1
|
Liu C, Wang L, Zhou Y, Xia W, Wang Z, Kuang L, Hua D. Biogenic crocetin-crosslinked chitosan nanoparticles with high stability and drug loading for efficient radioprotection. Int J Biol Macromol 2024; 265:130756. [PMID: 38462118 DOI: 10.1016/j.ijbiomac.2024.130756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
The risk of radiation exposure increases with the development of nuclear energy and technology, and radiation protection receives more and more attention from public health and safety. However, the numerous adverse effects and low drug utilization limit the practical applications of radioprotective agents. In this study, we developed a biogenic crocetin-crosslinked chitosan nanoparticle with high stability and drug loading for efficient radioprotection. In detail, the nanoparticles were prepared using the natural antioxidant crocetin as a cross-linking reagent in amidation reactions of chitosan and mPEG-COOH. The nanoparticles exhibit a quick scavenging ability for common reactive oxygen species and reactive nitrogen in vitro. Meanwhile, cellular experiments demonstrate the good biocompatibility of the nanoparticles and the alleviation of radiation damage by scavenging reactive oxygen species, reducing apoptosis, and inhibiting DNA damage, etc. Importantly, the nanoparticles are effective in mitigating oxidative damage in major organs and maintaining peripheral blood cell content. In addition, they perform better radioprotective properties than free drug due to the significant extension of the blood half-life of crocetin in vivo from 10 min to 5 h. This work proposes a drug-crosslinking strategy for the design of a highly efficient radioprotective agent, which exhibits a promising prospect in the fields of nuclear emergency and public health.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yi Zhou
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Wanyi Xia
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| | - Liangju Kuang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye & Ear, Harvard Medical School, Boston, MA 02114, USA.
| | - Daoben Hua
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Yin S, Niu L, Zhang J, Liu Y. Gardenia yellow pigment: Extraction methods, biological activities, current trends, and future prospects. Food Res Int 2024; 179:113981. [PMID: 38342530 DOI: 10.1016/j.foodres.2024.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024]
Abstract
Food coloring plays a vital role in influencing consumers' food choices, imparting vibrant and appealing colors to various food and beverage products. Synthetic food colorants have been the most commonly used coloring agents in the food industry. However, concerns about potential health issues related to synthetic colorants, coupled with increasing consumer demands for food safety and health, have led food manufacturers to explore natural alternatives. Natural pigments not only offer a wide range of colors to food products but also exhibit beneficial bioactive properties. Gardenia yellow pigment is a water-soluble natural pigment with various biological activities, widely present in gardenia fruits. Therefore, this paper aims to delve into Gardenia Yellow Pigment, highlighting its significance as a food colorant. Firstly, a thorough understanding and exploration of various methods for obtaining gardenia yellow pigment. Subsequently, the potential functionality of gardenia yellow pigment was elaborated, especially its excellent antioxidant and neuroprotective properties. Finally, the widespread application trend of gardenia yellow pigment in the food industry was explored, as well as the challenges faced by the future development of gardenia yellow pigment in the field of food and health. Some feasible solutions were proposed, providing valuable references and insights for researchers, food industry professionals, and policy makers.
Collapse
Affiliation(s)
- Shipeng Yin
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jian Zhang
- Future Food (Bai Ma) Research Institute, Nanjing, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
3
|
Wang L, Chen S, Liu S, Biu AM, Han Y, Jin X, Liang C, Liu Y, Li J, Fang S, Chang Y. A comprehensive review of ethnopharmacology, chemical constituents, pharmacological effects, pharmacokinetics, toxicology, and quality control of gardeniae fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117397. [PMID: 37956915 DOI: 10.1016/j.jep.2023.117397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardeniae Fructus (GF), the desiccative mature fruitage of Gardenia jasminoides J. Ellis (G. jasminoides), belongs to the Rubiaceae family. It has abundant medicinal value, such as purging fire and eliminating annoyance, clearing heat and diuresis, cooling blood, and detoxifying. GF is usually used in combination with other drugs to treat diseases such as fever and jaundice in damp heat syndrome in traditional Chinese medicines (TCMs) clinical practice. THE AIM OF THE REVIEW This review comprehensively summarizes the research progress in botany, traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, pharmacokinetics, and toxicology, which aims to provide a scientific basis for the rational application and future research of GF. MATERIALS AND METHODS ScienceDirect, PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Embase, Scopus etc. databases were retrieved to gain the comprehensive information of GF. RESULTS At present, more than 215 compounds were isolated and identified from GF, including iridoids, diterpenes, triterpenoids, flavonoids, organic esters, and so on. The traditional application of GF mainly focused on clearing heat and detoxification. Pharmacological studies proved that GF had anti-inflammatory, antioxidation, antifatigue, antithrombotic, liver and gallbladder protection, and other pharmacological effects. In addition, many improved processing methods can alleviate the side effects and toxic reactions caused by long-term use of GF, so controlling its quality through multi-component content measurement has become an important means of research. CONCLUSION GF has a wide range of applications, the mechanisms by which some effective substances exert their pharmacological effects have not been clearly explained due to the complexity and diversity of its components. This review systematically elaborates on the traditional medical use, processing method, phytochemistry, pharmacological activity, quality control, and toxicology of GF, and it is expected to become a candidate drug for treating diseases, such as depression, pancreatitis, alcoholic or non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuli Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Tang Z, Li L, Xia Z. Exploring Anti-Nonalcoholic Fatty Liver Disease Mechanism of Gardeniae Fructus by Network Pharmacology, Molecular Docking, and Experiment Validation. ACS OMEGA 2022; 7:25521-25531. [PMID: 35910181 PMCID: PMC9330257 DOI: 10.1021/acsomega.2c02629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/01/2022] [Indexed: 05/08/2023]
Abstract
Gardeniae fructus (GF), the fruit from Gardenia jasminoides Ellis, is a traditional Chinese medicine used for the treatment of nonalcoholic fatty liver disease (NAFLD) in the clinic. To explore the hepatoprotective mechanism of GF for the treatment of NAFLD, we proposed a novel strategy that integrated in vivo efficacy evaluation, network pharmacology analysis, molecular docking, and experimental validation. A NAFLD animal model induced by high fat diet (HFD) feed was established, then orally administrated with or without GF. The results showed that GF significantly decreased the levels of serum total cholesterol (TC), lipoprotein cholesterol, triglyceride (TG), alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, free fatty acids, glucose, and insulin and the levels of liver TG, TC, and malondialdehyde compared with the nontreated HFD group. Network pharmacology studies showed that quercetin, oleanolic acid, kaempferol, and geniposide were the main biocompounds in GF that targeted the PPARα and PPARγ genes through regulating the PPAR and AMPK signal pathways to protect against NAFLD. The interactions between bioactive compounds and their corresponding target proteins were analyzed by molecular docking and subsequently confirmed using the qRT-PCR assay. Collectively, GF was a therapeutic drug for the treatment of NAFLD.
Collapse
Affiliation(s)
- Zhongyan Tang
- Department
of Emergency and Critical Care Medicine, Jin Shan Hospital, Fudan University, Shanghai 201508, China
| | - Lin Li
- Department
of Operative Dentistry and Endodontics, School and Hosipital of Stomatology,
Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
| | - Zhengxiang Xia
- Department
of Pharmacy, School and Hosipital of Stomatology, Shanghai Engineering
Research Center of Tooth Restoration and Regeneration, Tongji University, 399 Middle Yan Chang Road, Shanghai 200072, China
- . Tel: +8621-66315500
| |
Collapse
|
5
|
Huang H, Zhu Y, Fu X, Zou Y, Li Q, Luo Z. Integrated natural deep eutectic solvent and pulse-ultrasonication for efficient extraction of crocins from gardenia fruits (Gardenia jasminoides Ellis) and its bioactivities. Food Chem 2022; 380:132216. [DOI: 10.1016/j.foodchem.2022.132216] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
|
6
|
The physicochemical properties and immunomodulatory activities of gardenia yellow pigment from gardenia fruit. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Guo ZL, Li MX, Li XL, Wang P, Wang WG, Du WZ, Yang ZQ, Chen SF, Wu D, Tian XY. Crocetin: A Systematic Review. Front Pharmacol 2022; 12:745683. [PMID: 35095483 PMCID: PMC8795768 DOI: 10.3389/fphar.2021.745683] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Crocetin is an aglycone of crocin naturally occurring in saffron and produced in biological systems by hydrolysis of crocin as a bioactive metabolite. It is known to exist in several medicinal plants, the desiccative ripe fruit of the cape jasmine belonging to the Rubiaceae family, and stigmas of the saffron plant of the Iridaceae family. According to modern pharmacological investigations, crocetin possesses cardioprotective, hepatoprotective, neuroprotective, antidepressant, antiviral, anticancer, atherosclerotic, antidiabetic, and memory-enhancing properties. Although poor bioavailability hinders therapeutic applications, derivatization and formulation preparation technologies have broadened the application prospects for crocetin. To promote the research and development of crocetin, we summarized the distribution, preparation and production, total synthesis and derivatization technology, pharmacological activity, pharmacokinetics, drug safety, drug formulations, and preparation of crocetin.
Collapse
Affiliation(s)
- Zi-Liang Guo
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Mao-Xing Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao-Lin Li
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China
| | - Peng Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Gang Wang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wei-Ze Du
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhi-Qiang Yang
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,Institute of Chemical Technology, Northwest Minzu University, Lanzhou, China
| | - Sheng-Fu Chen
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Di Wu
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiu-Yu Tian
- Department of Clinical Pharmacy, The 940th Hospital of Joint Logistic Support Force of Chinese of PLA, Gansu Plateau Pharmaceutical Technology Center, Lanzhou, China.,College of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Zhou L, Bao L, Wang Y, Chen M, Zhang Y, Geng Z, Zhao R, Sun J, Bao Y, Shi Y, Yao R, Guo S, Cui X. An Integrated Analysis Reveals Geniposide Extracted From Gardenia jasminoides J.Ellis Regulates Calcium Signaling Pathway Essential for Influenza A Virus Replication. Front Pharmacol 2021; 12:755796. [PMID: 34867371 PMCID: PMC8640456 DOI: 10.3389/fphar.2021.755796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Geniposide, an iridoid glycoside purified from the fruit of Gardenia jasminoides J.Ellis, has been reported to possess pleiotropic activity against different diseases. In particular, geniposide possesses a variety of biological activities and exerts good therapeutic effects in the treatment of several strains of the influenza virus. However, the molecular mechanism for the therapeutic effect has not been well defined. This study aimed to investigate the mechanism of geniposide on influenza A virus (IAV). The potential targets and signaling pathways of geniposide in the IAV infection were predicted using network pharmacology analysis. According to the result of network pharmacology analysis, we validated the calcium signaling pathway induced by IAV and investigated the effect of geniposide extracted from Gardenia jasminoides J.Ellis on this pathway. The primary Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways KEGG enrichment analysis indicated that geniposide has a multi-target and multi-pathway inhibitory effect against influenza, and one of the mechanisms involves calcium signaling pathway. In the current study, geniposide treatment greatly decreased the levels of RNA polymerase in HEK-293T cells infected with IAV. Knocking down CAMKII in IAV-infected HEK-293T cells enhanced virus RNA (vRNA) production. Geniposide treatment increased CAMKII expression after IAV infection. Meanwhile, the CREB and c-Fos expressions were inhibited by geniposide after IAV infection. The experimental validation data showed that the geniposide was able to alleviate extracellular Ca2+ influx, dramatically decreased neuraminidase activity, and suppressed IAV replication in vitro via regulating the calcium signaling pathway. These anti-IAV effects might be related to the disrupted interplay between IAV RNA polymerase and CAMKII and the regulation of the downstream calcium signaling pathway essential for IAV replication. Taken together, the findings reveal a new facet of the mechanism by which geniposide fights IAV in a way that depends on CAMKII replication.
Collapse
Affiliation(s)
- Lirun Zhou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rongmei Yao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Pang Q, Zhang W, Li C, Li H, Zhang Y, Li L, Zang C, Yao X, Zhang D, Yu Y. Antidementia effects, metabolic profiles and pharmacokinetics of GJ-4, a crocin-rich botanical candidate from Gardeniae fructus. Food Funct 2020; 11:8825-8836. [PMID: 32966490 DOI: 10.1039/d0fo01678k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crocins, a series of hydrophilic carotenoids that are either mono- or di-glycosyl polyene esters of crocetin extracted from dried saffron stigma or fruits of gardenia, are attracting much attention due to their wide range of pharmacological effects. In our previous study, GJ-4, a mixture of crocin analogues, was obtained and derived from gardenia fruits. Mainly 18 crocin analogues were identified from GJ-4 and found to exhibit neuroprotective effects in in vitro and in vivo models. In this present study, we continue to investigate the therapeutic effects of GJ-4 on learning and memory impairments in a 2VO-induced VaD model, and the potential mechanism. In addition, the metabolic profiles and pharmacokinetic properties of GJ-4 were determined using liquid chromatography-electrospray ionization-mass spectrometry after single and multiple oral doses. All these findings presented here will serve as a solid basis to develop GJ-4 as a new therapeutic agent for dementia.
Collapse
Affiliation(s)
- Qianqian Pang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Weiyang Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, People' Republic China
| | - Haibo Li
- Kanion Pharmaceutical Co. Ltd, State Key Laboratory of New-tech for Chinese Medicine Pharamaceutical Process, Lianyungang 222001, People' Republic China
| | - Yu Zhang
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Lin Li
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Caixia Zang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xinsheng Yao
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| | - Dan Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yang Yu
- Institute of TCM & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510623, People's Republic of China
| |
Collapse
|
10
|
Xia W, Khan I, Li XA, Huang G, Yu Z, Leong WK, Han R, Ho LT, Wendy Hsiao WL. Adaptogenic flower buds exert cancer preventive effects by enhancing the SCFA-producers, strengthening the epithelial tight junction complex and immune responses. Pharmacol Res 2020; 159:104809. [PMID: 32502642 DOI: 10.1016/j.phrs.2020.104809] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
Microbiome therapy has attracted a keen interest from both research and business sectors. Our lab has been applying this "second genome" platform to assess the functionality of herbal medicines with fulfilling results. In this study, we applied this platform to assess the potential cancer-preventive effects of three selected adaptogenic plants. The flower buds from these plants were used to constitute Preparations SL and FSP according to the receipts of two commonly consumed Chinese medicinal decoctions for gastrointestinal discomfort. Preparation SL contains Sophorae japonica and Lonicerae Japonicae, and Preparation FSP contains Sophorae japonica and Gardenia Jasminoides. SL and FSP extracts significantly (p < 0.001) lowered the polyp burden, as well as the expressions of oncogenic signaling molecules, such as MAPK/ERK, PI3K/AKT, and STAT3 in ApcMin/+ mice. The inflamed gut was alleviated by shifting M1 to M2 macrophage phenotypes and the associated immune cytokines. The other remarkable change was on the extracellular tight junction protein complex, where the occludin, ZO-1, ICAM-1, E-cadherin were significantly (p < 0.05) upregulated while the N-cadherin and β-catenin were downregulated in the treated mice. The above physiological changes in the gut epithelial barrier were companied with the changes in gut microbiome. The 16S Sequencing data revealed a marked decrease in the potential pathogens (especially Helicobacter species and hydrogen sulfide producing-bacteria) and the increase in beneficial bacteria (especially for species from the genera of Akkermansia, Barnesiella, Coprococcus, Lachnoclostridium, and Ruminococcus). The majority of which were the short-chain fatty acids (SCFAs) producers. Meanwhile SCFAs-sensing G protein-coupled receptors (GPCRs), including GPR41, GPR43, and GPR109a were also significantly upregulated. In a recent report, we proved that the bacteria-derived SCFAs plays an essential role to the anti-cancer effects of the mushroom polysaccharides and saponins in ApcMin/+ mice. In this study, we further demonstrated that butyrate treatment could enhance the extracellular tight junction protein complex as effective as the treatments with SL and FSP to the ApcMin/+ mice. Our findings provide strong evidence of the vital role of the SCFA-producers and their metabolites to the cancer-preventive properties of the SL and FSP preparations.
Collapse
Affiliation(s)
- Wenrui Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Xiao-Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Guoxin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Zhiling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Wai Kit Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Ruixuan Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| | - Leung Tsun Ho
- Department of Pathology, University Hospital, Macau University of Science and Technology, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
11
|
Shi YP, Zhang YG, Li HN, Kong HT, Zhang SS, Zhang XM, Li XB, Liu KC, Han LW, Tian QP. Discovery and identification of antithrombotic chemical markers in Gardenia Fructus by herbal metabolomics and zebrafish model. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112679. [PMID: 32101773 DOI: 10.1016/j.jep.2020.112679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia Fructus (GF), a traditional Chinese medicine for clearing heat and purging fire, has been reported to use to treat thrombotic related diseases, but the antithrombotic components are not clear. AIM OF THE STUDY To develop efficient research methods for discovering some representative antithrombotic compounds of GF. MATERIALS AND METHODS AB line zebrafish induced by arachidonic acid (AA) was used as a fast and trace-sample-required valuation model for antithrombptic effect of GF samples. Among nine samples of GF from different production areas, two samples with the largest difference in bioactivity were selected for downstream analysis. High-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) was applied to detect compounds in the GF samples. And herbal metabolomics and grey correlation analysis (GCA) were used to identify crucial compounds with potential antithrombotic activity. Then the bioactivity of those important compounds was verified on the zebrafish model. Network pharmacology was used to explore the protein targets and signaling pathways of these compounds. RESULTS Among the GF samples, S1 (Huoshan City, Anhui Province), and S6 (Jichun City, Hubei Province), significantly differed in thrombus inhibiting bioactivity. HPLC-Q-TOF/MS identified a total of 614 compounds in each GF sample. 19 compounds were selected as important potential variables from metabolomics data by orthogonal partial least squares discriminant analysis (OPLS-DA). And 10 compounds among them were further found to be positively correlated with the antithrombotic bioactivity of GF by GCA. Finally, 3 compounds in them, geniposide, citric acid, and quinic acid, were confirmed as representative antithrombotic chemical markers of GF. Using network pharmacology analysis, some key protein targets, such as proto-oncogene tyrosine-protein kinase Src (SRC) and cyclin-dependent kinase 2 (CDK2), and some signaling pathways were found to supply powerful evidence about antithrombotic mechanisms of three compounds and GF. CONCLUSIONS This research have succeeded to discover and identify three representative antithrombotic compounds of GF using an efficient integrated research strategy we established, an Omics Discriminant-Grey Correlation-Biological Activity strategy. The antithrombotic chemical makers we found could also contribute to provided more accurate index components for comprehensive quality control of GF.
Collapse
Affiliation(s)
- Yong-Ping Shi
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, Shanxi, China
| | - You-Gang Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao-Nan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hao-Tian Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shan-Shan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xuan-Ming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiao-Bin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Li-Wen Han
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Qing-Ping Tian
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
12
|
Mao QQ, Xu XY, Shang A, Gan RY, Wu DT, Atanasov AG, Li HB. Phytochemicals for the Prevention and Treatment of Gastric Cancer: Effects and Mechanisms. Int J Mol Sci 2020; 21:E570. [PMID: 31963129 PMCID: PMC7014214 DOI: 10.3390/ijms21020570] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is the fifth most common cancer, and the third most prevalent cause of cancer-related deaths in the world. Voluminous evidence has demonstrated that phytochemicals play a critical role in the prevention and management of gastric cancer. Most epidemiological investigations indicate that the increased intake of phytochemicals could reduce the risk of gastric cancer. Experimental studies have elucidated the mechanisms of action, including inhibiting cancer cell proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis as well as cancer cell metastasis. These mechanisms have also been related to the inhibition of Helicobacter pylori and the modulation of gut microbiota. In addition, the intake of phytochemicals could enhance the efficacy of anticancer chemotherapeutics. Moreover, clinical studies have illustrated that phytochemicals have the potential for the prevention and the management of gastric cancer in humans. To provide an updated understanding of relationships between phytochemicals and gastric cancer, this review summarizes the effects of phytochemicals on gastric cancer, highlighting the underlying mechanisms. This review could be helpful for guiding the public in preventing gastric cancer through phytochemicals, as well as in developing functional food and drugs for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| |
Collapse
|
13
|
Skin Improvement Effects of Gardeniae fructus Extract in HaCaT Keratinocytes, B16F10 Melanocytes, and CCD-986sk Fibroblast Cells. COSMETICS 2019. [DOI: 10.3390/cosmetics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The development of functional cosmetics with skin improvement effects from natural sources is necessary. In this study, the antioxidant, antiwrinkling, moisturizing, and whitening effects of Gardeniae fructus extract (GF) were investigated in keratinocytes, melanocytes, and fibroblast cells. Antioxidant activity was determined by a DPPH free radical scavenging assay. MMP-1, MMP-9, HAS1, and filaggrin mRNA levels were measured by RT-PCR in keratinocytes and fibroblast cells. MITF and tyrosinase protein levels were evaluated by blotting analysis in melanocytes. DPPH free radical activity was investigated to determine whether GF showed dose-dependent inhibitory activity. GF induced the upregulation of HAS1 and filaggrin mRNA expression in keratinocytes and fibroblast cells. GF led to the downregulation of MMP mRNA levels in keratinocytes and fibroblast cells. Western blotting was performed to confirm the whitening-related protein (MITF and tyrosinase) levels induced by GF in melanocytes, and the inhibitory activity was superior to that of the α-MSH used for the comparison test. GF showed marked antioxidant, antiwrinkling, skin moisturizing, and whitening activity in keratinocytes, melanocytes, and fibroblast cells. Through the results of these experiments, the applicability of GF as a natural and functional cosmetic material was verified.
Collapse
|
14
|
Cui Y, Wang Q, Wang M, Jia J, Wu R. Gardenia Decoction Prevent Intestinal Mucosal Injury by Inhibiting Pro-inflammatory Cytokines and NF-κB Signaling. Front Pharmacol 2019; 10:180. [PMID: 30983991 PMCID: PMC6447716 DOI: 10.3389/fphar.2019.00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Gardenia jasminoides Ellis, which belongs to the Rubiaceae family, is a widely used traditional Chinese medicine. Although effect of Gardenia jasminoides Ellis has been widely reported, its anti-inflammatory role in intestinal mucosal injury induced by LPS remains unclear. In the present study, we investigated the effects of decoction extracted from Gardenia jasminoides on the morphology and intestinal antioxidant capacity of duodenum induced by LPS in mice. Further analysis was carried out in the expression of inflammatory and anti-inflammatory cytokines. Nuclear factor-kappa B (NF-κB) was determined by Western blot. Gardenia jasminoides water extract was qualitative analyzed by high-performance liquid chromatography coupled with electro spray ionization quadrupole time-of-flight mass spectrometry. The results showed that Gardenia decoction markedly inhibited the LPS-induced Tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-8, and IL-1 production. It was also observed that Gardenia decoction attenuated duodenum histopathology changes in the mouse models. Furthermore, Gardenia decoction inhibited the expression of NF-κB in LPS stimulated mouse duodenum. These results suggest that Gardenia decoction exerts an anti-inflammatory and antioxidant property by up-regulating the activities of the total antioxidant capacity (T-AOC), the total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px). Gardenia decoction is highly effective in inhibiting intestinal mucosal damage and may be a promising potential therapeutic reagent for intestinal mucosal damage treatment.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengzhu Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junfeng Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
15
|
Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2018.08.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pan H, Li Y, Qian H, Qi X, Wu G, Zhang H, Xu M, Rao Z, Li JL, Wang L, Ying H. Effects of Geniposide from Gardenia Fruit Pomace on Skeletal-Muscle Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5802-5811. [PMID: 29771121 DOI: 10.1021/acs.jafc.8b00739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geniposide is the main bioactive constituent of gardenia fruit. Skeletal-muscle fibrosis is a common and irreversibly damaging process. Numerous studies have shown that geniposide could improve many chronic diseases, including metabolic syndrome and tumors. However, the effects of geniposide on skeletal-muscle fibrosis are still poorly understood. Here, we found that crude extracts of gardenia fruit pomace could significantly decrease the expression of profibrotic genes in vitro. Moreover, geniposide could also reverse profibrotic-gene expression induced by TGF-β and Smad4, a regulator of skeletal-muscle fibrosis. In addition, geniposide treatment could significantly downregulate profibrotic-gene expression and improve skeletal-muscle injuries in a mouse model of contusion. These results together suggest that geniposide has an antifibrotic effect on skeletal muscle through the suppression of the TGF-β-Smad4 signaling pathway.
Collapse
Affiliation(s)
- Haiou Pan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology , Jiangnan University , Wuxi 214122 , China
| | - Jin-Long Li
- School of Pharmacy , Nantong University , Nantong 226001 , China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Jiangnan University , Lihu Avenue 1800 , Wuxi 214122 , China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , University of Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , China
| |
Collapse
|
17
|
Wang X, Wang GC, Rong J, Wang SW, Ng TB, Zhang YB, Lee KF, Zheng L, Wong HK, Yung KKL, Sze SCW. Identification of Steroidogenic Components Derived From Gardenia jasminoides Ellis Potentially Useful for Treating Postmenopausal Syndrome. Front Pharmacol 2018; 9:390. [PMID: 29899696 PMCID: PMC5989419 DOI: 10.3389/fphar.2018.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/04/2018] [Indexed: 12/11/2022] Open
Abstract
Estrogen-stimulating principles have been demonstrated to relieve postmenopausal syndrome effectively. Gardenia jasminoides Ellis (GJE) is an herbal medicine possessing multiple pharmacological effects on human health with low toxicity. However, the therapeutic effects of GJE on the management of postmenopausal syndrome and its mechanism of action have not been fully elucidated. In this study, network pharmacology-based approaches were employed to examine steroidogenesis under the influence of GJE. In addition, the possibility of toxicity of GJE was ruled out and four probable active compounds were predicted. In parallel, a chromatographic fraction of GJE with estrogen-stimulating effect was identified and nine major compounds were isolated from this active fraction. Among the nine compounds, four of them were identified by network pharmacology, validating the use of network pharmacology to predict active compounds. Then the phenotypic approaches were utilized to verify that rutin, chlorogenic acid (CGA) and geniposidic acid (GA) exerted an estrogen-stimulating effect on ovarian granulosa cells. Furthermore, the results of target-based approaches indicated that rutin, CGA, and GA could up-regulate the FSHR-aromatase pathway in ovarian granulosa cells. The stimulation of estrogen production by rat ovarian granulosa cells under the influence of the three compounds underwent a decline when the follicle-stimulating hormone receptor (FSHR) was blocked by antibodies against the receptor, indicating the involvement of FSHR in the estradiol-stimulating activity of the three compounds. The effects of the three compounds on estrogen biosynthesis- related gene expression level were further confirmed by Western blot assay. Importantly, the MTT results showed that exposure of breast cancer cells to the three compounds resulted in reduction of cell viability, demonstrating the cytotoxicity of the three compounds. Collectively, rutin, chlorogenic acid and geniposidic acid may contribute to the therapeutic potential of GJE for the treatment of postmenopausal syndrome.
Collapse
Affiliation(s)
- Xueyu Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jianhui Rong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shi Wei Wang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Bo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Zheng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hei-Kiu Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ken Kin Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|