1
|
Cegolon L, Covelli S, Patriarca E, Petranich E, Floreani F, Sansone D, Mastrangelo G, Larese Filon F. Contrasting hair mercury in fishermen and workers of fish industry of Marano Lagunare (Upper Adriatic Sea), a coastal lagoon area contaminated by mining and industrial activities, against residents from the Dolomites Alps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178039. [PMID: 39893809 DOI: 10.1016/j.scitotenv.2024.178039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 02/04/2025]
Abstract
This survey aimed at estimating the concentration of hair mercury (Hg) in fishermen and workers of fish industry of Marano Lagunare (North-eastern Italy, Upper Adriatic Sea). A field investigation was conducted from 2nd of December 2023 through 18th April 2024, on 73 local fishermen, 83 workers of fish industry and 93 controls among residents (mainly farmers/herdsmen) of the Dolomites Alps. An amount of approximately 100 mg of hair was collected from all respondents, who were also asked to fill out a self-administered questionnaire collecting socio-demographic and lifestyles information. The median hair Hg concentration was 2.56 mg/kg in fishermen, 2.31 mg/kg in workers of fish industry and 0.58 mg/kg in controls. Compared with controls from the Dolomites, log-transformed hair Hg increased linearly with the amount of fish consumed (>1 meal per week), consumption of fresh fish and was significantly higher in fish dealers/fish restaurateurs and fishermen, regardless if operating on open sea or lagoon. All study groups but fish farmers and local residents involved in other business exhibited significantly higher odds of hair Hg >2 mg/kg at multiple logistic regression analysis. Whilst above the threshold background exposure recommended by WHO for the general population, the median levels of hair Hg in fishermen and workers of fish industry of Marano Lagunare were still below the cut-off of no health effects observed on human health (11.5 mg/kg). The above evidence most likely reflects contamination of lagoon bed and respective tributary river beds by sedimentary Hg from mining and industrial activities, with subsequent transfer of the metal into the aquatic trophic chain and from there to humans through consumption of local fish.
Collapse
Affiliation(s)
- Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy.
| | - Stefano Covelli
- University of Trieste, Department of Mathematics, Informatics and Geosciences, Trieste, Italy
| | - Emilia Patriarca
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy
| | - Elisa Petranich
- University of Trieste, Department of Mathematics, Informatics and Geosciences, Trieste, Italy
| | - Federico Floreani
- University of Trieste, Department of Mathematics, Informatics and Geosciences, Trieste, Italy
| | - Donatella Sansone
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy
| | | | - Francesca Larese Filon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Occupational Medicine Unit, Trieste, Italy
| |
Collapse
|
2
|
Hao YY, Capo E, Yang Z, Wen S, Hu ZC, Feng J, Huang Q, Gu B, Liu YR. Distribution and Environmental Preference of Potential Mercury Methylators in Paddy Soils across China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2059-2069. [PMID: 39823367 DOI: 10.1021/acs.est.4c05242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The neurotoxin methylmercury (MeHg) is produced mainly from the transformation of inorganic Hg by microorganisms carrying the hgcAB gene pair. Paddy soils are known to harbor diverse microbial communities exhibiting varying abilities in methylating inorganic Hg, but their distribution and environmental drivers remain unknown at a large spatial scale. Using hgcA gene amplicon sequencing, this study examined Hg-methylating communities from major rice-producing paddy soils across a transect of ∼3600 km and an altitude of ∼1300 m in China. Results showed that hgcA+ OTU richness was higher in tropical and subtropical paddy soils compared to temperate zones. Geobacteraceae, Smithellaceae, and Methanoregulaceae were identified as the dominant hgcA+ families associated with MeHg production, collectively accounting for up to 77% of total hgcA+ sequences. Hierarchical partitioning analyses revealed that pH was the main driver of hgcA genes from Geobacteraceae (14.8%) and Methanoregulaceae (16.3%), while altitude accounted for 21.4% of hgcA genes from Smithellaceae. Based on these environmental preferences, a machine-learning algorithm was used to predict the spatial distribution of these dominant hgcA+ families, thereby providing novel insights into important microbial determinants for improved prediction of MeHg production in paddy soils across China.
Collapse
Affiliation(s)
- Yun-Yun Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, 907 36 Umeå, Sweden
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, United States
| | - Shuhai Wen
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi-Cheng Hu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Liang H, Wang S, Xu P, Wang M, Liang P, Wu S, Zhang J, Wong MH. Converting flooded rice to dry farming can alleviate MeHg accumulation in grains. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116817. [PMID: 39083863 DOI: 10.1016/j.ecoenv.2024.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
The study explored the impact of water management on rice cultivation in mercury-contaminated paddy soil. The objective was to analyze the characteristics of mercury translocation by converting flooded soils to dry farming (non-flooded) to alleviate mercury accumulation in rice grains. The experiment was conducted over three consecutive rice-growing seasons, employing two distinct water management models: a continuously flooded rice cultivation mode and a flooded rice planting mode in the first season, followed by a non-flooded rice farming mode in the second and third seasons. The results showed that the change from flooded to non-flooded rice cultivation patterns presented extremely excellent environmental potential for inhibiting the uptake of both methylmercury and total mercury in rice. When transitioning from flooded cultivation to dry farming, the concentration of methylmercury and total mercury in the grains of non-flooded rice decreased by 87.15 % and 9.57 %, respectively, compared to that in the grains of flooded rice. In the third season, the methylmercury and total mercury in the grains of non-flooded rice decreased further by 95.03 % and 69.45 %, respectively. This study verified that the conversion of rice cultivation from flooded to non-flooded is an efficient strategy for suppressing the accumulation of methylmercury in rice grains, and it might offer a promising solution for managing soil mercury risks and ensuring the safety of rice for human consumption.
Collapse
Affiliation(s)
- Huang Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; School of Geography and Resource Science, Neijiang Normal University, Neijiang 641100, China
| | - Ping Xu
- China National Rice Research Institute, Hangzhou 311401, China
| | - Minyan Wang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Province Key Laboratory of Soil Contamination and Bioremediation, Hangzhou 311300, China
| | - Jin Zhang
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
Boie F, Ducey TF, Xing Y, Wang J, Rinklebe J. Field-aged rice hull biochar stimulated the methylation of mercury and altered the microbial community in a paddy soil under controlled redox condition changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134446. [PMID: 38696958 DOI: 10.1016/j.jhazmat.2024.134446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 05/04/2024]
Abstract
Mercury (Hg) contaminated paddy soils are hot spots for methylmercury (MeHg) which can enter the food chain via rice plants causing high risks for human health. Biochar can immobilize Hg and reduce plant uptake of MeHg. However, the effects of biochar on the microbial community and Hg (de)methylation under dynamic redox conditions in paddy soils are unclear. Therefore, we determined the microbial community in an Hg contaminated paddy soil non-treated and treated with rice hull biochar under controlled redox conditions (< 0 mV to 600 mV) using a biogeochemical microcosm system. Hg methylation exceeded demethylation in the biochar-treated soil. The aromatic hydrocarbon degraders Phenylobacterium and Novosphingobium provided electron donors stimulating Hg methylation. MeHg demethylation exceeded methylation in the non-treated soil and was associated with lower available organic matter. Actinobacteria were involved in MeHg demethylation and interlinked with nitrifying bacteria and nitrogen-fixing genus Hyphomicrobium. Microbial assemblages seem more important than single species in Hg transformation. For future directions, the demethylation potential of Hyphomicrobium assemblages and other nitrogen-fixing bacteria should be elucidated. Additionally, different organic matter inputs on paddy soils under constant and dynamic redox conditions could unravel the relationship between Hg (de)methylation, microbial carbon utilization and nitrogen cycling.
Collapse
Affiliation(s)
- Felizitas Boie
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Thomas F Ducey
- US Department of Agriculture, Coastal Plains Soil, Water, Plant Research Center, 2611 West Lucas Street, Florence, SC, USA
| | - Ying Xing
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550002, PR China
| | - Jianxu Wang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550082 Guiyang, P.R. China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
5
|
Feng G, Gong S. Functional Genes and Transcripts Indicate the Existent and Active Microbial Mercury-Methylating Community in Mangrove Intertidal Sediments of an Urbanized Bay. Microorganisms 2024; 12:1245. [PMID: 38930626 PMCID: PMC11205478 DOI: 10.3390/microorganisms12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Mercury (Hg) methylation in mangrove sediments can result in the accumulation of neurotoxic methylmercury (MeHg). Identification of Hg methyltransferase gene hgcA provides the means to directly characterize the microbial Hg-methylating consortia in environments. Hitherto, the microbial Hg-methylating community in mangrove sediments was scarcely investigated. An effort to assess the diversity and abundance of hgcA genes and transcripts and link them to Hg and MeHg contents was made in the mangrove intertidal sediments along the urbanized Shenzhen Bay, China. The hgcA genes and transcripts associated with Thermodesulfobacteria [mainly Geobacteraceae, Syntrophorhabdaceae, Desulfobacterales, and Desulfarculales (these four lineages were previously classified into the Deltaproteobacteria taxon)], as well as Euryarchaeota (mainly Methanomicrobia and Theionarchaea) dominated the hgcA-harboring communities, while Chloroflexota, Nitrospirota, Planctomycetota, and Lentisphaerota-like hgcA sequences accounted for a small proportion. The hgcA genes appeared in greater abundance and diversity than their transcript counterparts in each sampling site. Correlation analysis demonstrated that the MeHg content rather than Hg content significantly correlated with the structure of the existent/active hgcA-harboring community and the abundance of hgcA genes/transcripts. These findings provide better insights into the microbial Hg methylation drivers in mangrove sediments, which could be helpful for understanding the MeHg biotransformation therein.
Collapse
Affiliation(s)
- Guofang Feng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Shenzhen Key Lab of Industrial Water Saving & Municipal Sewage Reclamation Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Sanqiang Gong
- Key Laboratory of Tropical Marine Bio-Resources and Ecology & Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
6
|
Cardona GI, Escobar MC, Acosta-González A, Díaz-Ruíz N, Niño-García JP, Vasquez Y, Marrugo-Negrete J, Marqués S. Microbial diversity and abundance of Hg related genes from water, sediment and soil the Colombian amazon ecosystems impacted by artisanal and small-scale gold mining. CHEMOSPHERE 2024; 352:141348. [PMID: 38340998 DOI: 10.1016/j.chemosphere.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
The Amazon region abounds in precious mineral resources including gold, copper, iron, and coltan. Artisanal and small-scale gold mining (ASGM) poses a severe risk in this area due to considerable mercury release into the surrounding ecosystems. Nonetheless, the impact of mercury on both the overall microbiota and the microbial populations involved in mercury transformation is not well understood. In this study we evaluated microbial diversity in samples of soil, sediment and water potentially associated with mercury contamination in two localities (Taraira and Tarapacá) in the Colombian Amazon Forest. To this end, we characterized the bacterial community structure and mercury-related functions in samples from sites with a chronic history of mercury contamination which today have different levels of total mercury content. We also determined mercury bioavailability and mobility in the samples with the highest THg and MeHg levels (up to 43.34 and 0.049 mg kg-1, respectively, in Taraira). Our analysis of mercury speciation showed that the immobile form of mercury predominated in soils and sediments, probably rendering it unavailable to microorganisms. Despite its long-term presence, mercury did not appear to alter the microbial community structure or composition, which was primarily shaped by environmental and physicochemical factors. However, an increase in the relative abundance of merA genes was detected in polluted sediments from Taraira. Several Hg-responsive taxa in soil and sediments were detected in sites with high levels of THg, including members of the Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi phyla. The results suggest that mercury contamination at the two locations sampled may select mercury-adapted bacteria carrying the merA gene that could be used in bioremediation processes for the region.
Collapse
Affiliation(s)
- Gladys Inés Cardona
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia.
| | - Maria Camila Escobar
- Instituto Amazónico de Investigaciones Científicas SINCHI. Laboratorio de Biotecnología y Recursos Genéticos, Bogotá, Colombia; Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Natalie Díaz-Ruíz
- Escuela de Microbiología. Universidad de Antioquia, Medellín, Colombia
| | | | - Yaneth Vasquez
- Chemistry Department, Universidad de Córdoba, Montería, Colombia
| | - José Marrugo-Negrete
- Convergence Science and Technology Cluster, Universidad Central, Bogotá, Colombia
| | - Silvia Marqués
- Department of Biotechnology and Environmental Protection. Estación Experimental Del Zaidín. Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
7
|
Peng X, Yang Y, Yang S, Li L, Song L. Recent advance of microbial mercury methylation in the environment. Appl Microbiol Biotechnol 2024; 108:235. [PMID: 38407657 PMCID: PMC10896945 DOI: 10.1007/s00253-023-12967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
Methylmercury formation is mainly driven by microbial-mediated process. The mechanism of microbial mercury methylation has become a crucial research topic for understanding methylation in the environment. Pioneering studies of microbial mercury methylation are focusing on functional strain isolation, microbial community composition characterization, and mechanism elucidation in various environments. Therefore, the functional genes of microbial mercury methylation, global isolations of Hg methylation strains, and their methylation potential were systematically analyzed, and methylators in typical environments were extensively reviewed. The main drivers (key physicochemical factors and microbiota) of microbial mercury methylation were summarized and discussed. Though significant progress on the mechanism of the Hg microbial methylation has been explored in recent decade, it is still limited in several aspects, including (1) molecular biology techniques for identifying methylators; (2) characterization methods for mercury methylation potential; and (3) complex environmental properties (environmental factors, complex communities, etc.). Accordingly, strategies for studying the Hg microbial methylation mechanism were proposed. These strategies include the following: (1) the development of new molecular biology methods to characterize methylation potential; (2) treating the environment as a micro-ecosystem and studying them from a holistic perspective to clearly understand mercury methylation; (3) a more reasonable and sensitive inhibition test needs to be considered. KEY POINTS: • Global Hg microbial methylation is phylogenetically and functionally discussed. • The main drivers of microbial methylation are compared in various condition. • Future study of Hg microbial methylation is proposed.
Collapse
Affiliation(s)
- Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Yan Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Shu Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China.
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, No. 174, Shapingba Street, Chongqing, 400045, China
| | - Liyan Song
- School of resources and environmental engineering, Anhui University, No 111 Jiulong Road, Economic and Technology Development Zone, Hefei, 230601, People's Republic of China.
| |
Collapse
|
8
|
Wu Q, Wang B, Hu H, Bravo AG, Bishop K, Bertilsson S, Meng B, Zhang H, Feng X. Sulfate-reduction and methanogenesis are coupled to Hg(II) and MeHg reduction in rice paddies. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132486. [PMID: 37690197 DOI: 10.1016/j.jhazmat.2023.132486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/17/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Methylmercury (MeHg) produced in rice paddies is the main source of MeHg accumulation in rice, resulting in high risk of MeHg exposure to humans and wildlife. Net MeHg production is affected by Hg(II) reduction and MeHg demethylation, but it remains unclear to what extent these processes influence net MeHg production, as well as the role of the microbial guilds involved. We used isotopically labeled Hg species and specific microbial inhibitors in microcosm experiments to simultaneously investigate the rates of Hg(II) and MeHg transformations, as well as the key microbial guilds controlling these processes. Results showed that Hg(II) and MeHg reduction rate constants significantly decreased with addition of molybdate or BES, which inhibit sulfate-reduction and methanogenesis, respectively. This suggests that both sulfate-reduction and methanogenesis are important processes controlling Hg(II) and MeHg reduction in rice paddies. Meanwhile, up to 99% of MeHg demethylation was oxidative demethylation (OD) under the incubation conditions, suggesting that OD was the main MeHg degradative pathway in rice paddies. In addition, [202Hg(0)/Me202Hg] from the added 202Hg(NO3)2 was up to 13.9%, suggesting that Hg(II) reduction may constrain Hg(II) methylation in rice paddies at the abandoned Hg mining site. This study improves our understanding of Hg cycling pathways in rice paddies, and more specifically how reduction processes affect net MeHg production and related microbial metabolisms.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baolin Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciencies del Mar (ICM-CSIC), Barcelona E08003, Catalunya, Spain
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Cabrol L, Capo E, van Vliet DM, von Meijenfeldt FAB, Bertilsson S, Villanueva L, Sánchez-Andrea I, Björn E, G. Bravo A, Heimburger Boavida LE. Redox gradient shapes the abundance and diversity of mercury-methylating microorganisms along the water column of the Black Sea. mSystems 2023; 8:e0053723. [PMID: 37578240 PMCID: PMC10469668 DOI: 10.1128/msystems.00537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/16/2023] [Indexed: 08/15/2023] Open
Abstract
In the global context of seawater deoxygenation triggered by climate change and anthropogenic activities, changes in redox gradients impacting biogeochemical transformations of pollutants, such as mercury, become more likely. Being the largest anoxic basin worldwide, with high concentrations of the potent neurotoxic methylmercury (MeHg), the Black Sea is an ideal natural laboratory to provide new insights about the link between dissolved oxygen concentration and hgcAB gene-carrying (hgc+) microorganisms involved in the formation of MeHg. We combined geochemical and microbial approaches to assess the effect of vertical redox gradients on abundance, diversity, and metabolic potential of hgc+ microorganisms in the Black Sea water column. The abundance of hgcA genes [congruently estimated by quantitative PCR (qPCR) and metagenomics] correlated with MeHg concentration, both maximal in the upper part of the anoxic water. Besides the predominant Desulfobacterales, hgc+ microorganisms belonged to a unique assemblage of diverse-previously underappreciated-anaerobic fermenters from Anaerolineales, Phycisphaerae (characteristic of the anoxic and sulfidic zone), Kiritimatiellales, and Bacteroidales (characteristic of the suboxic zone). The metabolic versatility of Desulfobacterota differed from strict sulfate reduction in the anoxic water to reduction of various electron acceptors in the suboxic water. Linking microbial activity and contaminant concentration in environmental studies is rare due to the complexity of biological pathways. In this study, we disentangle the role of oxygen in shaping the distribution of Hg-methylating microorganisms consistently with MeHg concentration, and we highlight their taxonomic and metabolic niche partitioning across redox gradients, improving the prediction of the response of marine communities to the expansion of oxygen-deficient zones. IMPORTANCE Methylmercury (MeHg) is a neurotoxin detected at high concentrations in certain marine ecosystems, posing a threat to human health. MeHg production is mainly mediated by hgcAB gene-carrying (hgc+) microorganisms. Oxygen is one of the main factors controlling Hg methylation; however, its effect on the diversity and ecology of hgc+ microorganisms remains unknown. Under the current context of seawater deoxygenation, mercury cycling is expected to be disturbed. Here, we show the strong effect of oxygen gradients on the distribution of potential Hg methylators. In addition, we show for the first time the significant contribution of a unique assemblage of potential fermenters from Anaerolineales, Phycisphaerae, and Kiritimatiellales to Hg methylation, stratified in different redox niches along the Black Sea gradient. Our results considerably expand the known taxonomic diversity and ecological niches prone to the formation of MeHg and contribute to better apprehend the consequences of oxygen depletion in seawater.
Collapse
Affiliation(s)
- Léa Cabrol
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Institute of Ecology and Biodiversity (IEB), University of Chile, Santiago, Chile
| | - Eric Capo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Daan M. van Vliet
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
- Wageningen Food and Biobased Research, Wageningen, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine Sciences, CSIC, Barcelona, Spain
| | - Lars-Eric Heimburger Boavida
- Aix Marseille University, Univ. Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| |
Collapse
|
10
|
Capo E, Feng C, Bravo AG, Bertilsson S, Soerensen AL, Pinhassi J, Buck M, Karlsson C, Hawkes J, Björn E. Expression Levels of hgcAB Genes and Mercury Availability Jointly Explain Methylmercury Formation in Stratified Brackish Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13119-13130. [PMID: 36069707 PMCID: PMC9494745 DOI: 10.1021/acs.est.2c03784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neurotoxic methylmercury (MeHg) is formed by microbial methylation of inorganic divalent Hg (HgII) and constitutes severe environmental and human health risks. The methylation is enabled by hgcA and hgcB genes, but it is not known if the associated molecular-level processes are rate-limiting or enable accurate prediction of MeHg formation in nature. In this study, we investigated the relationships between hgc genes and MeHg across redox-stratified water columns in the brackish Baltic Sea. We showed, for the first time, that hgc transcript abundance and the concentration of dissolved HgII-sulfide species were strong predictors of both the HgII methylation rate and MeHg concentration, implying their roles as principal joint drivers of MeHg formation in these systems. Additionally, we characterized the metabolic capacities of hgc+ microorganisms by reconstructing their genomes from metagenomes (i.e., hgc+ MAGs), which highlighted the versatility of putative HgII methylators in the water column of the Baltic Sea. In establishing relationships between hgc transcripts and the HgII methylation rate, we advance the fundamental understanding of mechanistic principles governing MeHg formation in nature and enable refined predictions of MeHg levels in coastal seas in response to the accelerating spread of oxygen-deficient zones.
Collapse
Affiliation(s)
- Eric Capo
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Caiyan Feng
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| | - Andrea G. Bravo
- Department
of Marine Biology and Oceanography, Institute of Marine Sciences, Spanish National Research Council (CSIC), Barcelona 08003, Spain
| | - Stefan Bertilsson
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Anne L. Soerensen
- Department
of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm 104 05, Sweden
| | - Jarone Pinhassi
- Centre
for Ecology and Evolution in Microbial Model Systems—EEMiS, Linnaeus University, Kalmar 391 82, Sweden
| | - Moritz Buck
- Department
of Aquatic Sciences and Assessment, Swedish
University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Camilla Karlsson
- Centre
for Ecology and Evolution in Microbial Model Systems—EEMiS, Linnaeus University, Kalmar 391 82, Sweden
| | - Jeffrey Hawkes
- Department
of Chemistry, Uppsala University, Uppsala 751 23, Sweden
| | - Erik Björn
- Department
of Chemistry, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
11
|
Hyun HR, Yoon H, Lyou ES, Kim JJ, Kwon SY, Lee TK. Short-Term Legacy Effects of Mercury Contamination on Plant Growth and nifH-Harboring Microbial Community in Rice Paddy Soil. MICROBIAL ECOLOGY 2021; 82:932-941. [PMID: 33624137 DOI: 10.1007/s00248-021-01722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg), which is formed in rice paddy soil, exhibits strong neurotoxicity through bioaccumulation in the food chain. A few groups of microorganisms drive both mercury methylation and nitrogen fixation in the rhizosphere. Little is known about how the shifted soil microbial community by Hg contamination affects nitrogen fixation rate and plant growth in paddy soil. Here, we examined how stimulated short-term Hg amendment affects the nitrogen fixing microbial community and influences plant-microbe interactions. Soil was treated with low (0.2 mg/kg) and high (1.1 mg/kg) concentrations of Hg for 4 weeks; then, rice (Oryza sativa) was planted and grown for 12 weeks. The nitrogen-fixation rate and rice growth were measured. The diversity and structure of the microbial community were analyzed by sequencing the nifH gene before and after rice cultivation. Hg treatments significantly decreased the nitrogen fixation rate and dry weight of the rice plants. The structure of the nifH-harboring community was remarkably changed after rice cultivation depending on Hg treatments. Iron- or sulfate-reducing bacteria, including Desulfobacca, Desulfoporosimus, and Geobacter, were observed as legacy response groups; their abundances increased in the soil after Hg treatment. The high abundance of those groups were maintained in control, but the abundance drastically decreased after rice cultivation in the soil treated with Hg, indicating that symbiotic behavior of rice plants changes according to the legacy effects on Hg contamination. These results suggested that Hg contamination can persist in soil microbial communities, affecting their nitrogen-fixation ability and symbiosis with rice plants in paddy soil.
Collapse
Affiliation(s)
- Hye Rim Hyun
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Eun Sun Lyou
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Jin Ju Kim
- Department of Systems Biotechnology, Chun-Ang University, Anseong, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea.
| |
Collapse
|
12
|
Newsome L, Falagán C. The Microbiology of Metal Mine Waste: Bioremediation Applications and Implications for Planetary Health. GEOHEALTH 2021; 5:e2020GH000380. [PMID: 34632243 PMCID: PMC8490943 DOI: 10.1029/2020gh000380] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/13/2023]
Abstract
Mine wastes pollute the environment with metals and metalloids in toxic concentrations, causing problems for humans and wildlife. Microorganisms colonize and inhabit mine wastes, and can influence the environmental mobility of metals through metabolic activity, biogeochemical cycling and detoxification mechanisms. In this article we review the microbiology of the metals and metalloids most commonly associated with mine wastes: arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc. We discuss the molecular mechanisms by which bacteria, archaea, and fungi interact with contaminant metals and the consequences for metal fate in the environment, focusing on long-term field studies of metal-impacted mine wastes where possible. Metal contamination can decrease the efficiency of soil functioning and essential element cycling due to the need for microbes to expend energy to maintain and repair cells. However, microbial communities are able to tolerate and adapt to metal contamination, particularly when the contaminant metals are essential elements that are subject to homeostasis or have a close biochemical analog. Stimulating the development of microbially reducing conditions, for example in constructed wetlands, is beneficial for remediating many metals associated with mine wastes. It has been shown to be effective at low pH, circumneutral and high pH conditions in the laboratory and at pilot field-scale. Further demonstration of this technology at full field-scale is required, as is more research to optimize bioremediation and to investigate combined remediation strategies. Microbial activity has the potential to mitigate the impacts of metal mine wastes, and therefore lessen the impact of this pollution on planetary health.
Collapse
Affiliation(s)
- Laura Newsome
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| | - Carmen Falagán
- Camborne School of Mines and Environment and Sustainability InstituteUniversity of ExeterPenrynUK
| |
Collapse
|
13
|
Man Y, Wang B, Wang J, Slaný M, Yan H, Li P, El-Naggar A, Shaheen SM, Rinklebe J, Feng X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. ENVIRONMENT INTERNATIONAL 2021; 153:106527. [PMID: 33784588 DOI: 10.1016/j.envint.2021.106527] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Mitigating the risk of mercury (Hg) contamination in rice soils using environmental friendly amendments is essential to reducing the probable daily intake (PDI) of MeHg via rice consumption. Here, we examined the impacts of different doses (0% (control), 0.6% and 3%) of rice hull-derived biochar (RHB) and mixture of wheat-rice straw-derived biochar (RWB) on the fractionation, phytoavailability, and uptake of total (THg) and methyl Hg (MeHg) by rice in Hg-polluted soil (THg = 78.3 mg kg-1) collected from Wanshan Hg mining area. Both biochars increased rice biomass up to 119% as compared to control. Application of RHB and RWB significantly (P ≤ 0.05) decreased bioavailable Hg (soluble and exchangeable and specifically-sorbed fractions) concentrations by 55-71% and 67-72%, respectively. The addition of RHB significantly decreased MeHg concentrations in the soil. However, RWB (particularly at 3%) increased significantly MeHg concentrations in the soil as compared to the control and RHB treatments, likely due to the increased abundance of Hg-methylation microorganisms (e.g., Geobacter spp., Nitrospira spp.) in the RWB treatments. Both RHB and RWB significantly decreased MeHg concentrations in the rice grain by 55-85%. We estimated a reduction of the PDI of MeHg from 0.26 μg kg-1 bw d-1of control to below the reference dose (0.1 μg kg-1 bw d-1) of two biochar treatments. Our results highlight the potentiality of RWB and RHB for mitigating MeHg accumulation in rice and reducing PDI of MeHg via rice consumption, which offers a sustainable approach for management of Hg-polluted soils.
Collapse
Affiliation(s)
- Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Michal Slaný
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84536 Bratislava, Slovakia; Institute of Construction and Architecture, Slovak Academy of Sciences, Dúbravská cesta 9, 84503 Bratislava, Slovakia.
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Arid Land Agriculture, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Soil and Water Sciences, Faculty of Agriculture, University of Kafrelsheikh, 33516 Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, Guangjin-Gu, Seoul 05006, Republic of Korea.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
| |
Collapse
|
14
|
Christakis CA, Barkay T, Boyd ES. Expanded Diversity and Phylogeny of mer Genes Broadens Mercury Resistance Paradigms and Reveals an Origin for MerA Among Thermophilic Archaea. Front Microbiol 2021; 12:682605. [PMID: 34248899 PMCID: PMC8261052 DOI: 10.3389/fmicb.2021.682605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mercury (Hg) is a highly toxic element due to its high affinity for protein sulfhydryl groups, which upon binding, can destabilize protein structure and decrease enzyme activity. Prokaryotes have evolved enzymatic mechanisms to detoxify inorganic Hg and organic Hg (e.g., MeHg) through the activities of mercuric reductase (MerA) and organomercury lyase (MerB), respectively. Here, the taxonomic distribution and evolution of MerAB was examined in 84,032 archaeal and bacterial genomes, metagenome assembled genomes, and single-cell genomes. Homologs of MerA and MerB were identified in 7.8 and 2.1% percent of genomes, respectively. MerA was identified in the genomes of 10 archaeal and 28 bacterial phyla previously unknown to code for this functionality. Likewise, MerB was identified in 2 archaeal and 11 bacterial phyla previously unknown to encode this functionality. Surprisingly, homologs of MerB were identified in a number of genomes (∼50% of all MerB-encoding genomes) that did not encode MerA, suggesting alternative mechanisms to detoxify Hg(II) once it is generated in the cytoplasm. Phylogenetic reconstruction of MerA place its origin in thermophilic Thermoprotei (Crenarchaeota), consistent with high levels of Hg(II) in geothermal environments, the natural habitat of this archaeal class. MerB appears to have been recruited to the mer operon relatively recently and likely among a mesophilic ancestor of Euryarchaeota and Thaumarchaeota. This is consistent with the functional dependence of MerB on MerA and the widespread distribution of mesophilic microorganisms that methylate Hg(II) at lower temperature. Collectively, these results expand the taxonomic and ecological distribution of mer-encoded functionalities, and suggest that selection for Hg(II) and MeHg detoxification is dependent not only on the availability and type of mercury compounds in the environment but also the physiological potential of the microbes who inhabit these environments. The expanded diversity and environmental distribution of MerAB identify new targets to prioritize for future research.
Collapse
Affiliation(s)
- Christos A. Christakis
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
15
|
Millera Ferriz L, Ponton DE, Storck V, Leclerc M, Bilodeau F, Walsh DA, Amyot M. Role of organic matter and microbial communities in mercury retention and methylation in sediments near run-of-river hydroelectric dams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145686. [PMID: 33609815 DOI: 10.1016/j.scitotenv.2021.145686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Run-of-river power plants (RoRs) are expected to triple in number over the next decades in Canada. These structures are not anticipated to considerably promote the mobilization and transport of mercury (Hg) and its subsequent microbial transformation to methylmercury (MeHg), a neurotoxin able to biomagnify in food webs up to humans. To test whether construction of RoRs had an effect on Hg transport and transformation, we studied Hg and MeHg concentrations, organic matter contents and methylating microbial community abundance and composition in the sediments of a section of the St. Maurice River (Quebec, Canada). This river section has been affected by the construction of two RoR dams and its watershed has been disturbed by a forest fire, logging, and the construction of wetlands. Higher total Hg (THg) and MeHg concentrations were observed in the surface sediments of the flooded sites upstream of the RoRs. These peaks in THg and MeHg were correlated with organic matter proportions in the sediments (r2 = 0.87 and 0.82, respectively). In contrast, the proportion of MeHg, a proxy for methylation potential, was best explained by the carbon to nitrogen ratio suggesting the importance of terrigenous organic matter as labile substrate for Hg methylation in this system. Metagenomic analysis of Hg-methylating communities based on the hgcA functional gene marker indicated an abundance of methanogens, sulfate reducers and fermenters, suggesting that these metabolic guilds may be primary Hg methylators in these surface sediments. We propose that RoR pondages act as traps for sediments, organic matter and Hg, and that this retention can be amplified by other disturbances of the watershed such as forest fire and logging. RoR flooded sites can be conducive to Hg methylation in sediments and may act as gateways for bioaccumulation and biomagnification of MeHg along food webs, particularly in disturbed watersheds.
Collapse
Affiliation(s)
- L Millera Ferriz
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - D E Ponton
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - V Storck
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada
| | - M Leclerc
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - F Bilodeau
- Hydro-Québec Production, Environment Department, Montreal, QC, Canada
| | - D A Walsh
- Biology Department, Concordia University, Montreal H4B 1R6, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada
| | - M Amyot
- Département de sciences biologiques, Université de Montréal, Montreal H2V 2S9, QC, Canada; GRIL, Groupe de Recherche Interuniversitaire en Limnologie, Département de sciences biologiques, Université de Montréal, Campus MIL, Montreal H3C 3J7, QC, Canada.
| |
Collapse
|
16
|
Liu J, He X, Xu Y, Zuo Z, Lei P, Zhang J, Yin Y, Wei Y. Fate of mercury and methylmercury in full-scale sludge anaerobic digestion combined with thermal hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124310. [PMID: 33525130 DOI: 10.1016/j.jhazmat.2020.124310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Methylmercury (MeHg) is one of the highly toxic and bio-accumulated forms of mercury. Its presence in wastewater treatment processes has been evidenced in recent studies. Considering its enrichment in sewage sludge and the ecological risk associated with its land application, this study investigated the fate of mercury and MeHg in full-scale anaerobic digestion combined with Cambi thermal hydrolysis based on one-year sampling. Results showed that the advanced anaerobic digestion could increase the total mercury (THg) content from 4.35 ± 0.43 mg/kg in raw sludge to 6.37 ± 1.05 mg/kg in digested sludge, and the MeHg content decreased from 1.61 to 8.94 ng/g in raw sludge to 0.21-2.03 ng/g after anaerobic digestion. The demethylation of MeHg was dominant in both thermal hydrolysis and anaerobic digestion; it was mostly derived from the physico-chemical impacts such as chemical decomposition in thermal hydrolysis and precipitation in anaerobic digestion. Although the reported microbial methylators, such as Methanosarcina and Clostridia, were dominant in anaerobic digestion, the relative abundances of hgcA and merA were relatively low and did not correlate with the MeHg profiles. Thus, microbial methylation or demethylation seems negligible in terms of MeHg transformation.
Collapse
Affiliation(s)
- Jibao Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xianglin He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yufeng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhuang Zuo
- Beijing Drainage Group CO., LTD, Beijing 100192, China
| | - Pei Lei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Wu Q, Hu H, Meng B, Wang B, Poulain AJ, Zhang H, Liu J, Bravo AG, Bishop K, Bertilsson S, Feng X. Methanogenesis Is an Important Process in Controlling MeHg Concentration in Rice Paddy Soils Affected by Mining Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13517-13526. [PMID: 33084323 DOI: 10.1021/acs.est.0c00268] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice paddies are agricultural sites of special concern because the potent toxin methylmercury (MeHg), produced in rice paddy soils, accumulates in rice grains. MeHg cycling is mostly controlled by microbes but their importance in MeHg production and degradation in paddy soils and across a Hg concentration gradient remains unclear. Here we used surface and rhizosphere soil samples in a series of incubation experiments in combination with stable isotope tracers to investigate the relative importance of different microbial groups on MeHg production and degradation across a Hg contamination gradient. We showed that sulfate reduction was the main driver of MeHg formation and concentration at control sites, and that methanogenesis had an important and complex role in MeHg cycling as Hg concentrations increased. The inhibition of methanogenesis at the mining sites led to an increase in MeHg production up to 16.6-fold and a decrease in MeHg degradation by up to 77%, suggesting that methanogenesis is associated with MeHg degradation as Hg concentrations increased. This study broadens our understanding of the roles of microbes in MeHg cycling and highlights methanogenesis as a key control of MeHg concentrations in rice paddies, offering the potential for mitigation of Hg contamination and for the safe production of rice in Hg-contaminated areas.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haiyan Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Baolin Wang
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
| | - Jinling Liu
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, P. R. China
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Pg Marítim de la Barceloneta 37-49, Barcelona E08003, Catalunya, Spain
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P. R. China
- Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xian 710061, P. R. China
| |
Collapse
|
18
|
Gionfriddo CM, Wymore AM, Jones DS, Wilpiszeski RL, Lynes MM, Christensen GA, Soren A, Gilmour CC, Podar M, Elias DA. An Improved hgcAB Primer Set and Direct High-Throughput Sequencing Expand Hg-Methylator Diversity in Nature. Front Microbiol 2020; 11:541554. [PMID: 33123100 PMCID: PMC7573106 DOI: 10.3389/fmicb.2020.541554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/25/2020] [Indexed: 01/27/2023] Open
Abstract
The gene pair hgcAB is essential for microbial mercury methylation. Our understanding of its abundance and diversity in nature is rapidly evolving. In this study we developed a new broad-range primer set for hgcAB, plus an expanded hgcAB reference library, and used these to characterize Hg-methylating communities from diverse environments. We applied this new Hg-methylator database to assign taxonomy to hgcA sequences from clone, amplicon, and metagenomic datasets. We evaluated potential biases introduced in primer design, sequence length, and classification, and suggest best practices for studying Hg-methylator diversity. Our study confirms the emerging picture of an expanded diversity of HgcAB-encoding microbes in many types of ecosystems, with abundant putative mercury methylators Nitrospirae and Chloroflexi in several new environments including salt marsh and peat soils. Other common microbes encoding HgcAB included Phycisphaerae, Aminicenantes, Spirochaetes, and Elusimicrobia. Combined with high-throughput amplicon specific sequencing, the new primer set also indentified novel hgcAB sequences similar to Lentisphaerae, Bacteroidetes, Atribacteria, and candidate phyla WOR-3 and KSB1 bacteria. Gene abundance data also corroborate the important role of two "classic" groups of methylators (Deltaproteobacteria and Methanomicrobia) in many environments, but generally show a scarcity of hgcAB+ Firmicutes. The new primer set was developed to specifically target hgcAB sequences found in nature, reducing degeneracy and providing increased sensitivity while maintaining broad diversity capture. We evaluated mock communities to confirm primer improvements, including culture spikes to environmental samples with variable DNA extraction and PCR amplification efficiencies. For select sites, this new workflow was combined with direct high-throughput hgcAB sequencing. The hgcAB diversity generated by direct amplicon sequencing confirmed the potential for novel Hg-methylators previously identified using metagenomic screens. A new phylogenetic analysis using sequences from freshwater, saline, and terrestrial environments showed Deltaproteobacteria HgcA sequences generally clustered among themselves, while metagenome-resolved HgcA sequences in other phyla tended to cluster by environment, suggesting horizontal gene transfer into many clades. HgcA from marine metagenomes often formed distinct subtrees from those sequenced from freshwater ecosystems. Overall the majority of HgcA sequences branch from a cluster of HgcAB fused proteins related to Thermococci, Atribacteria (candidate division OP9), Aminicenantes (OP8), and Chloroflexi. The improved primer set and library, combined with direct amplicon sequencing, provide a significantly improved assessment of the abundance and diversity of hgcAB+ microbes in nature.
Collapse
Affiliation(s)
- Caitlin M Gionfriddo
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ann M Wymore
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel S Jones
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Department of Earth Sciences, Minneapolis, MN, United States
| | - Regina L Wilpiszeski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Mackenzie M Lynes
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Geoff A Christensen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ally Soren
- Smithsonian Environmental Research Center, Edgewater, MD, United States
| | | | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Dwayne A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
19
|
Huang JH, Shetaya WH, Osterwalder S. Determination of (Bio)-available mercury in soils: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114323. [PMID: 32311621 DOI: 10.1016/j.envpol.2020.114323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Despite the mercury (Hg) control measures adopted by the international community, Hg still poses a significant risk to ecosystem and human health. This is primarily due to the ability of atmospheric Hg to travel intercontinentally and contaminating terrestrial and aquatic environments far from its natural and anthropogenic point sources. The issue of Hg pollution is further complicated by its unique physicochemical characteristics, most noticeably its multiple chemical forms that vary in their toxicity and environmental mobility. This meant that most of the risk evaluation protocols developed for other metal(loid)s are not suitable for Hg. Soil is a major reservoir of Hg and a key player in its global cycle. To fully assess the risks of soil Hg it is essential to estimate its bioavailability and/or availability which are closely linked to its toxicity. However, the accurate determination of the (bio)-available pools of Hg in soils is problematic, because the terms 'bioavailable' and 'available' are ill-defined. In particular, the term 'bioavailable pool', representing the fraction of Hg that is accessible to living organisms, has been consistently misused by interchanging with other intrinsically different terms e.g. mobile, labile, reactive and soluble pools. A wide array of physical, chemical, biological and isotopic exchange methods were developed to estimate the (bio)-available pools of Hg in soil in an attempt to offer a plausible assessment of its risks. Unfortunately, many of these methods do not mirror the (bio)-available pools of soil Hg and suffer from technical drawbacks. In this review, we discuss advantages and disadvantages of methods that are currently applied to quantify the (bio)-availability of Hg in soils. We recommended the most feasible methods and give suggestions how to improve the determination of (bio)-available Hg in soils.
Collapse
Affiliation(s)
- Jen-How Huang
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland.
| | - Waleed H Shetaya
- Air Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Stefan Osterwalder
- Environmental Geosciences, University of Basel, CH-4056, Basel, Switzerland
| |
Collapse
|
20
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
21
|
Tang WL, Liu YR, Guan WY, Zhong H, Qu XM, Zhang T. Understanding mercury methylation in the changing environment: Recent advances in assessing microbial methylators and mercury bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136827. [PMID: 32018974 DOI: 10.1016/j.scitotenv.2020.136827] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a neurotoxin, mainly derived from microbial mercury methylation in natural aquatic environments, and poses threats to human health. Polar regions and paddy soils are potential hotspots of mercury methylation and represent environmental settings that are susceptible to natural and anthropogenic perturbations. The effects of changing environmental conditions on the methylating microorganisms and mercury speciation due to global climate change and farming practices aimed for sustainable agriculture were discussed for polar regions and paddy soils, respectively. To better understand and predict microbial mercury methylation in the changing environment, we synthesized current understanding of how to effectively identify active mercury methylators and assess the bioavailability of different mercury species for methylation. The application of biomarkers based on the hgcAB genes have demonstrated the occurrence of potential mercury methylators, such as sulfate-reducing bacteria, iron-reducing bacteria, methanogen and syntrophs, in a diverse variety of microbial habitats. Advanced techniques, such as enriched stable isotope tracers, whole-cell biosensor and diffusive gradient thin film (DGT) have shown great promises in quantitatively assessing mercury availability to microbial methylators. Improved understanding of the complex structure of microbial communities consisting mercury methylators and non-methylators, chemical speciation of inorganic mercury under geochemically relevant conditions, and the pathway of cellular mercury uptake will undoubtedly facilitate accurate assessment and prediction of in situ microbial mercury methylation.
Collapse
Affiliation(s)
- Wen-Li Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu-Rong Liu
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Yu Guan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Xiao-Min Qu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Lavoie NC, Grégoire DS, Stenzler BR, Poulain AJ. Reduced sulphur sources favour Hg II reduction during anoxygenic photosynthesis by Heliobacteria. GEOBIOLOGY 2020; 18:70-79. [PMID: 31536173 DOI: 10.1111/gbi.12364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/16/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
The consumption of rice has become a global food safety issue because rice paddies support the production of high levels of the potent neurotoxin, methylmercury. The production of methylmercury is carried out by chemotrophic anaerobes that rely on a diversity of terminal electron acceptors, namely sulphate. Sulphur can be a limiting nutrient in rice paddies, and sulphate amendments are often used to stimulate crop production, which can increase methylmercury production. Mercury (Hg) redox cycling can affect Hg methylation by controlling the delivery of inorganic Hg substrates to methylators in anoxic habitats. Whereas sulphur is recognized as a key substrate controlling methylmercury production, the controls sulphur exerts on other microbe-mediated Hg transformations remain poorly understood. To explore the potential coupling between sulphur assimilation and anaerobic HgII reduction to Hg0 , we studied Heliobacillus mobilis, a mesophilic anoxygenic phototroph representative from the Heliobacteriacea family originally isolated from a rice paddy. Here, we tested whether the redox state of the sulphur sources available to H. mobilis would affect its ability to reduce HgII . By comparing Hg0 production over a redox gradient of sulphur sources, we demonstrate that phototrophic HgII reduction is favoured in the presence of reduced sulphur sources such as thiosulphate and cysteine. We also show that cysteine exerts dynamic control on Hg cycling by affecting not only Hg's bioavailability but also its abiotic photoreduction under low light conditions. Specifically, in the absence of cells we show that organic matter (as yeast extract) and cysteine are both required for photoreduction to occur. This study offers insights into how one of the most primitive forms of photosynthesis affects Hg redox transformations and frames Heliobacteria as key players in Hg cycling within paddy soils, forming a basis for management strategies to mitigate Hg accumulation in rice.
Collapse
Affiliation(s)
- Noémie C Lavoie
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel S Grégoire
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Bejamin R Stenzler
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexandre J Poulain
- Department of Biology, Faculty of Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, He JZ, Gu B. Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13110-13118. [PMID: 30335986 DOI: 10.1021/acs.est.8b03052] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of Hg methylators in microbial communities of rice paddy soils remain unclear. We characterized the abundance and distribution of hgcAB genes using third-generation PacBio long-read sequencing and Illumina short-read metagenomic sequencing, in combination with quantitative PCR analyses in several mine-impacted paddy soils from southwest China. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA + sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Phylogenetic analysis also uncovered some hgcAB sequences closely related to three novel Hg methylators, Geobacter anodireducens, Desulfuromonas sp. DDH964, and Desulfovibrio sp. J2, among which G. anodireducens was validated for its ability to methylate Hg. These findings shed new light on microbial community composition and major clades likely driving Hg methylation in rice paddy soils.
Collapse
Affiliation(s)
- Yu-Rong Liu
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Alexander Johs
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Li Bi
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
| | - Xia Lu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Hang-Wei Hu
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Dan Sun
- Ocean College , Zhejiang University , Zhejiang , 310058 , China
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing Shi 100085 , China
- Department of Veterinary and Agricultural Sciences , The University of Melbourne , Melbourne , Victoria 3004 , Australia
| | - Baohua Gu
- Environmental Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
24
|
Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes. Appl Environ Microbiol 2018; 84:AEM.01774-18. [PMID: 30242005 PMCID: PMC6238055 DOI: 10.1128/aem.01774-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/15/2018] [Indexed: 12/28/2022] Open
Abstract
Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment. Methylmercury is a potent human neurotoxin which biomagnifies in aquatic food webs. Although anaerobic microorganisms containing the hgcA gene potentially mediate the formation of methylmercury in natural environments, the diversity of these mercury-methylating microbial communities remains largely unexplored. Previous studies have implicated sulfate-reducing bacteria as the main mercury methylators in aquatic ecosystems. In the present study, we characterized the diversity of mercury-methylating microbial communities of boreal lake sediments using high-throughput sequencing of 16S rRNA and hgcA genes. Our results show that in the lake sediments, Methanomicrobiales and Geobacteraceae also represent abundant members of the mercury-methylating communities. In fact, incubation experiments with a mercury isotopic tracer and molybdate revealed that only between 38% and 45% of mercury methylation was attributed to sulfate reduction. These results suggest that methanogens and iron-reducing bacteria may contribute to more than half of the mercury methylation in boreal lakes. IMPORTANCE Despite the global awareness that mercury, and methylmercury in particular, is a neurotoxin to which millions of people continue to be exposed, there are sizable gaps in the understanding of the processes and organisms involved in methylmercury formation in aquatic ecosystems. In the present study, we shed light on the diversity of the microorganisms responsible for methylmercury formation in boreal lake sediments. All the microorganisms identified are associated with the processing of organic matter in aquatic systems. Moreover, our results show that the well-known mercury-methylating sulfate-reducing bacteria constituted only a minor portion of the potential mercury methylators. In contrast, methanogens and iron-reducing bacteria were important contributors to methylmercury formation, highlighting their role in mercury cycling in the environment.
Collapse
|
25
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
26
|
Qian X, Wu Y, Zhou H, Xu X, Xu Z, Shang L, Qiu G. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:757-767. [PMID: 29729617 DOI: 10.1016/j.envpol.2018.04.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 05/04/2023]
Abstract
Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg]root/[THg]soil, [MMHg]root/[MMHg]soil) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076-140 μg/g THg and 0.19-87 ng/g MMHg in roots, 0.19-106 μg/g THg and 0.06-31 ng/g MMHg in shoots, and 0.74-1440 μg/g THg and 0.41-820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils.
Collapse
Affiliation(s)
- Xiaoli Qian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Hongyun Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| |
Collapse
|