1
|
Deng W, Zhang Y, Hu M, Wang R, Su Y. Optimization of nitrogen-doped sludge char preparation and mechanism study for catalytic oxidation of NO at room temperature. J Environ Sci (China) 2025; 150:503-514. [PMID: 39306424 DOI: 10.1016/j.jes.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 10/18/2024]
Abstract
Catalytic oxidation of NO at room temperature was carried out over nitrogen (N)-doped sludge char (SC) prepared from pyrolysis of municipal sewage sludge, and urea was adopted as nitrogen source. The effects of different N-doping methods (one-step and two-step method), dried sludge (DS)/urea mass ratios (5:1, 4:1, 3:1, 2:1, and 1:1), SC preparation procedures (pyrolysis only, pyrolysis with acid washing, and pyrolysis with KOH activation and acid washing), and different pyrolysis temperatures (500, 600, 700, and 800°C) on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation. The results indicated that N-doping could obviously promote the catalytic performance of SC. The one-step method with simultaneous sludge pyrolysis (at 700°C), KOH activation, and N-doping (DS/urea of 3:1) was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%, whereas the optimal NO conversion rate of SC without N-doping was only 47.3%. Urea worked both as carbon and nitrogen source, which could increase about 2.9%-16.5% of carbon and 24.8%-42.7% of nitrogen content in SC pyrolyzed at 700°C. N-doping significantly promoted microporosity of SC. The optimal N-doped SC showed specific surface areas of 571.38 m2/g, much higher than 374.34 m2/g of the optimal SC without N-doping. In addition, N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups. Finally, three reaction paths, i.e. microporous reactor, active sites, and basic site control path, were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO.
Collapse
Affiliation(s)
- Wenyi Deng
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yongkang Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Mingtao Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruoting Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaxin Su
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Yang J, Liu B, Zeng L, Du B, Zhou Y, Tao H, Yun Y, Zhu M. Confining Bismuth-Halide Perovskite in Mesochannels of Silica Nanomembranes for Exceptional Photocatalytic Abatement of Air Pollutants. Angew Chem Int Ed Engl 2024; 63:e202319741. [PMID: 38196288 DOI: 10.1002/anie.202319741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Spatially confined photocatalysis has emerged as a viable strategy for the intensification of various redox reactions, but the influence of confined structure on reaction behavior is always overlooked in gas-solid reactions. Herein, we report a nanomembrane with confining Cs3 Bi2 Br9 nanocrystals inside vertical channels of porous insulated silica thin sheets (CBB@SBA(⊥)) for photocatalytic nitric oxide (NO) abatement. The ordered one-dimensional (1D) pore channels with mere 70 nm channel length provide a highly accessible confined space for catalytic reactions. A record-breaking NO conversion efficiency of 98.2 % under a weight hourly space velocity (WHSV) of 3.0×106 mL g-1 h-1 , as well as exceptionally high stability over 14 h and durability over a wide humidity range (RH=15-90 %) was realized over SBA(⊥) confined Cs3 Bi2 Br9 , well beyond its nonconfined analogue and the Cs3 Bi2 Br9 confine in Santa Barbara Amorphous (SBA-15). Mechanism studies suggested that the insulated pore channels of SBA(⊥) in CBB@SBA(⊥) endow concentrated electron field and enhanced mass transfer that render high exposure of reactive species and lower reaction barrier needs for ⋅O2 - formation and NO oxidation, as well as prevents structural degradation of Cs3 Bi2 Br9 . This work expands an innovative strategy for designing efficient photocatalysts for air pollution remediation.
Collapse
Affiliation(s)
- Jingling Yang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P.R. China
| | - Bin Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P.R. China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P.R. China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P.R. China
| | - Yingtang Zhou
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, P.R. China
| | - Hengcong Tao
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022, P.R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, P.R. China
| |
Collapse
|
3
|
Ao R, Pu T, Ma L, Dai Q, Yang J, Li W, Xie L, Guo Z. Understanding the effects of A-site Ag-doping on LaCoO 3 perovskite for NO oxidation: Structural and magnetic properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120160. [PMID: 38278120 DOI: 10.1016/j.jenvman.2024.120160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
The partial substitution of A-site in perovskites is a major strategy to enhance the catalytic oxidation activity. This study explores the use of silver (Ag) to partially replace the lanthanum (La) ion at the A-site in LaCoO3 perovskite, investigating the role of Ag in the ABO3 perovskite structure, elucidating the nitric oxide (NO) oxidation mechanism over La1-xAgxCoO3 (x = 0.1-0.5) perovskites. La0.7Ag0.3CoO3 with an Ag-doping amount of 0.3, exhibited the highest NO oxidation activity of 88.5% at 275 °C. Characterization results indicated that Ag substitution enhanced the perovskite, maintaining its original phase structure, existing in the form of a mixture of Ag0 and Ag+ in the La1-xAgxCoO3 (x = 0.1-0.5) perovskites. Notably, Ag substitution improved the specific surface area, reduction performance, Co3+, and surface adsorption oxygen content. Additionally, the study investigated the relationship between magnetism and NO oxidation from a magnetism perspective. Ag-doping strengthened the magnetism of La-Ag perovskite, resulting in stronger adsorption of paramagnetic NO. This study elucidated the NO oxidation mechanism over La-Ag perovskite, considering structural and magnetic properties, providing valuable insights for the subsequent development and industrial application of high oxidation ability perovskite catalysts.
Collapse
Affiliation(s)
- Ran Ao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Tao Pu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, PR China
| | - Liping Ma
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China.
| | - Quxiu Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Jie Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Wengang Li
- Kunming University of Science and Technology Design & Research Institute Co., Ltd., Kunming, Yunnan, 650500, PR China
| | - Longgui Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, PR China
| | - Zhiying Guo
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, Yunnan, 661199, PR China.
| |
Collapse
|
4
|
Zhao J, Zhang X, Yang F, Ai Y, Chen Y, Pan D. Strategy and Technical Progress of Recycling of Spent Vanadium-Titanium-Based Selective Catalytic Reduction Catalysts. ACS OMEGA 2024; 9:6036-6058. [PMID: 38371753 PMCID: PMC10870271 DOI: 10.1021/acsomega.3c07019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Selective catalytic reduction denitration technology, abbreviated as SCR, is essential for the removal of nitrogen oxide from the flue gas of coal-fired power stations and has been widely used. Due to the strong demand for energy and the requirements for environmental protection, a large amount of SCR catalyst waste is produced. The spent SCR catalyst contains high-grade valuable metals, and proper disposal or treatment of the SCR catalyst can protect the environment and realize resource recycling. This review focuses on the two main routes of regeneration and recycling of spent vanadium-titanium SCR catalysts that are currently most widely commercially used and summarizes in detail the technologies of recycling, high-efficiency recycling, and recycling of valuable components of spent vanadium-titanium SCR catalysts. This review also discusses in depth the future development direction of recycling spent vanadium-titanium SCR catalysts. It provides a reference for promoting recycling, which is crucial for resource recovery and green and low-carbon development.
Collapse
Affiliation(s)
- Jianying Zhao
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaoguang Zhang
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| | - Feihua Yang
- Solid
Waste Reuse for Building Materials State Key Laboratory, Beijing Building Materials Academy of Science Research, Beijing 100038, PR China
| | - Yonghong Ai
- Jiangxi
Minmetals Gao’an Non-ferrous Metal Co., Ltd., Gaoan 330800, PR China
| | - Yousheng Chen
- Jiangxi
Minmetals Gao’an Non-ferrous Metal Co., Ltd., Gaoan 330800, PR China
| | - Dean Pan
- Institute
of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
5
|
Filonchyk M, Peterson MP. NO 2 emissions from oil refineries in the Mississippi Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165569. [PMID: 37459985 DOI: 10.1016/j.scitotenv.2023.165569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Of the >17,943 thousand barrels per calendar day (bbl/d) of oil refining capacity located in the US, the Petroleum Administration for Defense District 3 (PADD-3) region has the largest number of refineries and accounts for >53 % (or 9607 tbbl/d) of all US oil refining capacity. Processing facilities in this area are mainly located on the Gulf of Mexico coast in Texas and Louisiana. This study selected a sub-region for analysis within the Mississippi River delta in the state of Louisiana between the cities of New Orleans and Baton Rouge. This region is characterized by intensive industrial activity connected with oil refining and related activities. The TROPOspheric Monitoring Instrument (TROPOMI) detected highly localized NO2 vertical column densities (VCDs) over the two largest US refineries in Baton Rouge (503,000 bbl/d) and Garyville (578,000 bbl/d). TROPOMI NO2 VCD over these stations were 100 μmol/m2 and 80 μmol/m2, respectively. A high correlation coefficient (r = 0.65, p < 0.05) was also found between TROPOMI NO2 and population density. Data from the National Emissions Inventory (NEI) showed high NOx emissions from refineries and other industries including coal-fired power generation, chemical, and aluminum processing plants. The results of the NO2 analysis are of practical interest for a comparative assessment of air pollution, as well as for the exchange of best practices in the field of low-waste fuel combustion technologies.
Collapse
Affiliation(s)
- Mikalai Filonchyk
- Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China; Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China.
| | - Michael P Peterson
- Department of Geography/Geology, University of Nebraska Omaha, Omaha, NE 68182, USA
| |
Collapse
|
6
|
Jeong HS, Kim BJ. Effects of Nickel Impregnation on the Catalytic Removal of Nitric Oxide by Polyimide-Based Activated Carbon Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2297. [PMID: 37630882 PMCID: PMC10459750 DOI: 10.3390/nano13162297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Activated carbon fibers (ACFs) are beneficial for adsorbing harmful gases because of the well-developed micropores on their surface. Usually, the physical adsorption of harmful gases by ACFs is limited by their textural properties. In this study, the effect of nickel particle catalyst impregnation on the physicochemical removal of nitric oxide (NO) by polyimide (PI)-based ACFs (PI-ACFs) was investigated. Ni(NO3)2 was used as the precursor of nickel particle catalysts and impregnated on ACFs as a function of concentrations. The Ni(NO3)2/ACFs were then thermally reduced in an argon atmosphere containing 4% hydrogen (400 °C, 1 h). The gases generated during heat treatment were verified using Fourier transform infrared spectroscopy, and the impregnation amount of metallic nickel was also calculated based on the gas amount generated. The specific surface areas of the ACF and Ni-ACFs were determined to be 1010-1180 m2/g, while the nickel impregnation amount was 0.85-5.28 mg/g. The NO removal capacity of the Ni-ACF was found to be enhanced with the addition of Ni catalysts. In addition, metallic nickel particles on the ACFs maintained their chemical molecular structures before and after the NO removal tests.a.
Collapse
Affiliation(s)
- Hun-Seung Jeong
- Material Application Research Institute, Jeonju University, Jeonju 55069, Republic of Korea;
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung-Joo Kim
- Material Application Research Institute, Jeonju University, Jeonju 55069, Republic of Korea;
- Department of Advanced Materials and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
7
|
Cheng X, Liu Y, Yang L, Yang M, Zhang Y, Ma C, Meng X, Xu J, Wang J, Qiao W. Understanding structure-performance relationships of CoO x/CeO 2 catalysts for NO catalytic oxidation: Facet tailoring and bimetallic interface designing. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131144. [PMID: 36921412 DOI: 10.1016/j.jhazmat.2023.131144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Crystalline structure and bimetallic interaction of metal oxides are essential factors to determine the catalytic activity. Herein, three different CoOx/CeO2 catalysts, employing CeO2 nanorods (predominately exposed {110 facet), CeO2 nanopolyhedra ({111} facet) and CeO2 nanocubes ({100} facet) as the supports, are successfully prepared for investigating the effect of exposed crystal facets and bimetallic interface interaction on NO oxidation. In comparison with the {111} and {100} facets, the exposed crystal facet {110} exists the best superiority to anchor and stabilize Co species. Moreover, ultra-small CoOx clusters composed of strong Co-O coordination shells with minor Co-O-Ce interaction are formed and uniformly dispersed on the CeO2 nanorods. Structural characterizations reveal that the active exposed crystal facet {110} and the strong bimetallic interface interaction in CoOx/CeO2-nanorods (R-CC) result in more structural defect, endowing it with abundant oxygen vacancies, excellent reducibility and strong adsorption capacity. The DRIFTs spectra further indicate that the exposed crystal facet {110} has a significant promoting effect on the strength of nitrates compared with {111} and {100} facets. The bimetallic interface interaction not only significantly facilitates the formation of nitrate species at lower temperature, but also effectively suppresses the generation of sulfate and lower the sulphation rate. Therefore, R-CC catalyst exhibits the maximum NO oxidation activity with the conversion of 86.4 % at 300 °C and still sustains its high activity under cyclic condition or 50 ppm SO2. The provided crystalline structure and interaction-enhanced strategy sheds light on the design of high-activity NO oxidation catalysts.
Collapse
Affiliation(s)
- Xiaomin Cheng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqi Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lubin Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjie Yang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yongzheng Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Ma
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Meng
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Xu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jitong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
8
|
Qu W, Fang X, Ren Z, Chen J, Liu X, Ma Z, Tang X. NO Selective Catalytic Reduction over Atom-Pair Active Sites Accelerated via In Situ NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7858-7866. [PMID: 37161886 DOI: 10.1021/acs.est.3c00461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Selective catalytic reduction (SCR) of NOx with NH3 is the most efficient technology for NOx emissions control, but the activity of catalysts decreases exponentially with the decrease in reaction temperature, hindering the application of the technology in low-temperature SCR to treat industrial stack gases. Here, we present an industrially practicable technology to significantly enhance the SCR activity at low temperatures (<250 °C). By introducing an appropriate amount of O3 into the simulated stack gas, we find that O3 can stoichiometrically oxidize NO to generate NO2, which enables NO reduction to follow the fast SCR mechanism so as to accelerate SCR at low temperatures, and, in particular, an increase in SCR rate by more than four times is observed over atom-pair V1-W1 active sites supported on TiO2(001) at 200 °C. Using operando SCR tests and in situ diffuse reflectance infrared Fourier transform spectra, we reveal that the introduction of O3 allows SCR to proceed along a NH4NO3-mediated Langmuir-Hinshelwood model, in which the adsorbed nitrate species speed up the re-oxidation of the catalytic sites that is the rate-limiting step of SCR, thus leading to the enhancement of activity at low temperatures. This technology could be applicable in the real stack gas conditions because O3 exclusively oxidizes NO even in the co-presence of SO2 and H2O, which provides a general strategy to improve low-temperature SCR efficacy from another perspective beyond designing catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xue Fang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Zhouhong Ren
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junxiao Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Xi Liu
- School of Chemistry and Chemical Engineering, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Ma
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xingfu Tang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment & Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
9
|
G Díaz-Maroto C, Mašek O, Pizarro P, Serrano DP, Moreno I, Fermoso J. Removal of NO at low concentrations from polluted air in semi-closed environments by activated biochars from renewables feedstocks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118031. [PMID: 37167696 DOI: 10.1016/j.jenvman.2023.118031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Efficient measures are urgently required in large cities for nitric oxide (NO) elimination from air in urban semi-closed environments (parking lots and tunnels), characterized by low NO concentrations (<10 ppmv) and temperatures. One of the most promising abatement alternatives is the NO oxidation to NO2, which can be further easily captured in an alkali solution or over a porous solid. However, most of the research devoted to this topic is focused on the elimination of NO from fuel exhaust gases, with high NO concentrations (400-2000 ppmv). In this work, sustainable and low-cost activated biochars of different origin and having very different ash contents were employed in NO removal at very low concentrations. Thus, low ash content forestry (oak woodchips, OAK) and high ash content from agriculture (oilseed rape straw, OSR) biochars were subjected to physical activation with CO2 at 900 °C (OAK550-A900CO2 and OSR700-A900CO2, respectively). The NO removal performance tests of such activated carbons were carried out at different experimental conditions: i.e., temperature, relative humidity (0-50 vol% RH), NO-containing gas (N2 or air), amount of activated carbon, and NO concentration, to assess how the activated biochar properties influence their NO removal capacity. The sample OSR700-A900CO2 contained a higher population of oxygen surface functionalities, which might play an important role in the NO removal efficiency in dry conditions since they could assist NO oxidation on carbon active sites when used above room temperature (50-75 °C). However, at room temperature (25 °C), the presence of narrow micropore size distribution at 6 Å became a more relevant property, since it facilitates an intimate contact between NO and O2. Accordingly, the activated biochar from OAK was much more efficient, achieving complete removal of NO from air flow (dry or with 50 vol% RH) at 25 °C during 400 min of testing, making it an ideal candidate as biofilter for purifying air streams of semi-closed spaces contaminated with low concentrations of NO.
Collapse
Affiliation(s)
- Carlos G Díaz-Maroto
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh, EH9 3FF, UK
| | - Patricia Pizarro
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - David P Serrano
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Inés Moreno
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain; Chemical and Environmental Engineering Group, Rey Juan Carlos University, Móstoles, Madrid, Spain
| | - Javier Fermoso
- Thermochemical Processes Unit, IMDEA Energy, Avda. Ramón de la Sagra 3, 28935, Móstoles, Madrid, Spain.
| |
Collapse
|
10
|
Tang H, Liu X, Li Y, Tian J, Hou C, Tian M, Zhu T. Investigation on low energy-consumed embedded selective catalytic reduction technology for pelletizing flue gas and the CO 2 emission reduction assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53492-53504. [PMID: 36859640 DOI: 10.1007/s11356-023-26042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Based on the unique technique property of grate-kiln pellet production process and its demand of ultra-low emission of NOx, a low energy-consumed embedded selective catalytic reduction (SCR) denitration technology was proposed. The temperature of the NOx-containing tributary flue gas was 350-500 °C, which basically accorded with the temperature range of SCR by V2O5-based catalyst. Considering the potential inhibition effect of high SO2 concentration (8000-10000 mg/m3) and metal-containing dust in the pelletizing flue gas, the catalyst compositions were optimized to V2O5 (0.5%) and WO3 (5%), giving NO conversion over 90% with low yield of N2O by-product. Compared with the low-medium temperature SCR technology, it was no longer necessary to reheat the flue gas, showing a remarkable CO2 emission reduction effect. The CO2 emission reduction ratios were 94% and 66% contributed by the decrease of fuel and electricity consumption for the embedded SCR technology, respectively. The operating cost was also greatly reduced from 11.4 CNY/t-pellet to 3.1 CNY/t-pellet (Chinese Yuan).
Collapse
Affiliation(s)
- Hao Tang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xiaolong Liu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiren Li
- HBIS Group Co., Ltd., Shijiazhuang, 050023, China
| | - Jinglei Tian
- HBIS Group Co., Ltd., Shijiazhuang, 050023, China
| | | | - Mengkui Tian
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| | - Tingyu Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
11
|
Khivantsev K, Jaegers NR, Aleksandrov HA, Song I, Pereira-Hernandez XI, Engelhard MH, Tian J, Chen L, Motta Meira D, Kovarik L, Vayssilov GN, Wang Y, Szanyi J. Single Ru(II) Ions on Ceria as a Highly Active Catalyst for Abatement of NO. J Am Chem Soc 2023; 145:5029-5040. [PMID: 36812067 DOI: 10.1021/jacs.2c09873] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Atom trapping leads to catalysts with atomically dispersed Ru1O5 sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems. Ru1/CeO2 is stable during continuous cycling, ramping, and cooling as well as the presence of moisture. Furthermore, Ru1/CeO2 shows very high NOx storage properties due to formation of stable Ru-NO complexes as well as a high spill-over rate of NOx onto CeO2. Only ∼0.05 wt % of Ru is required for excellent NOx storage. Ru1O5 sites exhibit much higher stability during calcination in air/steam up to 750 °C in contrast to RuO2 nanoparticles. We clarify the location of Ru(II) ions on the ceria surface and experimentally identify the mechanism of NO storage and oxidation using DFT calculations and in situ DRIFTS/mass spectroscopy. Moreover, we show excellent reactivity of Ru1/CeO2 for NO reduction by CO at low temperatures: only 0.1-0.5 wt % of Ru is sufficient to achieve high activity. Modulation-excitation in situ infrared and XPS measurements reveal the individual elementary steps of NO reduction by CO on an atomically dispersed Ru ceria catalyst, highlighting unique properties of Ru1/CeO2 and its propensity to form oxygen vacancies/Ce+3 sites that are critical for NO reduction, even at low Ru loadings. Our study highlights the applicability of novel ceria-based single-atom catalysts to NO and CO abatement.
Collapse
Affiliation(s)
- Konstantin Khivantsev
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Nicholas R Jaegers
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Hristiyan A Aleksandrov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier boulevard, 1126 Sofia, Bulgaria
| | - Inhak Song
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | | | - Mark H Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Jinshu Tian
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Linxiao Chen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Debora Motta Meira
- Canadian Light Source: Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Georgi N Vayssilov
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1, J. Bourchier boulevard, 1126 Sofia, Bulgaria
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - János Szanyi
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
12
|
Qiang J, Li H, Hui S, Wang D. Supported Mn 2O 3-based catalysts for NO-SCO: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2555-2574. [PMID: 35933530 DOI: 10.1007/s11356-022-22439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
In this paper, the NO-SCO (the selective catalytic oxidation of NO) experiments of single-phase Mn2O3, supported Mn2O3/Al2O3, and the Ce-doped MnxCey/Al catalyst system were carried out. The physical and chemical properties of the catalysts were analyzed by XRD, BET, XPS, SEM, O2-TPD, and H2-TPR. The effects of loading and Ce doping on catalyst activity were studied. The results show that the Mn2O3 catalyst exhibited the best activity at 300 ℃, and the NO conversion rate of Mn2O3 was 78.2%. The relative content of Oα adsorbed on the surface of the Mnx/Al catalyst decreased obviously by loading Mn2O3 on γ-Al2O3, which led to the decrease in catalyst activity. And the temperature window moved to the high-temperature region. After doping Ce, the dispersion of Mn enhanced, and the relative content of oxygen Oα adsorbed on the surface increased. The low-temperature activity and fluidity of oxygen in catalysts were improved. Among them, the Mn0.2Ce0.08/Al catalyst obtained a high specific surface area, good pore structure, large oxygen storage capacity, and excellent surface oxygen species. The corresponding NO conversion rate reached 83.5% at 290 ℃. Then, the effects of operating parameters such as space velocity, NO concentration, and O2 content on the catalytic activity of Mn0.2Ce0.08/Al were discussed. The experimental results show that the NO conversion rate of Mn0.2Ce0.08/Al decreased with increasing NO concentration and space velocity. The O2 content had a positive effect on the catalytic activity of the catalyst. However, the NO conversion rate tended to be stable due to the saturation of oxygen adsorbed on the catalyst. Through cycling experiments, we found that Mn2O3, Mn0.2/Al, and Mn0.2Ce0.08/Al catalysts showed good oxidation stabilities for NO oxidation. The evaluation of the water and sulfur resistance of the catalyst shows that the toxicity of SO2 was reduced by the aqueous atmosphere to a certain extent. Through the structural optimization of the basic model and the calculation of the NO-SCO reaction path, the results show that the NO-SCO reaction on the Mn2O3 (110) face followed the ER mechanism more. For the Mn2O3/Al2O3 (110) surface, the LH-MvK hybrid mechanism can greatly reduce the desorption energy barrier of the reaction intermediates, which is more favorable for the NO-SCO reaction. The catalytic mechanisms of the MnxCey/Al catalysts require further in-depth research.
Collapse
Affiliation(s)
- Jialin Qiang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an, 710049, China
| | - Hui Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an, 710049, China
| | - Shien Hui
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an, 710049, China
| | - Denghui Wang
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an, 710049, China.
| |
Collapse
|
13
|
Yang W, Zhou B, Zhang Y, Ren J, Wu C, Gates ID, Liu Y, Gao Z. A novel low-temperature Fe-Fe double-atom catalyst for a “fast SCR” reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Wang C, Guo C. Nitrogen atom coordination tuned transition metal catalysts for NO oxidation and reduction. CHEMOSPHERE 2022; 309:136735. [PMID: 36209844 DOI: 10.1016/j.chemosphere.2022.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Developing an efficient catalyst for NO oxidation and reduction at ambient temperature is a significant challenge. Recent studies have suggested that the N-coordinated transition metal (TM) single atom catalysts (SACs) have high catalytic activity and stability. Herein, we report the activation potential of a series of 3d TM atoms supported on N coordination-tuned graphene (GR) for NO oxidation and reduction. The results show that the N coordination pattern can greatly alter the catalytic reactivity of TM on the catalysts, and the TM atom on the catalysts with three-coordinated pyridinic nitrogen TM-N3@GR exhibit the strongest chemical activity. Among the TM-N3@GR catalysts, Ti-N3@GR is the most promising candidate. The rate constants and equilibrium constants were calculated to evaluate the kinetic and thermodynamic feasibility of the catalytic reaction, respectively. Our results demonstrate that the reduction of NO to N2 on Ti-N3@GR can occur at ambient temperature with a large exotherm of 6.99 eV, and the oxidation of NO to NO2 on Ti-N3@GR can easily proceed when the temperature reaches 360 K with a large equilibrium constant. Our studies are of great significance for understanding the performance of N coordination-tuned catalysts and designing Ti-based catalysts for NO oxidation and reduction.
Collapse
Affiliation(s)
- Chong Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China.
| | - Chen Guo
- College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
15
|
Cai Y, Yang P, Liu Q, Ma K, Ma W, Song W, Qian Q, Gao F, Tan W, Dong L. Getting insights into gas-phase sulfation effect on catalytic performance of praseodymium oxides in NH3-SCR of NO. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Abstract
Vehicle exhaust has been acknowledged as an essential factor affecting human health due to the extensive use of cars. Its main components include volatile organic compounds (VOCs) and nitrogen oxides (NOx), which can cause acute irritation and chronic diseases, and significant research on the treatment of vehicle exhaust has received increasing attention in recent decades. Recently, photocatalytic technology has been considered a practical approach for eliminating vehicle emissions. This review highlights the crucial role of photocatalytic technology in eliminating vehicle emissions using semiconductor catalysts. A particular emphasis has been placed on various photocatalytic materials, such as TiO2-based materials, Bi-based materials, and Metal–Organic Frameworks (MOFs), and their recent advances in the performance of VOC and NOx photodegradation. In addition, the applications of photocatalytic technology for the elimination of vehicle exhaust are presented (including photocatalysts combined with pavement surfaces, making photocatalysts into architectural coatings and photoreactors), which will offer a promising strategy for photocatalytic technology to remove vehicle exhaust.
Collapse
|
17
|
Fernández EM, Balbás LC. Interactions of Nitric Oxide Molecules with Pure and Oxidized Silver ClustersAg n{plus minus}/Ag nO {plus minus} (n=11-13). A Computational Study. J Chem Phys 2022; 157:074310. [DOI: 10.1063/5.0094996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work we studied, within DFT, the interaction of NO with pure and oxidized Agn, both anionic and cationic, composed from11 to 13 Ag atoms. In that size interval, shell closing effects are not expected, and structural and electronic odd-even effects will determine the strength of interaction. We obtained that species Agn{plus minus} and AgnO{plus minus} with odd number of electrons (n=12) adsorb NO with higher energy than their neighbours. This result agrees with the facts observed in recent mass spectroscopy measurements, which were performed at finite temperature. The adsorption energy is about twice for oxidized clusters compared to pure ones, and higher for anions than for cations. The adsorption of another NO molecule on AgnNO{plus minus} forms Agn(NO)2{plus minus}, with the dimer (NO)2 in cis configuration, and binding the two N atoms with two neigbour Ag atoms. The n=12 show the higher adsorption energy again. In absence of reaction barriers, Agn(NO)2{plus minus} dissociate spontaneously into AgnO{plus minus} and N2O, except the n= 12 anion. The máximum high barrier along the dissociation path of Ag13(NO)2- is about 0.7 eV. Further analysis of PDOS for Ag11-13 (NO)x{plus minus} (x=0,1,2) molecules shows that bonding between NO and Agn mainly occurs in the range between -3.0 eV and 3.0 eV. The overlap between 4 d of Ag and 2 p of N and O is larger for Ag12(NO)2{plus minus} than for neighbour sizes. For n=12, the d bands are close to the (NO)2 2π orbital, leading to extra back-donation charge from the 4 d of Ag to the closer 2π orbital of (NO)2.
Collapse
Affiliation(s)
- Eva M. Fernández
- Fisica Fundamental, Universidad Nacional de Educación a Distancia, Spain
| | - Luis Carlos Balbás
- Departamento de Física Teórica, Atómica y Óptica, University of Valladolid - Miguel Delibes Campus, Spain
| |
Collapse
|
18
|
Advances in Designing Efficient La-Based Perovskites for the NOx Storage and Reduction Process. Catalysts 2022. [DOI: 10.3390/catal12060593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To overcome the inherent challenge of NOx reduction in the net oxidizing environment of diesel engine exhaust, the NOx storage and reduction (NSR) concept was proposed in 1995, soon developed and commercialized as a promising DeNOx technique over the past two decades. Years of practice suggest that it is a tailor-made technique for light-duty diesel vehicles, with the advantage of being space saving, cost effective, and efficient in NOx abatement; however, the over-reliance of NSR catalysts on high loadings of Pt has always been the bottleneck for its wide application. There remains fervent interest in searching for efficient, economical, and durable alternatives. To date, La-based perovskites are the most explored promising candidate, showing prominent structural and thermal stability and redox property. The perovskite-type oxide structure enables the coupling of redox and storage centers with homogeneous distribution, which maximizes the contact area for NOx spillover and contributes to efficient NOx storage and reduction. Moreover, the wide range of possible cationic substitutions in perovskite generates great flexibility, yielding various formulations with interesting features desirable for the NSR process. Herein, this review provides an overview of the features and performances of La-based perovskite in NO oxidation, NOx storage, and NOx reduction, and in this way comprehensively evaluates its potential to substitute Pt and further improve the DeNOx efficiency of the current NSR catalyst. The fundamental structure–property relationships are summarized and highlighted to instruct rational catalyst design. The critical research needs and essential aspects in catalyst design, including poisoner resistance and catalyst sustainability, are finally addressed to inspire the future development of perovskite material for practical application.
Collapse
|
19
|
Reducibility Studies of Ceria, Ce0.85Zr0.15O2 (CZ) and Au/CZ Catalysts after Alkali Ion Doping: Impact on Activity in Oxidation of NO and CO. Catalysts 2022. [DOI: 10.3390/catal12050524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of these studies was to perform thorough research on the influence of alkali metal ions (Li, Na, K and Cs) on the properties of nanogold catalysts supported on ceria–zirconia. The addition of alkali metal ions onto CeO2 further affected the reducibility, which was not noted for the Zr-doped support (Ce0.85Zr0.15O2). Despite the substantial impact of alkali metal ions on the reducibility of ceria, the activity in CO oxidation did not change much. In contrast, they do not have a large effect on the reducibility of Au/CZ but suppressed the activity of this system in CO oxidation. The results show that for CO oxidation, the negative effect of potassium ions is greater than that of sodium, which corresponds to the shift in the Tmax of the reduction peak towards higher temperatures. The negative effect of Li+ and Cs+ spans 50% CO conversion. The negative effect was visible for CO oxidation in both the model stream and the complex stream, which also contained hydrocarbons and NO. In the case of NO oxidation to NO2, two temperature regimes were observed for Au + 0.3 at% K/CZ, namely in the temperature range below 350 °C; the effect of potassium ions was beneficial for NO oxidation, whereas at higher temperatures, the undoped gold catalyst produced more NO2.
Collapse
|
20
|
Yang W, Liu X, Chen X, Cao Y, Cui S, Jiao L, Wu C, Chen C, Fu D, Gates ID, Gao Z, Jiang HL. A Sulfur-Tolerant MOF-Based Single-Atom Fe Catalyst for Efficient Oxidation of NO and Hg 0. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110123. [PMID: 35291046 DOI: 10.1002/adma.202110123] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Catalytic oxidation of NO and Hg0 is a crucial step to eliminate multiple pollutants from emissions from coal-fired power plants. However, traditional catalysts exhibit low catalytic activity and poor sulfur resistance due to low activation ability and poor adsorption selectivity. Herein, a single-atom Fe decorated N-doped carbon catalyst (Fe1 -N4 -C), with abundant Fe1 -N4 sites, based on a Fe-doped metal-organic framework is developed to oxidize NO and Hg0 . The results demonstrate that the Fe1 -N4 -C has ultrahigh catalytic activity for oxidizing NO and Hg0 at low and room temperature. More importantly, Fe1 -N4 -C exhibits robust sulfur resistance as it preferably adsorbs reactants over sulfur oxides, which has never been achieved before with traditional catalysts. Furthermore, SO2 boosts the catalytic oxidation of NO over Fe1 -N4 -C through accelerating the circulation of active sites. Density functional theory calculations reveal that the Fe1 -N4 active sites result in a low energy barrier and high adsorption selectivity, providing detailed molecular-level understanding for its excellent catalytic performance. This is the first report on NO and Hg0 oxidation over single-atom catalysts with strong sulfur tolerance. The outcomes demonstrate that single-atom catalysts are promising candidates for catalytic oxidation of NO and Hg0 enabling cleaner coal-fired power plant operations.
Collapse
Affiliation(s)
- Weijie Yang
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Xiaoshuo Liu
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Xuelu Chen
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Yue Cao
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Shaoping Cui
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Long Jiao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1C-N, Canada
| | - Chuanmin Chen
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Dong Fu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Ian D Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1C-N, Canada
| | - Zhengyang Gao
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, Hebei, 071003, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
21
|
Lv C, Hu M, Yuan T, Yan L, Chen H. Dopant-driven tuning of toluene oxidation and sulfur resistance at the B-site of LaCo 1−xM xO 3 (M = Fe, Cr, Cu) perovskites. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00476c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The optimization effect of Fe dopant on toluene oxidation and sulfur resistance is better than that of Cr and Cu dopants.
Collapse
Affiliation(s)
- Chunwang Lv
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| | - Mingjiang Hu
- School of Energy and Building Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Tianhao Yuan
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Liqiang Yan
- School of Energy and Building Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Hongwei Chen
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
22
|
Xin Y, Cheng L, Lv Y, Jia J, Han D, Zhang N, Wang J, Zhang Z, Cao XM. Experimental and Theoretical Insight into the Facet-Dependent Mechanisms of NO Oxidation Catalyzed by Structurally Diverse Mn 2O 3 Nanocrystals. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying Xin
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Lu Cheng
- Center for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanan Lv
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Junxiu Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Dongxu Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Nana Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Zhaoliang Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
| | - Xiao-Ming Cao
- Center for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Structure Sensitivity and Hydration Effects in Pt/TiO2 and Pt/TiO2–SiO2 Catalysts for NO and Propane Oxidation. Top Catal 2021. [DOI: 10.1007/s11244-021-01415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe NO and propane oxidation activities of a series of 1%Pt/TiO2–SiO2 catalysts show different underlying trends as the support composition changes. Surface characterisation of the catalysts indicates that the trend for NO conversion is consistent with the oxidation rate being dependent on the degree of metallic character of the Pt nanoparticles, rather than their morphology. Although a similar correlation is expected for the total oxidation of propane, it is masked by the effects of adventitious ions originating during manufacture of the support materials. When residual chloride is present in the support, most of the exposed Pt is stabilised in its low-activity ionic form; while support materials containing W or oxidised-S ions give rise to catalysts with much higher activity than expected from their measured Pt0 content. When a Cl-containing, but SiO2-free, TiO2 support material is pre-treated hydrothermally, the propane-oxidation activity of the resultant Pt/TiO2 catalyst is substantially improved, so that it matches the performance of highly-metallic Pt supported on TiO2 containing 16 wt% SiO2. The hydrothermal pre-treatment removes residual chloride from the support material, but it also leaves the catalyst in a hydrated state. We show that, by controlling the metallic content of Pt nanoparticles, understanding the promoting and inhibiting effects of adventitious ions, and optimising the degree of catalyst hydration, the activity of 1%Pt/TiO2–SiO2 catalysts can be made to exceed that of a benchmark 2%Pt/γ-Al2O3 formulation for both NO and propane oxidation.
Collapse
|
24
|
Reaction pathway of nitric oxide oxidation on nano-sized Pt/SiO2 catalysts for diesel exhaust purification. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wang XW, Chen T, Zhang YL, Ma K, Wen XR, Sun C, Yuan ZH. Catalytic oxidation of NO over SmMn2O5 nanostructures derived from different Mn precursors. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Biswakarma N, Dowerah D, Baruah SD, Sarma PJ, Gour NK, Deka RC. Catalytic oxidation of NO to NO2 on pure and doped AunPt3-n (n=0–3) clusters: A DFT perspective. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Yang W, Gong J, Wang X, Bao Z, Guo Y, Wu Z. A Review on the Impact of SO 2 on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weiwei Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Gong
- Corporate Research and Technology, Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Xiang Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yanbing Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
28
|
Biswal BK, Vijayaraghavan K, Adam MG, Lee Tsen-Tieng D, Davis AP, Balasubramanian R. Biological nitrogen removal from stormwater in bioretention cells: a critical review. Crit Rev Biotechnol 2021; 42:713-735. [PMID: 34486441 DOI: 10.1080/07388551.2021.1969888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Excess nitrogen in stormwater degrades surface water quality via eutrophication and related processes. Bioretention has been recognized as a highly effective low-impact development (LID) technology for the management of high runoff volumes and reduction of nitrogen (N) pollutants through various mechanisms. This paper provides a comprehensive and critical review of recent developments on the biological N removal processes occurring in bioretention systems. The key plant- and microbe-mediated N transformation processes include assimilation (N uptake by plants and microbes), nitrification, denitrification, and anammox (anaerobic ammonia oxidation), but denitrification is the major pathway of permanent N removal. Overall, both laboratory- and field-scale bioretention systems have demonstrated promising N removal performance (TN: >70%). The phyla Bacteroidetes and Proteobacteria are the most abundant microbial communities found to be enriched in biofilter media. Furthermore, the denitrifying communities contain several functional genes (e.g., nirK/nirS, and nosZ), and their concentrations increase near the surface of media depth. The N removal effectiveness of bioretention systems is largely impacted by the hydraulics and environmental factors. When a bioretention system operates at: low hydraulic/N loading rate, containing a saturation zone, vegetated with native plants, having deeper and multilayer biofilter media with warm climate temperature and wet storm events periods, the N removal efficiency can be high. This review highlights shortcomings and current knowledge gaps in the area of total nitrogen removal using bioretention systems, as well as identifies future research directions on this topic.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Kuppusamy Vijayaraghavan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Max Gerrit Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Daryl Lee Tsen-Tieng
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Sheng Q, Yi M, Men Y, Lu H. Cometabolism of 17α-ethynylestradiol by nitrifying bacteria depends on reducing power availability and leads to elevated nitric oxide formation. ENVIRONMENT INTERNATIONAL 2021; 153:106528. [PMID: 33774495 DOI: 10.1016/j.envint.2021.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
17α-ethynylestradiol (EE2) is a priority emerging contaminant (EC) in diverse environments that can be cometabolized by ammonia oxidizing bacteria (AOB). However, its transformation kinetics and the underlying molecular mechanism are unclear. In this study, kinetic parameters, including maximum specific EE2 transformation rate, EE2 half-saturation coefficient, and EE2transformation capacity of AOBwere obtained by using the model AOB strain, Nitrosomonas europaea 19718. The relationship between EE2 cometabolism and ammonia oxidation was divided into three phases according to reducing power availability, namely "activation", "coupling", and "saturation". Specifically, there was a universal lag of EE2 transformation after ammonia oxidation was initiated, suggesting that sufficient reducing power (approximately 0.95 ± 0.06 mol NADH/L) was required to activate EE2 cometabolism. Interestingly, nitric oxide emission increased by 12 ± 2% during EE2 cometabolism, along with significantly upregulated nirK cluster genes. The findings are of importance to understanding the cometabolic behavior and mechanism of EE2 in natural and engineered environments. Maintaining relatively high and stable reducing power supply from ammonia oxidation can potentially improve the cometabolic removal of EE2 and other ECs during wastewater nitrification processes.
Collapse
Affiliation(s)
- Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, United States
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
30
|
Life Cycle Assessment of Nitrogen Circular Economy-Based NOx Treatment Technology. SUSTAINABILITY 2021. [DOI: 10.3390/su13147826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Humans are significantly perturbing the global nitrogen cycle, leading to excess reactive nitrogen in the environment. Nitrogen oxides as a key reactive nitrogen species are mainly controlled by selective non-catalytic reduction and selective catalytic reduction. Converting nitrogen oxides to ammonia, defined as ReNOx, emerges as an alternative method under a disparate design concept. However, little is known about its overall environmental performance. In this study, we conducted for the first time a life cycle assessment of ReNOx. Compared with the eco-index in the condition of 200 °C with a conversion rate of 95%, it would increase substantially in the condition of 160 °C with a conversion rate of 80% and in the case without a sound NH3 treatment. Feedstock format change, adsorption material performance deterioration, and recovery rate decline would increase the eco-index by 8%, 12%, and 18%, respectively. The eco-index was decreased by 31% in the optimized scenario with a renewable energy source and an increased conversion rate. The environmental impacts were compared with traditional methods at impact, damage, and eco-index levels. Finally, the implications on process arrangement in the flue gas system, the externality for power generation, and the contribution to the nitrogen circular economy were examined. The results can serve as a reference for its developers to improve the technology from the environmental perspective.
Collapse
|
31
|
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chem Rev 2021; 121:7568-7637. [PMID: 34077177 DOI: 10.1021/acs.chemrev.0c01069] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalysis is essential to modern life and has a huge economic impact. The development of new catalysts critically depends on synthetic methods that enable the preparation of tailored nanomaterials. Pulsed laser in liquids synthesis can produce uniform, multicomponent, nonequilibrium nanomaterials with independently and precisely controlled properties, such as size, composition, morphology, defect density, and atomistic structure within the nanoparticle and at its surface. We cover the fundamentals, unique advantages, challenges, and experimental solutions of this powerful technique and review the state-of-the-art of laser-made electrocatalysts for water oxidation, oxygen reduction, hydrogen evolution, nitrogen reduction, carbon dioxide reduction, and organic oxidations, followed by laser-made nanomaterials for light-driven catalytic processes and heterogeneous catalysis of thermochemical processes. We also highlight laser-synthesized nanomaterials for which proposed catalytic applications exist. This review provides a practical guide to how the catalysis community can capitalize on pulsed laser in liquids synthesis to advance catalyst development, by leveraging the synergies of two fields of intensive research.
Collapse
Affiliation(s)
- Ryland C Forsythe
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Connor P Cox
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Astrid M Müller
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States.,Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
32
|
Si M, Shen B, Adwek G, Xiong L, Liu L, Yuan P, Gao H, Liang C, Guo Q. Review on the NO removal from flue gas by oxidation methods. J Environ Sci (China) 2021; 101:49-71. [PMID: 33334538 DOI: 10.1016/j.jes.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Due to the increasingly strict emission standards of NOx on various industries, many traditional flue gas treatment methods have been gradually improved. Except for selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) methods to remove NOx from flue gas, theoxidation method is paying more attention to NOx removal now because of the potential to simultaneously remove multiple pollutants from flue gas. This paper summarizes the efficiency, reaction conditions, effect factors, and reaction mechanism of NO oxidation from the aspects of liquid-phase oxidation, gas-phase oxidation, plasma technology, and catalytic oxidation. The effects of free radicals and active components of catalysts on NO oxidation and the combination of various oxidation methods are discussed in detail. The advantages and disadvantages of different oxidation methods are summarized, and the suggestions for future research on NO oxidation are put forward at the end. The review on the NO removal by oxidation methods can provide new ideas for future studies on the NO removal from flue gas.
Collapse
Affiliation(s)
- Meng Si
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China.
| | - George Adwek
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China; Department of Energy and Environmental Engineering, Mount Kenya University, Thika, Kenya
| | - Lifu Xiong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Lijun Liu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Peng Yuan
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Hongpei Gao
- China Huaneng Group Clean Energy Technology Research Institute Co. Ltd., Beijing 102209, China
| | - Cai Liang
- Chengdu Dongfang KWH Environmental Protection Catalysts Co. Ltd., Chengdu 610042, China
| | - Qihai Guo
- TUS Environmental Science and Technology Development Co. Ltd., Yichang 443000, China
| |
Collapse
|
33
|
Takamatsu A, Tamai K, Hosokawa S, Tanaka T, Ehara M, Fukuda R. Oxidation and Storage Mechanisms for Nitrogen Oxides on Variously Terminated (001) Surfaces of SrFeO 3-δ and Sr 3Fe 2O 7-δ Perovskites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7216-7226. [PMID: 33543618 DOI: 10.1021/acsami.0c20724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Ruddlesden-Popper (RP)-type layered perovskite is a candidate material for a new nitrogen oxide (NOx) storage catalyst. Here, we investigate the adsorption and oxidation of NOx on the (001) surfaces of RP-type oxide Sr3Fe2O7-δ for all of the terminations by comparing to those of simple perovskite SrFeO3-δ by the density functional theory (DFT) calculations. The possible (001) cleavages of Sr3Fe2O7 generate two FeO2- and three SrO-terminated surfaces, and the calculated surface energies indicated that the SrO-terminated surface generated by the cleavage at the rock salt layer is the most stable one. The oxygen of the FeO2-terminated surfaces could be removed with significantly low energy because the process involves the favorable reduction of the Fe4+ site. Consequently, the surface oxygen at the FeO2 site could easily oxidize adsorbed NO to NO2 by the Mars-van Krevelen mechanism. The resulting oxygen vacancy in the surface would be filled easily with lattice oxygen in bulk. The oxidation of NO with adsorbed molecular O2 was unfavorable by both the Langmuir-Hinshelwood and Eley-Rideal mechanisms because this process does not involve the reduction of the Fe4+ site. The oxygen of the SrO-terminated surfaces was tightly bound and acted as the adsorption site of NO and NO2. An electron transfer strengthened the NOx binding to the surface by forming nitrite (NO2-) or nitrate (NO3-) species. The DFT calculations revealed that the RP-type structure promoted NOx oxidation and storage properties by forming active oxygen due to the Jahn-Teller distortion and by exposing SrO-terminated surfaces due to the cleavage at the rock salt layer.
Collapse
Affiliation(s)
- Akihiko Takamatsu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuki Tamai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Saburo Hosokawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Masahiro Ehara
- Center for the Promotion of Interdisciplinary Education and Research, Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Institute for Molecular Science and Research Center for Computational Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Ryoichi Fukuda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| |
Collapse
|
34
|
Liu Y, Gao F, Yi H, Yang C, Zhang R, Zhou Y, Tang X. Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2549-2571. [PMID: 33105009 DOI: 10.1007/s11356-020-11253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxides (NOx, which mainly include more than 90% NO) are one of the major air pollutants leading to a series of environmental problems, such as acid rain, haze, photochemical smog, etc. The selective catalytic oxidation of NO to NO2 (NO-SCO) is regarded as a key process for the development of selective catalytic reduction of NOx by ammonia (via fast selective catalytic reduction reaction) and also the simultaneous removal of multipollutant (pre-oxidation and post-absorption). Until now, scholars have developed various types of NO-SCO catalysts, dividing the main groups into noble metals (Pt, Pd, Ru, etc.), metal oxides (Mn-, Co-, Cr-, Ce-based, etc.), perovskite-type oxides (LaMnO3, LaCoO3, LaCeCoO3, etc.), carbon materials (activated carbon, carbon fiber, carbon nanotube, graphene, etc.), and zeolites (ion-exchanged ZSM-5, CHA, SAPO, MCM-41, etc.) in this review. This paper summarizes the recent progress of the above typical catalysts and mostly analyzes the catalytic performance for NO oxidation in terms of the H2O and/or SO2 resistances and also the influencing factors, and their reaction mechanisms are described in detail. Finally, this review points out the key problems and possible solutions of the current researches and presents the application prospects and future development directions of NO-SCO technology using the above typical catalysts.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fengyu Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Honghong Yi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Chen Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Runcao Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuansong Zhou
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
35
|
Effect of Cu substitution on the structure and reactivity of CuxCo3-xO4 spinel catalysts for direct NOx decomposition. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Man H, Wen C, Luo W, Bian J, Wang W, Li C. Simultaneous deSOx and deNOx of marine vessels flue gas on ZnO-CuO/rGO: Photocatalytic oxidation kinetics. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Partial substitution of magnesium in lanthanum manganite perovskite for nitric oxide oxidation: The effect of substitution sites. J Colloid Interface Sci 2020; 580:49-55. [DOI: 10.1016/j.jcis.2020.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
|
38
|
Liu C, Wang H, Ma Q, Ma J, Wang Z, Liang L, Xu W, Zhang G, Zhang X, Wang T, He H. Efficient Conversion of NO to NO 2 on SO 2-Aged MgO under Atmospheric Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11848-11856. [PMID: 32885975 DOI: 10.1021/acs.est.0c05071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The NO-NO2 cycle determines the formation of O3 and hence plays a critical role in the oxidizing capacity of troposphere. Traditional view concluded that the heterogeneous oxidation of NO to NO2 was negligible due to the weak reactivity of NO on aerosols, compared to the homogeneous oxidation process. However, the results here reported for the first time that SO2 can greatly promote the heterogeneous transformation of NO into NO2 and HONO on MgO particles under ambient conditions. The uptake coefficients of NO were increased by 2-3 orders of magnitudes on SO2-aged MgO, compared to the fresh sample. Based on spectroscopic characterization and density functional theory (DFT) calculations, the active sites for the adsorption and oxidation of NO were determined to be sulfates, where an intermediate [SO4-NO] complex was formed during the adsorption. The decomposition of this species led to the formation of NO2 and the change of sulfate configuration. The formed NO2 could further react with surface sulfite to form HONO and sulfate. The conversion of NO to NO2 and HONO on the SO2-aged MgO surface under ambient conditions contributes a new formation pathway of NO2 and HONO and could be quite helpful for understanding the source of atmospheric oxidizing capacity as well as the formation of air pollution complexes in polluted regions such as the northern China.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Honghong Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingxin Ma
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, China
| | - Linlin Liang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Gen Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xiaoye Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, Chinese Academy of Meteorological Sciences, Beijing 100081, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Tamai K, Hosokawa S, Kato K, Asakura H, Teramura K, Tanaka T. Low-temperature NO oxidation using lattice oxygen in Fe-site substituted SrFeO 3-δ. Phys Chem Chem Phys 2020; 22:24181-24190. [PMID: 33000816 DOI: 10.1039/d0cp03726e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Improvement of the low-temperature activity for NO oxidation catalysts is a crucial issue to improve the NOx storage performance in automotive catalysts. We have recently reported that the lattice oxygen species in SrFeO3-δ (SFO) are reactive in the oxidation of NO to NO2 at low temperatures. The oxidation of NO using lattice oxygen species is a powerful means to oxidize NO in such kinetically restricted temperature regions. This paper shows that Fe-site substitution of SFO with Mn or Co improves the properties of lattice oxygen such as the temperature and amount of oxygen release/storage, resulting in the enhancement of the activity for NO oxidation in a low-temperature range. In particular, NO oxidation on SrFe0.8Mn0.2O3-δ is found to proceed even at extremely low temperatures <423 K. From oxygen release/storage profiles obtained by temperature-programmed reactions, Co doping into SFO increases the amount of released oxygen owing to the reducibility of the Co species and promotes the phase transformation to the brownmillerite phase. On the other hand, Mn doping does not increase the oxygen release amount and suppresses the phase transformation. However, it significantly decreases the oxygen migration barrier of SFO. Substitution with Mn renders the structure of SFO more robust and maintains the perovskite structure after the release of oxygen. Thus, the oxygen release properties are strongly dependent on the crystal structure change before and after oxygen release from the perovskite structure, which has a significant effect on NO oxidation and the NOx storage performance.
Collapse
Affiliation(s)
- Kazuki Tamai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Facile preparation of hollow MnOx-CeO2 composites with low Ce content and their catalytic performance in NO oxidation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Cao J, Zhou J, Liu J, Wang W, Chen J, Shi J, Zhang Y, Liu X. Sensing Behavior of Two Dimensional Al- and P-Doped WS 2 Toward NO, NO 2, and SO 2: an Ab Initio Study. NANOSCALE RESEARCH LETTERS 2020; 15:158. [PMID: 32757081 PMCID: PMC7406579 DOI: 10.1186/s11671-020-03391-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs), such as WS2, are considered to have the potential for high-performance gas sensors. It is a pity that the interaction between gases and pristine 2D WS2 as the sensitive element is too weak so that the sensor response is difficult to detect. Herein, the sensing capabilities of Al- and P-doped WS2 to NO, NO2, and SO2 were evaluated. Especially, we considered selectivity to target gases and dopant concentration. Molecular models of the adsorption systems were constructed, and density functional theory (DFT) was used to explore the adsorption behaviors of these gases from the perspective of binding energy, band structure, and density of states (DOS). The results suggested that doping atoms could increase the adsorption strength between gas molecules and substrate. Besides, the sensitivity of P-doped WS2 to NO and NO2 was hardly affected by CO2 or H2O. The sensitivity of Al-doped WS2 to NO2 and SO2 was also hard to be affected by CO2 or H2O. For NO detection, the WS2 with 7.4% dopant concentration had better sensitive properties than that with a 3.7% dopant concentration. While for SO2, the result was just the opposite. This work provided a comprehensive reference for choosing appropriate dopants (concentration) into 2D materials for sensing noxious gases.
Collapse
Affiliation(s)
- Jiamu Cao
- School of Astronautics, Harbin Institute of Technology, Harbin, China.
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, China.
- MEMS Center, Harbin Institute of Technology, Harbin, China.
| | - Jing Zhou
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Junfeng Liu
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Weiqi Wang
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Junyu Chen
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Jianing Shi
- School of Astronautics, Harbin Institute of Technology, Harbin, China
| | - Yufeng Zhang
- School of Astronautics, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, China
- MEMS Center, Harbin Institute of Technology, Harbin, China
| | - Xiaowei Liu
- School of Astronautics, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing, Ministry of Education, Harbin, China
- MEMS Center, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
42
|
Lyu P, Maurin G. Mechanistic Insight into the Catalytic NO Oxidation by the MIL-100 MOF Platform: Toward the Prediction of More Efficient Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02219] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pengbo Lyu
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | | |
Collapse
|
43
|
Chen C, Wang Y, Liu H, Chen Y, Yao J, Chen J, Hrynsphanb D, Tatsianab S. Heterologous expression and functional study of nitric oxide reductase catalytic reduction peptide from Achromobacter denitrificans strain TB. CHEMOSPHERE 2020; 253:126739. [PMID: 32464773 DOI: 10.1016/j.chemosphere.2020.126739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/21/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Biological denitrification is a promising and green technology for air pollution control. To investigate the nitric oxide reductase (NOR) that dominates NO reduction efficiency in biological purification, the heterologous prokaryotic expression system of the norB gene, which encodes the core peptide of the catalytic reduction structure in the NOR from Achromobacter denitrificans strain TB, was constructed in Escherichia coli BL21 (DE3). Results showed that the 1218 bp-long norB gene was expressed at the highest level under 1.0 mM IPTG for 5 h at 30 °C, and the relative expression abundance of norB in recombinant E. coli was increased by 16.6 times compared with that of the wild-type TB. However, the NO reduction efficiency and NOR activity of strain TB was 2.7 and 1.83 times higher than those of recombinant E. coli, respectively. On the basis of genomic reassembly and protein structure modeling, the core peptide of the NOR catalytic reduction structure from Achromobacter sp. TB can independently exert NO reduction. The low NO degradation efficiency of recombinant E. coli may be due to the lack of a NorC-like structure that increases the enzyme activity of the NorB protein. The results of this study can be used as basis for further research on the structure and function of NOR.
Collapse
Affiliation(s)
- Cong Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yu Wang
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huan Liu
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yi Chen
- College of Environmental, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Dzmitry Hrynsphanb
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsianab
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| |
Collapse
|
44
|
MnO2-supported catalytic bodies for selective reduction of NO with NH3: Influence of NO2 and H2O. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Zou X, Lou S, Yang C, Liu N, Wang X, Shi L, Meng X. Catalytic Oxidation of NO on N-doped Carbon Materials at Low Temperature. Catal Letters 2020. [DOI: 10.1007/s10562-020-03297-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Efficacy of Octahedral Molecular Sieves for green and sustainable catalytic reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Ciesielczyk F. Inorganic acids – technology background and future perspectives. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe presented chapter deals with technological aspects concerning industrial production of major inorganic chemicals such as sulfuric, nitric and phosphorous acids. The idea was to highlight the main assumptions related to their fabrication as well as to point out novel aspects and perspectives concerning their industry. The main attention will be paid to raw materials and their transformation in order to obtain indirect precursors of inorganic acids – acid anhydrides. Characteristics of the individual stages of synthesis, with a special regard to the process conditions will be also of key importance. The environmental impact of this particular technology will be raised and discussed. Finally, the review over recently published scientific papers, concerning innovative solutions in inorganic acids production, will be performed.
Collapse
Affiliation(s)
- Filip Ciesielczyk
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, PoznanPL-60965, Poland
| |
Collapse
|
49
|
Perovskite-Based Catalysts as Efficient, Durable, and Economical NOx Storage and Reduction Systems. Catalysts 2020. [DOI: 10.3390/catal10020208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Diesel engines operate under net oxidizing environment favoring lower fuel consumption and CO2 emissions than stoichiometric gasoline engines. However, NOx reduction and soot removal is still a technological challenge under such oxygen-rich conditions. Currently, NOx storage and reduction (NSR), also known as lean NOx trap (LNT), selective catalytic reduction (SCR), and hybrid NSR–SCR technologies are considered the most efficient control after treatment systems to remove NOx emission in diesel engines. However, NSR formulation requires high platinum group metals (PGMs) loads to achieve high NOx removal efficiency. This requisite increases the cost and reduces the hydrothermal stability of the catalyst. Recently, perovskites-type oxides (ABO3) have gained special attention as an efficient, economical, and thermally more stable alternative to PGM-based formulations in heterogeneous catalysis. Herein, this paper overviews the potential of perovskite-based formulations to reduce NOx from diesel engine exhaust gases throughout single-NSR and combined NSR–SCR technologies. In detail, the effect of the synthesis method and chemical composition over NO-to-NO2 conversion, NOx storage capacity, and NOx reduction efficiency is addressed. Furthermore, the NOx removal efficiency of optimal developed formulations is compared with respect to the current NSR model catalyst (1–1.5 wt % Pt–10–15 wt % BaO/Al2O3) in the absence and presence of SO2 and H2O in the feed stream, as occurs in the real automotive application. Main conclusions are finally summarized and future challenges highlighted.
Collapse
|
50
|
Stegmayer MÁ, Milt VG, Navascues N, Gamez E, Irusta S, Miró EE. Cobalt deposited on micro and nanometric structures of ceria and zirconia applied in diesel soot combustion. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2018.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|