID: PMC9473520 DOI: 10.1039/d2sc01793h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/02/2022] [Indexed: 12/16/2022] Open
Abstract
DNA is a strikingly flexible molecule and can form a variety of secondary structures, including the triple helix, which is the subject of this review. The DNA triplex may be formed naturally, during homologous recombination, or can be formed by the introduction of a synthetic triplex forming oligonucleotide (TFO) to a DNA duplex. As the TFO will bind to the duplex with sequence specificity, there is significant interest in developing TFOs with potential therapeutic applications, including using TFOs as a delivery mechanism for compounds able to modify or damage DNA. However, to combine triplexes with functionalised compounds, a full understanding of triplex structure and chemical modification strategies, which may increase triplex stability or in vivo degradation, is essential - these areas will be discussed in this review. Ruthenium polypyridyl complexes, which are able to photooxidise DNA and act as luminescent DNA probes, may serve as a suitable photophysical payload for a TFO system and the developments in this area in the context of DNA triplexes will also be reviewed.
Collapse
Affiliation(s)
- Maria Dalla Pozza
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - Ahmad Abdullrahman
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| | - Christine J Cardin
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6AD UK
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology F-75005 Paris France www.gassergroup.com
| | - James P Hall
- Department of Pharmacy, Chemistry and Pharmacy Building, University of Reading Whiteknights Campus Reading Berkshire RG6 6AD UK
| |
Collapse
|
40
|
Long wavelength-emissive Ru(II) metallacycle-based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc Natl Acad Sci U S A 2022; 119:e2209904119. [PMID: 35914164 PMCID: PMC9371697 DOI: 10.1073/pnas.2209904119] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ruthenium (Ru) complexes are developed as latent emissive photosensitizers for cancer and pathogen photodiagnosis and therapy. Nevertheless, most existing Ru complexes are limited as photosensitizers in terms of short excitation and emission wavelengths. Herein, we present an emissive Ru(II) metallacycle (herein referred to as 1) that is excited by 808-nm laser and emits at a wavelength of ∼1,000 nm via coordination-driven self-assembly. Metallacycle 1 exhibits good optical penetration (∼7 mm) and satisfactory reactive oxygen species production properties. Furthermore, 1 shows broad-spectrum antibacterial activity (including against drug-resistant Escherichia coli) as well as low cytotoxicity to normal mammalian cells. In vivo studies reveal that 1 is employed in precise, second near-infrared biomedical window fluorescent imaging-guided, photo-triggered treatments in Staphylococcus aureus-infected mice models, with negligible side effects. This work thus broads the applications of supramolecular photosensitizers through the strategy of lengthening their wavelengths.
Collapse
|
41
|
Milutinović MM, Caković AZ, Ćoćić D, Rais E, Schoch R, Marković BS, Arsenijević N, Volarević V, Jovanović-Stević S, Bogojeski JV, Wilhelm R. Unique enantiopure camphor-based neutral arene–ruthenium(II) complexes: DNA/BSA binding, kinetic and cytotoxic studies. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2106562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
| | | | - Dušan Ćoćić
- Faculty of Science, University of Kragujevac, Kragujevac, Serbia
| | - Eduard Rais
- Department of Chemistry, University of Paderborn, Paderborn, Germany
| | - Roland Schoch
- Department of Chemistry, University of Paderborn, Paderborn, Germany
| | - Bojana Simović Marković
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojša Arsenijević
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladislav Volarević
- Department of Microbiology and Immunology, Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
| |
Collapse
|
42
|
Maddikayala S, Bengi K, Pulimamidi SR. DNA interaction, molecular dynamics simulation, molecular docking, biological,
in vivo
anti‐inflammatory and thermal studies of o
‐
hydroxyacetophenone and 2‐fluoroaniline Schiff base complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Kavitha Bengi
- Department of Chemistry University College for Women, Osmania University, Koti Hyderabad Telangana State India
| | | |
Collapse
|
43
|
Tu L, Li C, Liu C, Bai S, Yang J, Zhang X, Xu L, Xiong X, Sun Y. Rationally designed Ru(II) metallacycles with tunable imidazole ligands for synergistical chemo-phototherapy of cancer. Chem Commun (Camb) 2022; 58:9068-9071. [PMID: 35894452 DOI: 10.1039/d2cc03118c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we construct a series of Ru(II) metallacycles with multimodal chemo-phototherapeutic properties, which exhibited much higher anticancer activity and better cancer-cell selectivity than cisplatin. The antitumor mechanism could be ascribed to the activation of caspase 3/7 and the resulting apoptosis. These results open new possibilities for Ru(II) metallacycles in biomedicine.
Collapse
Affiliation(s)
- Le Tu
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China. .,Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chonglu Li
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chang Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Suya Bai
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Jingfang Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Xian Zhang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liying Xu
- Zhongnan Hospital of Wuhan University, Wuhan 430062, P. R. China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Remin Hospital of Wuhan University, Wuhan 430079, P. R. China.
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
44
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. Angew Chem Int Ed Engl 2022; 61:e202117449. [PMID: 35416386 PMCID: PMC9323417 DOI: 10.1002/anie.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/05/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10‐phenanthroline, tpphz=tetrapyridophenazine) “RuRuPhen” blocks the transformation of G‐actin monomers to F‐actin filaments with no disassembly of pre‐formed F‐actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G‐actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late‐stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Paul J. Jarman
- Department of Biomedical Science University of Sheffield UK
| | - Vanessa Hearnden
- Department of Materials Science and Engineering University of Sheffield UK
| | | | - Marcella Bassetto
- Department of Chemistry Faculty of Science and Engineering Swansea University UK
| | - Hannes Maib
- Department of Biomedical Science University of Sheffield UK
| | - John Palmer
- Department of Biomedical Science University of Sheffield UK
| | | | | | - Carl Smythe
- Department of Biomedical Science University of Sheffield UK
| |
Collapse
|
45
|
Gill MR, Jarman PJ, Hearnden V, Fairbanks SD, Bassetto M, Maib H, Palmer J, Ayscough KR, Thomas JA, Smythe C. A Ruthenium(II) Polypyridyl Complex Disrupts Actin Cytoskeleton Assembly and Blocks Cytokinesis. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202117449. [PMID: 38505667 PMCID: PMC10947085 DOI: 10.1002/ange.202117449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/10/2022]
Abstract
The dinuclear RuII complex [(Ru(phen)2)2(tpphz)]4+ (phen=1,10-phenanthroline, tpphz=tetrapyridophenazine) "RuRuPhen" blocks the transformation of G-actin monomers to F-actin filaments with no disassembly of pre-formed F-actin. Molecular docking studies indicate multiple RuRuPhen molecules bind to the surface of G-actin but not the binding pockets of established actin polymerisation inhibitors. In cells, addition of RuRuPhen causes rapid disruption to actin stress fibre organisation, compromising actomyosin contractility and cell motility; due to this effect RuRuPhen interferes with late-stage cytokinesis. Immunofluorescent microscopy reveals that RuRuPhen causes cytokinetic abscission failure by interfering with endosomal sorting complexes required for transport (ESCRT) complex recruitment.
Collapse
Affiliation(s)
- Martin R. Gill
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Paul J. Jarman
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - Vanessa Hearnden
- Department of Materials Science and EngineeringUniversity of SheffieldUK
| | | | - Marcella Bassetto
- Department of ChemistryFaculty of Science and EngineeringSwansea UniversityUK
| | - Hannes Maib
- Department of Biomedical ScienceUniversity of SheffieldUK
| | - John Palmer
- Department of Biomedical ScienceUniversity of SheffieldUK
| | | | | | - Carl Smythe
- Department of Biomedical ScienceUniversity of SheffieldUK
| |
Collapse
|
46
|
Margetić A, Nikolić S, Grgurić-Šipka S, Vujčić MT. Interaction of organoruthenium(II)-polypyridyl complexes with DNA and BSA. Biometals 2022; 35:813-829. [PMID: 35708875 DOI: 10.1007/s10534-022-00404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
The interaction of four arene ruthenium complexes [(η6-p-cymene)Ru(Me2dppz)Cl]PF6 (1) with Me2dppz = 11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine, [(η6-p-cymene)Ru(aip)Cl]PF6 (2) with aip = 2-(9-anthryl)-1H-imidazo[4,5-f][1,10] phenanthroline), ([(ƞ6-toluene)Ru(ppf)Cl]PF6) (3) and ([(ƞ6-p-cymene)Ru(ppf)Cl]PF6) (4) with ppf = pyrido[2',3':5,6] pyrazino[2,3-f][1,10]phenanthroline with calf thymus DNA were investigated. All of four complexes exhibit DNA-binding activity. UV-Vis spectroscopic studies revealed the intrinsic binding constants of the order 104 M-1 of magnitude, indicating non-intercalative mode. Fluorescence quenching analysis showed that all complexes interfere with intercalator ethidium bromide and minor groove binder Hoechst 33258 by a singular non-intercalative mode with extent that differs by two orders of magnitude. Gel electrophoresis results on DNA cleavage assay demonstrated that all complexes produced conformational changes of supercoiled circular plasmid pUC19 in concentration dependent way. The results of fluorescence titration bovine serum albumin by 1, 2, 3 and 4 showed that all complexes significantly quench tryptophan residues fluorescence through a static quenching mechanism. The antimicrobial activity against both Gram-positive and Gram-negative bacteria analyzed. Complex 1 was most active, even on Escherichia coli was more active than positive control compound.
Collapse
Affiliation(s)
- Aleksandra Margetić
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Stefan Nikolić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000, Belgrade, Serbia.
| | - Miroslava T Vujčić
- Department of Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy - National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| |
Collapse
|
47
|
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O, S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues. Int J Mol Sci 2022; 23:ijms23126669. [PMID: 35743112 PMCID: PMC9224311 DOI: 10.3390/ijms23126669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure−activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors.
Collapse
|
48
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Ma X, Lu J, Yang P, Huang B, Li R, Ye R. Synthesis, Characterization and Antitumor Mechanism Investigation of Heterometallic Ru(Ⅱ)-Re(Ⅰ) Complexes. Front Chem 2022; 10:890925. [PMID: 35711955 PMCID: PMC9196629 DOI: 10.3389/fchem.2022.890925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The development of heteronuclear metal complexes as potent anticancer agents has received increasing attention in recent years. In this study, two new heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes, [Ru(bpy)2LRe(CO)3(DIP)](PF6)3 and [Ru(phen)2LRe(CO)3(DIP)](PF6)3 [RuRe-1 and RuRe-2, L = 2-(4-pyridinyl)imidazolio[4,5-f][1,10]phenanthroline, bpy = 2,2′-bipyridine, DIP = 4,7-diphenyl-1,10-phenanthroline, phen = 1,10-phenanthroline], were synthesized and characterized. Cytotoxicity assay shows that RuRe-1 and RuRe-2 exhibit higher anticancer activity than cisplatin, and exist certain selectivity toward human cancer cells over normal cells. The anticancer mechanistic studies reveal that RuRe-1 and RuRe-2 can induce apoptosis through the regulation of cell cycle, depolarization of mitochondrial membrane potential (MMP), elevation of intracellular reactive oxygen species (ROS), and caspase cascade. Moreover, RuRe-1 and RuRe-2 can effectively inhibit cell migration and colony formation. Taken together, heteronuclear Ru(Ⅱ)-Re(Ⅰ) metal complexes possess the prospect of developing new anticancer agents with high efficacy.
Collapse
Affiliation(s)
- Xiurong Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Junjian Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Peixin Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Bo Huang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| | - Rongtao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ruirong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- *Correspondence: Bo Huang, ; Ruirong Ye,
| |
Collapse
|
50
|
Taghizadeh Shool M, Amiri Rudbari H, Gil-Antón T, Cuevas-Vicario JV, García B, Busto N, Moini N, Blacque O. The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy) 2(X,Y-sal)]BF 4} complexes. Dalton Trans 2022; 51:7658-7672. [PMID: 35510940 DOI: 10.1039/d2dt00401a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ru(II) polypyridyl complexes are widely used in biological fields, due to their physico-chemical and photophysical properties. In this paper, a series of new chiral Ru(II) polypyridyl complexes (1-5) with the general formula {Δ/Λ-[Ru(bpy)2(X,Y-sal)]BF4} (bpy = 2,2'-bipyridyl; X,Y-sal = 5-bromosalicylaldehyde (1), 3,5-dibromosalicylaldehyde (2), 5-chlorosalicylaldehyde (3), 3,5-dichlorosalicylaldehyde (4) and 3-bromo-5-chlorosalicylaldehy (5)) were synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. Also, the structures of complexes 1 and 5 were determined by X-ray crystallography; these results showed that the central Ru atom adopts a distorted octahedral coordination sphere with two bpy and one halogen-substituted salicylaldehyde. DFT and TD-DFT calculations have been performed to explain the excited states of these complexes. The singlet states with higher oscillator strength are correlated with the absorption signals and are mainly described as 1MLCT from the ruthenium centre to the bpy ligands. The lowest triplet states (T1) are described as 3MLCT from the ruthenium center to the salicylaldehyde ligand. The theoretical results are in good agreement with the observed unstructured band at around 520 nm for complexes 2, 4 and 5. Biological studies on human cancer cells revealed that dihalogenated ligands endow the Ru(II) complexes with enhanced cytotoxicity compared to monohalogenated ligands. In addition, as far as the type of halogen is concerned, bromine is the halogen that provides the highest cytotoxicity to the synthesized complexes. All complexes induce cell cycle arrest in G0/G1 and apoptosis, but only complexes bearing Br are able to provoke an increase in intracellular ROS levels and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Tania Gil-Antón
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - José V Cuevas-Vicario
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Begoña García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - Natalia Busto
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain. .,Departamento de Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad de Burgos, Hospital Militar, Paseo de los Comendadores, s/n, 09001 Burgos, Spain
| | - Nakisa Moini
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University, P.O. Box 1993891176, Vanak Tehran, Iran
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|