1
|
Ghosh A, Thoburn JD, Nitschke JR. Light-Responsive Aldehyde-Reduction Catalysis Through Catalyst Encapsulation. Angew Chem Int Ed Engl 2024:e202419575. [PMID: 39530278 DOI: 10.1002/anie.202419575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
We report a light-responsive tetrahedral metal-organic capsule that binds a perrhenate catalyst, which is released selectively upon irradiation with 350 nm light, turning on the catalytic reduction of organic carbonyls by hydrosilanes. The catalytic activity can be switched off by heating at 75 °C for 2.5 h, which stimulates capsule reformation and catalyst re-encapsulation. Multiple on-off cycles were shown, with a clear relationship between product yield and light irradiation time. Encapsulation thus enables the coupling of light-responsiveness to catalysis in a manner that might be generalized to other catalysts and capsules.
Collapse
Affiliation(s)
- Amit Ghosh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| | - John D Thoburn
- Department of Chemistry, Randolph Macon College, Ashland, 23005, USA
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
3
|
Guzmán J, Urriolabeitia A, Padilla M, García-Orduña P, Polo V, Fernández-Alvarez FJ. Mechanism Insights into the Iridium(III)- and B(C 6F 5) 3-Catalyzed Reduction of CO 2 to the Formaldehyde Level with Tertiary Silanes. Inorg Chem 2022; 61:20216-20221. [PMID: 36472385 PMCID: PMC10468102 DOI: 10.1021/acs.inorgchem.2c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 12/12/2022]
Abstract
The catalytic system [Ir(CF3CO2)(κ2-NSiMe)2] [1; NSiMe = (4-methylpyridin-2-yloxy)dimethylsilyl]/B(C6F5)3 promotes the selective reduction of CO2 with tertiary silanes to the corresponding bis(silyl)acetal. Stoichiometric and catalytic studies evidenced that species [Ir(CF3COO-B(C6F5)3)(κ2-NSiMe)2] (3), [Ir(κ2-NSiMe)2][HB(C6F5)3] (4), and [Ir(HCOO-B(C6F5)3)(κ2-NSiMe)2] (5) are intermediates of the catalytic process. The structure of 3 has been determined by X-ray diffraction methods. Theoretical calculations show that the rate-limiting step for the 1/B(C6F5)3-catalyzed hydrosilylation of CO2 to bis(silyl)acetal is a boron-promoted Si-H bond cleavage via an iridium silylacetal borane adduct.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Asier Urriolabeitia
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Marina Padilla
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Pilar García-Orduña
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| | - Víctor Polo
- Facultad
de Ciencias, Departamento de Química Física, BIFI, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Francisco J. Fernández-Alvarez
- Facultad
de Ciencias, Departamento de Química Inorgánica, Instituto
de Síntesis Química y Catálisis Homogénea, Universidad de Zaragoza, CSIC, Zaragoza 50009, Spain
| |
Collapse
|
4
|
Ayyappan R, Abdalghani I, Da Costa RC, Owen GR. Recent developments on the transformation of CO 2 utilising ligand cooperation and related strategies. Dalton Trans 2022; 51:11582-11611. [PMID: 35839074 DOI: 10.1039/d2dt01609e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A portfolio of value-added chemicals, fuels and building block compounds can be envisioned from CO2 on an industrial scale. The high kinetic and thermodynamic stabilities of CO2, however, present a significant barrier to its utilisation as a C1 source. In this context, metal-ligand cooperation methodologies have emerged as one of the most dominant strategies for the transformation of the CO2 molecule over the last decade or so. This review focuses on the advancements in CO2 transformation using these cooperative methodologies. Different and well-studied ligand cooperation methodologies, such as dearomatisation-aromatisation type cooperation, bimetallic cooperation (M⋯M'; M' = main group or transition metal) and other related strategies are also discussed. Furthermore, the cooperative bond activations are subdivided based on the number of atoms connecting the reactive centre in the ligand framework (spacer/linker length) and the transition metal. Several similarities across these seemingly distinct cooperative methodologies are emphasised. Finally, this review brings out the challenges ahead in developing catalytic systems from these CO2 transformations.
Collapse
Affiliation(s)
- Ramaraj Ayyappan
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | - Issam Abdalghani
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| | | | - Gareth R Owen
- School of Applied Science, University of South Wales, Treforest, CF37 4AT, UK.
| |
Collapse
|
5
|
Ruccolo S, Sambade D, Shlian DG, Amemiya E, Parkin G. Catalytic reduction of carbon dioxide by a zinc hydride compound, [Tptm]ZnH, and conversion to the methanol level. Dalton Trans 2022; 51:5868-5877. [PMID: 35343979 DOI: 10.1039/d1dt04156h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The zinc hydride compound, [Tptm]ZnH, may achieve the reduction of CO2 by (RO)3SiH (R = Me, Et) to the methanol oxidation level, (MeO)xSi(OR)4-x, via the formate species, HCO2Si(OR)3. However, because insertion of CO2 into the Zn-H bond is more facile than insertion of HCO2Si(OR)3, conversion of HCO2Si(OR)3 to the methanol level only occurs to a significant extent in the absence of CO2.
Collapse
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - David Sambade
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Daniel G Shlian
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Erika Amemiya
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
6
|
González T, García JJ. Catalytic CO2 hydrosilylation with [Mn(CO)5Br] under mild reaction conditions. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Wu S, Huang Z, Jiang X, Yan F, Li Y, Du CX. Recyclable Oxofluorovanadate-Catalyzed Formylation of Amines by Reductive Functionalization of CO 2 with Hydrosilanes. CHEMSUSCHEM 2021; 14:1763-1766. [PMID: 33587333 DOI: 10.1002/cssc.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/14/2021] [Indexed: 06/12/2023]
Abstract
An efficient method has been developed for the reductive amination of CO2 by using readily available and recyclable oxofluorovanadates as catalysts. Various amines are transformed into the desired N-formylated products in moderate to excellent yields at room temperature in the presence of phenylsilane. Mechanistic studies based on in situ infrared spectroscopy suggest a reaction pathway initiated through F-Si interactions. The activated phenylsilane allows for CO2 insertion to produce phenylsilyl formate, which undergoes attack by the amine to generate the target product.
Collapse
Affiliation(s)
- Shanxuan Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zijun Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, P. R. China
| | - Xiaolin Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fachao Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Center for Excellence in Molecular Synthesis, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chen-Xia Du
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
8
|
Caise A, Hicks J, Ángeles Fuentes M, Goicoechea JM, Aldridge S. Partnering a Three-Coordinate Gallium Cation with a Hydroborate Counter-Ion for the Catalytic Hydrosilylation of CO 2. Chemistry 2021; 27:2138-2148. [PMID: 33169886 DOI: 10.1002/chem.202004408] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 12/16/2022]
Abstract
A novel β-diketiminate stabilized gallium hydride, (Dipp L)Ga(Ad)H (where (Dipp L)={HC(MeCDippN)2 }, Dipp=2,6-diisopropylphenyl and Ad=1-adamantyl), has been synthesized and shown to undergo insertion of carbon dioxide into the Ga-H bond under mild conditions. In this case, treatment of the resulting κ1 -formate complex with triethylsilane does not lead to regeneration of the hydride precursor. However, when combined with B(C6 F5 )3 , (Dipp L)Ga(Ad)H catalyses the reductive hydrosilylation of CO2 . Under stoichiometric conditions, the addition of one equivalent of B(C6 F5 )3 to (Dipp L)Ga(Ad)H leads to the formation of a 3-coordinate cationic gallane complex, partnered with a hydroborate anion, [(Dipp L)Ga(Ad)][HB(C6 F5 )3 ]. This complex rapidly hydrometallates carbon dioxide and catalyses the selective reduction of CO2 to the formaldehyde oxidation level at 60 °C in the presence of Et3 SiH (yielding H2 C(OSiEt3 )2 ). When catalysis is undertaken in the presence of excess B(C6 F5 )3 , appreciable enhancement of activity is observed, with a corresponding reduction in selectivity: the product distribution includes H2 C(OSiEt3 )2 , CH4 and O(SiEt3 )2 . While this system represents proof-of-concept in CO2 hydrosilylation by a gallium hydride system, the TOF values obtained are relatively modest (max. 10 h-1 ). This is attributed to the strength of binding of the formatoborate anion to the gallium centre in the catalytic intermediate (Dipp L)Ga(Ad){OC(H)OB(C6 F5 )3 }, and the correspondingly slow rate of the turnover-limiting hydrosilylation step. In turn, this strength of binding can be related to the relatively high Lewis acidity measured for the [(Dipp L)Ga(Ad)]+ cation (AN=69.8).
Collapse
Affiliation(s)
- Alexa Caise
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jamie Hicks
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - M Ángeles Fuentes
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Jose M Goicoechea
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Simon Aldridge
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| |
Collapse
|
9
|
Xie S, Zhang W, Lan X, Lin H. CO 2 Reduction to Methanol in the Liquid Phase: A Review. CHEMSUSCHEM 2020; 13:6141-6159. [PMID: 33137230 DOI: 10.1002/cssc.202002087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Indexed: 05/19/2023]
Abstract
Excessive carbon dioxide (CO2 ) emissions have been subject to extensive attention globally, since an enhanced greenhouse effect (global warming) owing to a high CO2 concentration in the atmosphere could lead to severe climate change. The use of solar energy and other renewable energy to produce low-cost hydrogen, which is used to reduce CO2 to produce bulk chemicals such as methanol, is a sustainable strategy for reducing carbon dioxide emissions and carbon resources. CO2 conversion into methanol is exothermic, so that low temperature and high pressure are favorable for methanol formation. CO2 is usually captured and recovered in the liquid phase. Herein, the emerging technologies for the hydrogenation of CO2 to methanol in the condensed phase are reviewed. The development of homogeneous and heterogeneous catalysts for this important hydrogenation reaction is summarized. Finally, mechanistic insight on CO2 's conversion into methanol over different catalysts is discussed by taking the available reaction pathways into account.
Collapse
Affiliation(s)
- Shaoqu Xie
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Wanli Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xingying Lan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, P. R. China
| | - Hongfei Lin
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Leong BX, Teo YC, Condamines C, Yang MC, Su MD, So CW. A NHC-Silyliumylidene Cation for Catalytic N-Formylation of Amines Using Carbon Dioxide. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03795] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yeow-Chuan Teo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Cloé Condamines
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| |
Collapse
|
11
|
Ishida S, Hatakeyama T, Nomura T, Matsumoto M, Yoshimura K, Kyushin S, Iwamoto T. A Six‐Coordinate Silicon Dihydride Embedded in a Porphyrin: Enhanced Hydride‐Donor Properties and the Catalyst‐Free Hydrosilylation of CO
2. Chemistry 2020; 26:15811-15815. [DOI: 10.1002/chem.202002587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Shintaro Ishida
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku Sendai 9808578 Japan
| | - Takuroh Hatakeyama
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku Sendai 9808578 Japan
| | - Takuya Nomura
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku Sendai 9808578 Japan
| | - Maiko Matsumoto
- Division of Molecular Science Graduate School of Science and Technology Gunma University Kiryu 3768515 Japan
| | - Kimio Yoshimura
- Division of Molecular Science Graduate School of Science and Technology Gunma University Kiryu 3768515 Japan
| | - Soichiro Kyushin
- Division of Molecular Science Graduate School of Science and Technology Gunma University Kiryu 3768515 Japan
| | - Takeaki Iwamoto
- Department of Chemistry Graduate School of Science Tohoku University Aoba-ku Sendai 9808578 Japan
| |
Collapse
|
12
|
Gopakumar A, Lombardo L, Fei Z, Shyshkanov S, Vasilyev D, Chidambaram A, Stylianou K, Züttel A, Dyson PJ. A polymeric ionic liquid catalyst for the N-formylation and N-methylation of amines using CO2/PhSiH3. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Donnelly LJ, Parsons S, Morrison CA, Thomas SP, Love JB. Synthesis and structures of anionic rhenium polyhydride complexes of boron-hydride ligands and their application in catalysis. Chem Sci 2020; 11:9994-9999. [PMID: 34094263 PMCID: PMC8162066 DOI: 10.1039/d0sc03458d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rhenium complex, [K(DME)(18-c-6)][ReH4(Bpin)(η2-HBpin)(κ2-H2Bpin)] 1, comprising hydride and boron ligands only, has been synthesized by exhaustive deoxygenation of the commercially available perrhenate anion (ReO4 -) with pinacol borane (HBpin). The structure of 1 was analysed by X-ray crystallography, NMR spectroscopy, and DFT calculations. While no hydrides were located in the X-ray crystal structure, it revealed a trigonal arrangement of pinacol boron ligands. Variable-temperature NMR spectroscopy supported the presence of seven hydride ligands but further insight was hindered by the fluxionality of both hydride and boron ligands at low temperature. Further evaluation of the structure by Ab Initio Random Structure Searching (AIRSS) identified the presence of hydride, boryl, σ-borane, and dihydroborate ligands. This complex, either isolated or prepared in situ, is a catalyst for the 1,4-hydroboration of N-heteroaromatic substrates under simple operating procedures. It also acts as a reagent for the stoichiometric C-H borylation of toluene, displaying high meta regioselectivity in the borylated products. Reaction of 1 with 9-BBN resulted in HBpin substitution to form the new anionic tetra(dihydroborate) complex [K(DME)(18-c-6)][Re(κ2-H-9-BBN)4] 4 for which the hydride positions were clearly identified by X-ray crystallography. The method used to generate these isolable yet reactive boron-hydride complexes is direct and straightforward and has potential utility for the exploitation of other metal oxo compounds in operationally simple catalytic reactions.
Collapse
Affiliation(s)
- Liam J Donnelly
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Simon Parsons
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Carole A Morrison
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| | - Jason B Love
- EaStCHEM School of Chemistry, University of Edinburgh Joseph Black Building, David Brewster Road, The King's Buildings Edinburgh EH9 3FJ UK
| |
Collapse
|
14
|
Cramer HH, Chatterjee B, Weyhermüller T, Werlé C, Leitner W. Controlling the Product Platform of Carbon Dioxide Reduction: Adaptive Catalytic Hydrosilylation of CO 2 Using a Molecular Cobalt(II) Triazine Complex. Angew Chem Int Ed Engl 2020; 59:15674-15681. [PMID: 32343876 PMCID: PMC7496264 DOI: 10.1002/anie.202004463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/23/2023]
Abstract
The catalytic reduction of carbon dioxide (CO2 ) is considered a major pillar of future sustainable energy systems and chemical industries based on renewable energy and raw materials. Typically, catalysts and catalytic systems are transforming CO2 preferentially or even exclusively to one of the possible reduction levels and are then optimized for this specific product. Here, we report a cobalt-based catalytic system that enables the adaptive and highly selective transformation of carbon dioxide individually to either the formic acid, the formaldehyde, or the methanol level, demonstrating the possibility of molecular control over the desired product platform.
Collapse
Affiliation(s)
- Hanna H. Cramer
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
15
|
Sarkar D, Weetman C, Dutta S, Schubert E, Jandl C, Koley D, Inoue S. N-Heterocyclic Carbene-Stabilized Germa-acylium Ion: Reactivity and Utility in Catalytic CO2 Functionalizations. J Am Chem Soc 2020; 142:15403-15411. [DOI: 10.1021/jacs.0c06287] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debotra Sarkar
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Catherine Weetman
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Emeric Schubert
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Christian Jandl
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Shigeyoshi Inoue
- Department of Chemistry, WACKER-Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Cramer HH, Chatterjee B, Weyhermüller T, Werlé C, Leitner W. Controlling the Product Platform of Carbon Dioxide Reduction: Adaptive Catalytic Hydrosilylation of CO
2
Using a Molecular Cobalt(II) Triazine Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Hanna H. Cramer
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
17
|
Guzmán J, García-Orduña P, Lahoz FJ, Fernández-Alvarez FJ. Unprecedent formation of methylsilylcarbonates from iridium-catalyzed reduction of CO2 with hydrosilanes. RSC Adv 2020; 10:9582-9586. [PMID: 35497254 PMCID: PMC9050147 DOI: 10.1039/d0ra00204f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/23/2020] [Indexed: 11/21/2022] Open
Abstract
The iridium complex [Ir(μ-CF3SO3)(κ2-NSiMe2)2]2 (3) (NSiMe2 = {4-methylpyridine-2-yloxy}dimethylsilyl) has been prepared by reaction of [Ir(μ-Cl)(κ2-NSiMe2)2]2 (1) with two equivalents of AgCF3SO3. The solid structure of 3 evidenced its dinuclear nature, being a rare example of an iridium species with triflate groups acting as bridges. The 3-catalyzed reduction of CO2 with HSiMe(OSiMe3)2 affords a mixture of the corresponding silylformate and methoxysilane together with the silylcarbonate CH3OCO2SiMe(OSiMe3)2 (4a). This is the first time that the formation of silylcarbonates has been observed from the catalytic reduction of CO2 with silanes. Analogous behaviour has been observed when HSiMe2Ph and HSiMePh2 were used as reductants. The formation of methylsilylcarbonates from the iridium-catalyzed hydrosilylation of CO2 has been observed for the first time.![]()
Collapse
Affiliation(s)
- Jefferson Guzmán
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Facultad de Ciencias
- Zaragoza
| | - Pilar García-Orduña
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Facultad de Ciencias
- Zaragoza
| | - Fernando J. Lahoz
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Facultad de Ciencias
- Zaragoza
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Facultad de Ciencias
- Zaragoza
| |
Collapse
|
18
|
Fernández-Alvarez FJ, Oro LA. Iridium-Catalyzed Homogeneous Hydrogenation and Hydrosilylation of Carbon Dioxide. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Zhang Q, Fukaya N, Fujitani T, Choi JC. Carbon Dioxide Hydrosilylation to Methane Catalyzed by Zinc and Other First-Row Transition Metal Salts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190203] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Qiao Zhang
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Central 5, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
20
|
Chen J, McGraw M, Chen EYX. Diverse Catalytic Systems and Mechanistic Pathways for Hydrosilylative Reduction of CO 2. CHEMSUSCHEM 2019; 12:4543-4569. [PMID: 31386795 DOI: 10.1002/cssc.201901764] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/03/2019] [Indexed: 06/10/2023]
Abstract
Catalytic hydrosilylation of carbon dioxide has emerged as a promising approach for carbon dioxide utilization. It allows the reductive transformation of carbon dioxide into value-added products at the levels of formate, formaldehyde, methanol, and methane. Tremendous progress has been made in the area of carbon dioxide hydrosilylation since the first reports in 1981. This focus review describes recent advances in the design and catalytic performance of leading catalyst systems, including transition-metal, main-group, and transition-metal/main-group and main-group/main-group tandem catalysts. Emphasis is placed on discussions of key mechanistic features of these systems and efforts towards the development of more selective, efficient, and sustainable carbon dioxide hydrosilylation processes.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Michael McGraw
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
21
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C−N Bond Forming Reactions of Amines with CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
22
|
Hulla M, Dyson PJ. Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO 2. Angew Chem Int Ed Engl 2019; 59:1002-1017. [PMID: 31364789 DOI: 10.1002/anie.201906942] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Indexed: 01/12/2023]
Abstract
Organocatalysts promote a range of C-N bond forming reactions of amines with CO2 . Herein, we review these reactions and attempt to identify the unifying features of the catalysts that allows them to promote a multitude of seemingly unrelated reactions. Analysis of the literature shows that these reactions predominantly proceed by carbamate salt formation in the form [BaseH][RR'NCOO]. The anion of the carbamate salt acts as a nucleophile in hydrosilane reductions of CO2 , internal cyclization reactions or after dehydration as an electrophile in the synthesis of urea derivatives. The reactions are enhanced by polar aprotic solvents and can be either promoted or hindered by H-bonding interactions. The predominant role of all types of organic and salt catalysts (including ionic liquids, ILs) is the stabilization of the carbamate salt, mostly by acting as a base. Catalytic enhancement depends on the combination of the amine, the base strength, the solvent, steric factors, ion pairing and H-bonding. A linear relationship between the base strength and the reaction yield has been demonstrated with IL catalysts in the synthesis of formamides and quinazoline-2,4-diones. The role of organocatalysts in the reactions indicates that all bases of sufficient strength should be able to catalyze the reactions. However, a physical limit to the extent of a purely base catalyzed reaction mechanism should exist, which needs to be identified, understood and overcome by synergistic or alternative methods.
Collapse
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
23
|
Iglesias M, Fernández-Alvarez FJ, Oro LA. Non-classical hydrosilane mediated reductions promoted by transition metal complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Leszczyńska-Sejda K, Benke G, Malarz J, Ciszewski M, Kopyto D, Piątek J, Drzazga M, Kowalik P, Zemlak K, Kula B. Rhenium(VII) Compounds as Inorganic Precursors for the Synthesis of Organic Reaction Catalysts. Molecules 2019; 24:molecules24081451. [PMID: 31013720 PMCID: PMC6514865 DOI: 10.3390/molecules24081451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022] Open
Abstract
Rhenium is an element that exhibits a broad range of oxidation states. Synthesis paths of selected rhenium compounds in its seventh oxidation state, which are common precursors for organic reaction catalysts, were presented in this paper. Production technologies for copper perrhenate, aluminum perrhenate as well as the ammonia complex of cobalt perrhenate, are thoroughly described. An ion exchange method, based on Al or Cu metal ion sorption and subsequent elution by aqueous perrhenic acid solutions, was used to obtain perrhenates. The produced solutions were neutralized to afford the targeted aluminum perrhenate and copper perrhenate products in high purity. The developed technologies allow one to manage the wastes from the production of these perrhenates as most streams were recycled. Hexaamminecobalt(III) perrhenate was produced by a newly developed method enabling us to produce a high purity compound in a reaction of spent hexaamminecobalt(III) chloride solution with a perrhenic acid. All prepared compounds are the basis for precursor preparation in organic catalysis.
Collapse
Affiliation(s)
| | - Grzegorz Benke
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Joanna Malarz
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Mateusz Ciszewski
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Dorota Kopyto
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Jędrzej Piątek
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Michał Drzazga
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Patrycja Kowalik
- Hydrometallurgy Department, Instytut Metali Nieżelaznych (IMN), ul. Sowińskiego 5, 44-100 Gliwice, Poland.
| | - Krzysztof Zemlak
- Syntal Chemicals Sp. z o.o., ul Łabędzka 59. 44-121 Gliwice, Poland.
| | - Bartłomiej Kula
- Syntal Chemicals Sp. z o.o., ul Łabędzka 59. 44-121 Gliwice, Poland.
| |
Collapse
|
25
|
Zhang X, Sun J, Wei G, Liu Z, Yang H, Wang K, Fei H. In Situ Generation of an N‐Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO
2. Angew Chem Int Ed Engl 2019; 58:2844-2849. [DOI: 10.1002/anie.201813064] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/02/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Xu Zhang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Jiao Sun
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Zhipan Liu
- Collaborative Innovation Center of Chemistry for Energy MaterialShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsKey Laboratory of Computational Physical Science (Ministry of Education)Department of ChemistryFudan University Shanghai 200043 China
| | - Huimin Yang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Kaimin Wang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
26
|
Zhang X, Sun J, Wei G, Liu Z, Yang H, Wang K, Fei H. In Situ Generation of an N‐Heterocyclic Carbene Functionalized Metal–Organic Framework by Postsynthetic Ligand Exchange: Efficient and Selective Hydrosilylation of CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xu Zhang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Jiao Sun
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Zhipan Liu
- Collaborative Innovation Center of Chemistry for Energy MaterialShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsKey Laboratory of Computational Physical Science (Ministry of Education)Department of ChemistryFudan University Shanghai 200043 China
| | - Huimin Yang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Kaimin Wang
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji University 1239 Siping Rd. Shanghai 200092 China
| |
Collapse
|
27
|
Guzmán J, García-Orduña P, Polo V, Lahoz FJ, Oro LA, Fernández-Alvarez FJ. Ir-catalyzed selective reduction of CO2 to the methoxy or formate level with HSiMe(OSiMe3)2. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02353k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ir-NSi-based catalysts allow controlling the selective reduction of CO2 with HSiMe(OSiMe3)2 to afford methoxysilane or silyl formate.
Collapse
Affiliation(s)
- Jefferson Guzmán
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Pilar García-Orduña
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Víctor Polo
- Departamento de Química Física – Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) – Universidad de Zaragoza
- Zaragoza
- Spain
| | - Fernando J. Lahoz
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica – Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)
- Universidad de Zaragoza
- Zaragoza
- Spain
| |
Collapse
|
28
|
Bertini F, Glatz M, Stöger B, Peruzzini M, Veiros LF, Kirchner K, Gonsalvi L. Carbon Dioxide Reduction to Methanol Catalyzed by Mn(I) PNP Pincer Complexes under Mild Reaction Conditions. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Federica Bertini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| | - Mathias Glatz
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Berthold Stöger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Maurizio Peruzzini
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
- Consiglio Nazionale delle Ricerche, Dipartimento di Scienze Chimiche e Tecnologia dei Materiali (CNR-DSCTM), Via dei Taurini 19, 00185 Rome, Italy
| | - Luis F. Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luca Gonsalvi
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica dei Composti Organometallici (ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
29
|
Paridala K, Lu SM, Wang MM, Li C. Tandem one-pot CO 2 reduction by PMHS and silyloxycarbonylation of aryl/vinyl halides to access carboxylic acids. Chem Commun (Camb) 2018; 54:11574-11577. [PMID: 30259918 DOI: 10.1039/c8cc06820h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study discloses the synthesis of aryl/vinyl carboxylic acids from Csp2-bound halides (Cl, Br, I) in a carbonylative path by using silyl formate (from CO2 and hydrosilane) as an instant CO-surrogate. Hydrosilane provides hydride for reduction and its oxidation product silanol serves as a coupling partner. Mono-, di-, and tri-carboxylic acids were obtained from the corresponding aryl/vinyl halides.
Collapse
Affiliation(s)
- Kumaraswamy Paridala
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China.
| | | | | | | |
Collapse
|
30
|
Hulla M, Laurenczy G, Dyson PJ. Mechanistic Study of the N-Formylation of Amines with Carbon Dioxide and Hydrosilanes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03274] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Martin Hulla
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gabor Laurenczy
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Gopakumar A, Akçok I, Lombardo L, Le Formal F, Magrez A, Sivula K, J. Dyson P. Iron-Rich Natural Mineral Gibeon Meteorite Catalyzed N
-formylation of Amines using CO2
as the C1 Source. ChemistrySelect 2018. [DOI: 10.1002/slct.201802646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Aswin Gopakumar
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Ismail Akçok
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Loris Lombardo
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Florian Le Formal
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Arnaud Magrez
- Institute of Physics (IPHYS), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Kevin Sivula
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| | - Paul J. Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique fédérale de Lausanne (EPFL), CH-1015, Switzerland
| |
Collapse
|
32
|
Fernández‐Alvarez FJ, Oro LA. Homogeneous Catalytic Reduction of CO
2
with Silicon‐Hydrides, State of the Art. ChemCatChem 2018. [DOI: 10.1002/cctc.201800699] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Francisco J. Fernández‐Alvarez
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica Instituto de Síntesis Química y Catálisis Homogénea (ISQCH)Universidad de Zaragoza Facultad de Ciencias 50009 Zaragoza Spain
- Center of Refining & PetrochemicalsKing Fahd University of Petroleum & Minerals 31261 Dhahran Saudi Arabia
| |
Collapse
|
33
|
Julián A, Garcés K, Lalrempuia R, Jaseer EA, García-Orduña P, Fernández-Alvarez FJ, Lahoz FJ, Oro LA. Reactivity of Ir-NSiN Complexes: Ir-Catalyzed Dehydrogenative Silylation of Carboxylic Acids. ChemCatChem 2018. [DOI: 10.1002/cctc.201701488] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alejandro Julián
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
| | - Karin Garcés
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
| | - Ralte Lalrempuia
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
- Department of Chemistry; University of Bergen; Allégaten 41 N-5007 Bergen Norway
| | - E. A. Jaseer
- Center of Refining & Petrochemicals; King Fahd University of Petroleum & Minerals; 31261 Dhahran Saudi Arabia
| | - Pilar García-Orduña
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
| | - Francisco J. Fernández-Alvarez
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
| | - Fernando J. Lahoz
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
| | - Luis A. Oro
- Departamento de Química Inorgánica-, Instituto de Síntesis Química y Catálisis Homogénea, ISQCH; Universidad de Zaragoza; Facultad de Ciencias 50009 Zaragoza Spain
- Center of Refining & Petrochemicals; King Fahd University of Petroleum & Minerals; 31261 Dhahran Saudi Arabia
| |
Collapse
|
34
|
Recent Advances on CO2 Utilization as C1 Building Block in C-N and C-O Bond Formation. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Rauch M, Parkin G. Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide. J Am Chem Soc 2017; 139:18162-18165. [DOI: 10.1021/jacs.7b10776] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Michael Rauch
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Gerard Parkin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|