1
|
Choi YR, Na HJ, Lee J, Kim YS, Kim MJ. Isoeugenol Inhibits Adipogenesis in 3T3-L1 Preadipocytes with Impaired Mitotic Clonal Expansion. Nutrients 2024; 16:1262. [PMID: 38732509 PMCID: PMC11085592 DOI: 10.3390/nu16091262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.
Collapse
Affiliation(s)
- Yae Rim Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Hyun-Jin Na
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Jaekwang Lee
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| | - Young-Suk Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Republic of Korea;
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (Y.R.C.); (H.-J.N.); (J.L.)
| |
Collapse
|
2
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
3
|
Sharma N, Behl T, Singh S, Kaur P, Zahoor I, Mohan S, Rachamalla M, Dailah HG, Almoshari Y, Salawi A, Alshamrani M, Aleya L. Targeting Nanotechnology and Nutraceuticals in Obesity: An Updated Approach. Curr Pharm Des 2022; 28:3269-3288. [PMID: 36200206 DOI: 10.2174/1381612828666221003105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
HYPOTHESIS This review article represents a brief layout of the risk factors and pathophysiology responsible for obesity, customary treatment strategies, and nanotechnology-based nutraceutical for the therapeutics of obesity. EXPERIMENTS An exhaustive search of the literature was done for this purpose, using Google Scholar, PubMed, and ScienceDirect databases. A literature study was conducted using publications published in peer-reviewed journals between 2000 and 2022. FINDINGS This was revealed that risk factors responsible for obesity were genetic abnormalities and environmental and socio-economic factors. Several research articles published between 2000 and 2022 were based on phytoconstituents-based nanoformulation for obesity therapeutics and, therefore, have been systematically compiled in this review. Various nutraceuticals like Garcinia cambogia, quercetin, resveratrol, capsaicin, Capsicum, Curcuma longa, Camella Sinensis, Zingiber officinalis, Citrus aurantium, Aegle marmelos, Coffea canephora, Asparagus officinalis, Gardenia jasminoides, Catha edulis, Clusia nemroisa, Rosmarinus officinalis, Cirsium setidens, Betula platyphylla, Tripterygium wilfordi possessing anti-obesity actions are discussed in this review along with their patents, clinical trials as well as their nanoformulation available. CONCLUSION This review illustrates that nanotechnology has a great propensity to impart a promising role in delivering phytochemicals and nutraceuticals in managing obesity conditions and other related disorders.
Collapse
Affiliation(s)
- Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana 133207, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana- Ambala, Haryana 133207, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.,Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Hamed Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Meshal Alshamrani
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-environment Laboratory, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
4
|
Xue Q, Xiang Z, Wang S, Cong Z, Gao P, Liu X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front Nutr 2022; 9:1002147. [PMID: 36313111 PMCID: PMC9614275 DOI: 10.3389/fnut.2022.1002147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
Syzygium aromaticum is an aromatic plant native to Indonesia, and introduced to tropical regions worldwide. As an ingredient in perfumes, lotions, and food preservation, it is widely used in the food and cosmetic industries. Also, it is used to treat toothache, ulcers, type 2 diabetes, etc. A variety of nutrients such as amino acids, proteins, fatty acids, and vitamins are found in S. aromaticum. In addition to eugenol, isoeugenol, eugenol acetate, β-caryophyllene and α-humulene are the main chemical constituents. The chemical constituents of S. aromaticum exhibit a wide range of bioactivities, such as antioxidant, antitumor, hypoglycemic, immunomodulatory, analgesic, neuroprotective, anti-obesity, antiulcer, etc. This review aims to comprehend the information on its taxonomy and botany, nutritional composition, chemical composition, bioactivities and their mechanisms, toxicity, and potential applications. This review will be a comprehensive scientific resource for those interested in pursuing further research to explore its value in food.
Collapse
Affiliation(s)
- Qing Xue
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zedong Xiang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shengguang Wang
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhufeng Cong
- Shandong Provincial Institute of Cancer Prevention and Treatmen, Jinan, Shandong, China
| | - Peng Gao
- College of Pharmaceutical Science, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,Peng Gao,
| | - Xiaonan Liu
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China,*Correspondence: Xiaonan Liu,
| |
Collapse
|
5
|
Li M, Zhao Y, Wang Y, Geng R, Fang J, Kang SG, Huang K, Tong T. Eugenol, A Major Component of Clove Oil, Attenuates Adiposity and Modulates Gut Microbiota in High-Fat Diet-fed Mice. Mol Nutr Food Res 2022; 66:e2200387. [PMID: 36029106 DOI: 10.1002/mnfr.202200387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Eugenol (EU), the major aromatic compound derived from clove oil, is being focused recently due to its potential in preventing several chronic conditions. Herein, we aimed to evaluate the potential of EU in obesity prevention and to delineate the mechanisms involved. METHODS AND RESULTS Five-week-old male C57BL/6J mice were fed with high-fat diet (HFD) or HFD supplemented with EU (0.2%, w/w) for 13 weeks. EU significantly reduced obesity-related indexes including final body weight, body weight gain, adipocyte size, visceral fat-pad weight, and fasting blood glucose. EU prevented HFD-induced gut dysbiosis, as indicated by the increase of Firmicutes and decrease of Desulfobacterota at phylum level, and the increase of Dubosiella, Blautia, unclassified_f_Oscillospiraceae, and unclassified_f_Ruminococcaceae, and the decrease of Alistipes, Alloprevotella, and Bilophila at genus level. Notably, the obesity-related indexes were positively correlated with the relative abundances of Bacteroides, unclassified_f_Lachnospiraceae, Colidextribacter, and Bilophila, and negatively correlated with the relative abundances of norank_f_Muribaculaceae and Lachnospiraceae_NK4A136_group. Moreover, the preventive effects of EU on obesity were accompanied by the transcriptomic reprogramming of white adipose tissue. CONCLUSION These findings demonstrated that EU prevents the HFD-induced adiposity and modulates gut dysbiosis, and highlighted the potential of EU in obesity intervention as a functional dietary supplement. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Muangun, 58554, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China.,Beijing Laboratory for Food Quality and Safety, Beijing, 100083, China
| |
Collapse
|
6
|
Wang H, Tang P, Li L, Zhang M, Wei F, Hou S, Pang K, Tang H. Evaluation of toxicological safety and quality control of Luobufukebiri pill. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115209. [PMID: 35526730 DOI: 10.1016/j.jep.2022.115209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Luobufukebiri pill is one of the characteristic medicines of Uygur nationality in Xinjiang. It has the effect of warming and tonifying the brain and kidney, benefiting the heart and filling the essential functions, mainly used to treat impotence, depression, spermatorrhea, premature ejaculation, bodily weakness, emaciation, and neurasthenia. AIM OF THE STUDY This study evaluated the toxicology and developed a quality control protocol of Luobufukebiri pill to ensure its safety and effectiveness in clinical applications. MATERIALS AND METHODS Acute toxicity in mice was studied by the maximum-dose method, and the toxic reactions in mice were observed within two weeks. In the study of Sub-chronic toxicity, SD rats were randomized into four groups: three drug groups which were treated with 8.00, 2.67, and 0.80 g/kg of Luobufukebiri pill, respectively, and one control group which was treated with the same volume of distilled water. Subsequently, at 30 days of medication and 30 days of drug withdrawal, the hematologic indexes, biochemical indexes, organ coefficient, and pathological sections of main organs were detected, respectively. According to the prescription, the contents of 8 active components in the pill were quantified simultaneously. The chromatographic conditions were as follows: Stepwise gradient elution was carried out using 0.1% formic acid (solvent A) and acetonitrile (solvent B), 0-8 min, 80% → 60% B; 8-25 min, 60% → 25%B. The flow rate was 1.0 mL/min, the column was maintained at 25 °C, and the injected sample volume was 10 μL. RESULTS The acute toxicity experiment documented a large dose of Luobufukebiri pill had no significant effect on organ and body weight and did not cause apparent damage to parenchymal organs. At Sub-chronic toxicity, the behavior of rats was as normal as the control group. There were some differences in hematologic indexes, serum biochemical indexes, and organ coefficient tests between the drug and control groups, but they had no toxic significance. No obvious pathological changes were observed in the pathological sections of major organs. In conclusion, this study demonstrated that the clinical dose of Luobufukebiri pill was far less than its toxic dose, and it had reliable safety. The contents of eight index components of Luobufukebiri pill were measured. All calibration curves exhibited good linearity with correlation coefficients better than 0.9997. The relative standard deviations of precision, reproducibility, stability, and recovery were less than 2.0%, demonstrating the stability and reliability of the method. CONCLUSIONS This study further confirmed the safety of Luobufukebiri pill in clinical practice. A rapid, accurate, and convenient RP-HPLC-PDA detection method has been developed for the simultaneous detection of eight active compounds in the pharmaceutical samples of Luobufukebiri pill. This study provided a reference for the safety and enhancement of the quality standards of Luobufukebiri pill.
Collapse
Affiliation(s)
- Heng Wang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Ping Tang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Le Li
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Min Zhang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Feng Wei
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Shimin Hou
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Kejian Pang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| | - Hui Tang
- Key Laboratory of the Ministry of Education of Xinjiang Phytomedicine Resources Utilization, Pharmacy School of Shihezi University, Xinjiang Shihezi, 832002, Xinjiang, PR China.
| |
Collapse
|
7
|
Ma LJ, Hou XD, Qin XY, He RJ, Yu HN, Hu Q, Guan XQ, Jia SN, Hou J, Lei T, Ge GB. Discovery of human pancreatic lipase inhibitors from root of Rhodiola Crenulata via integrating bioactivity-guided fractionation, chemical profiling and biochemical assay. J Pharm Anal 2022; 12:683-691. [PMID: 36105167 PMCID: PMC9463489 DOI: 10.1016/j.jpha.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/03/2022] Open
Abstract
Although herbal medicines (HMs) are widely used in the prevention and treatment of obesity and obesity-associated disorders, the key constituents exhibiting anti-obesity activity and their molecular mechanisms are poorly understood. Recently, we assessed the inhibitory potentials of several HMs against human pancreatic lipase (hPL, a key therapeutic target for human obesity), among which the root-extract of Rhodiola crenulata (ERC) showed the most potent anti-hPL activity. In this study, we adopted an integrated strategy, involving bioactivity-guided fractionation techniques, chemical profiling, and biochemical assays, to identify the key anti-hPL constituents in ERC. Nine ERC fractions (retention time = 12.5–35 min), obtained using reverse-phase liquid chromatography, showed strong anti-hPL activity, while the major constituents in these bioactive fractions were subsequently identified using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS/MS). Among the identified ERC constituents, 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose (PGG) and catechin gallate (CG) showed the most potent anti-hPL activity, with pIC50 values of 7.59 ± 0.03 and 7.68 ± 0.23, respectively. Further investigations revealed that PGG and CG potently inhibited hPL in a non-competitive manner, with inhibition constant (Ki) values of 0.012 and 0.082 μM, respectively. Collectively, our integrative analyses enabled us to efficiently identify and characterize the key anti-obesity constituents in ERC, as well as to elucidate their anti-hPL mechanisms. These findings provide convincing evidence in support of the anti-obesity and lipid-lowering properties of ERC. The root-extract of Rhodiola crenulata (ERC) potently inhibits hPL. The hPL inhibitors in ERC were characterized using an integrated panel of assays. Six constituents in ERC were identified as hPL inhibitors. PGG and CG are potent non-competitive hPL inhibitors (Ki < 0.1 μM). The binding modes of PGG and CG were examined based on docking simulations.
Collapse
Affiliation(s)
- Li-Juan Ma
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Ya Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong-Jing He
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao-Nan Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Hu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Qing Guan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shou-Ning Jia
- Qinghai Hospital of Traditional Chinese Medicine, Xining, 810099, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Corresponding author.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Corresponding author.
| |
Collapse
|
8
|
Otunola GA. Culinary Spices in Food and Medicine: An Overview of Syzygium aromaticum (L.) Merr. and L. M. Perry [Myrtaceae]. Front Pharmacol 2022; 12:793200. [PMID: 35111060 PMCID: PMC8801816 DOI: 10.3389/fphar.2021.793200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023] Open
Abstract
Spices-dried aromatic parts of plants (leaves, seeds, bark, roots, rhizomes, buds, etc) used to enhance flavour, taste and colour (sensory quality) of foods, are increasingly finding other useful roles in healthcare beyond their primary use as culinary organoleptic enhancers. Several spices are currently being investigated for their potential health benefits, because of the failing efficacy, toxicity and high cost associated with conventional drugs. One such spice: Syzygium aromaticum (L.) Merr. and L.M.Perry [Myrtaceae] (Clove), has a multi-dimensional role in diet, medicine, functional foods and nutraceuticals, agriculture, among other industries. Peer-reviewed articles, mostly from PubMed and Google Scholar, were consulted for the purpose of this review. The nutritional and phytochemical contents, selected biological activities as well as some functional foods and beverages of clove and their uses for human health are presented. Although these observations are largely empirical, the efficacious attributes have led to their pharmacological applications in the indigenous system of medicine all over the world and bridge between food, diet and medicine. Considering the GRAS status of clove, more studies on bioavailability, accumulation, toxicity, dosage and efficacy of clove as a spice drug or functional foods in biological systems especially in humans are required. Meanwhile, clove and its products can be used as co-adjuvants in the prevention, treatment and management of chronic diseases. Further, many applications of clove in food, health, cosmetics, pharmaceutics, nanoparticles and agricultural industries are still open for investigations.
Collapse
Affiliation(s)
- Gloria Aderonke Otunola
- Medicinal Plants and Economic Development (MPED) Research Center, Department of Botany, University of Fort Hare, Alice, South Africa
| |
Collapse
|
9
|
Rodrigues M, Bertoncini-Silva C, Joaquim A, Machado C, Ramalho L, Carlos D, Fassini P, Suen V. Beneficial effects of eugenol supplementation on gut microbiota and hepatic steatosis in high-fat-fed mice. Food Funct 2022; 13:3381-3390. [DOI: 10.1039/d1fo03619j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the increase in the prevalence of obesity, new therapies have emerged and Eugenol has been shown to be beneficial in metabolic changes and gut microbiota. This study aimed...
Collapse
|
10
|
Lee SJ, Kim JE, Choi YJ, Gong JE, Jin YJ, Lee DW, Choi YW, Hwang DY. Anti-Obesity Effect of α-Cubebenol Isolated from Schisandra chinensis in 3T3-L1 Adipocytes. Biomolecules 2021; 11:1650. [PMID: 34827648 PMCID: PMC8615670 DOI: 10.3390/biom11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
The efficacy of α-cubebenol isolated from Schisandra chinensis has been studied in several diseases, including cecal ligation, puncture challenge-induced sepsis, and degranulation of neutrophils. To identify the novel functions of α-cubebenol on lipid metabolism, alterations on the regulation of lipogenesis, lipolysis, and inflammatory response were observed in 3T3-L1 adipocytes treated with α-cubebenol. Most lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were suppressed in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenol without significant cytotoxicity. In addition, similar inhibition effects were observed in the iNOS-induced COX-2 mediated pathway and NLRP3 inflammasome pathway of MDI-stimulated 3T3-L1 cells treated with α-cubebenol. Lipolytic targets, such as cAMP concentration, expression of adenylyl cyclase and PDE4, and their downstream signaling pathway, in MDI-stimulated 3T3-L1 cells were stimulated by the α-cubebenol treatment. The levels of transcription factors and related proteins for β-oxidation were significantly higher in the MDI + α-cubebenol treated group than in the MDI + Vehicle treated group. These results show that α-cubebenol has a novel role as a lipogenesis inhibitor, lipolysis and β-oxidation stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Da Woon Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Young Whan Choi
- Department of Horticultural Bioscience, Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
11
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
12
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
13
|
Hashiesh HM, Meeran MN, Sharma C, Sadek B, Kaabi JA, Ojha SK. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020; 12:nu12102963. [PMID: 32998300 PMCID: PMC7599522 DOI: 10.3390/nu12102963] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM), a metabolic disorder is one of the most prevalent chronic diseases worldwide across developed as well as developing nations. Hyperglycemia is the core feature of the type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), following insulin deficiency and impaired insulin secretion or sensitivity leads insulin resistance (IR), respectively. Genetic and environmental factors attributed to the pathogenesis of DM and various therapeutic strategies are available for the prevention and treatment of T2DM. Among the numerous therapeutic approaches, the health effects of dietary/nutraceutical approach due to the presence of bioactive constituents, popularly termed phytochemicals are receiving special interest for pharmacological effects and therapeutic benefits. The phytochemicals classes, in particular sesquiterpenes received attention because of potent antioxidant, anti-inflammatory, and antihyperglycemic effects and health benefits mediating modulation of enzymes, receptors, and signaling pathways deranged in DM and its complications. One of the terpene compounds, β-caryophyllene (BCP), received enormous attention because of its abundant occurrence, non-psychoactive nature, and dietary availability through consumption of edible plants including spices. BCP exhibit selective full agonism on cannabinoid receptor type 2 (CB2R), an important component of endocannabinoid system, and plays a role in glucose and lipid metabolism and represents the newest drug target for chronic inflammatory diseases. BCP also showed agonist action on peroxisome proliferated activated receptor subtypes, PPAR-α and PPAR-γ, the main target of currently used fibrates and imidazolidinones for dyslipidemia and IR, respectively. Many studies demonstrated its antioxidant, anti-inflammatory, organoprotective, and antihyperglycemic properties. In the present review, the plausible therapeutic potential of BCP in diabetes and associated complications has been comprehensively elaborated based on experimental and a few clinical studies available. Further, the pharmacological and molecular mechanisms of BCP in diabetes and its complications have been represented using synoptic tables and schemes. Given the safe status, abundant natural occurrence, oral bioavailability, dietary use and pleiotropic properties modulating receptors and enzymes, BCP appears as a promising molecule for diabetes and its complications.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - M.F. Nagoor Meeran
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (C.S.); (J.A.K.)
| | - Shreesh K. Ojha
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE; (H.M.H.); (M.F.N.M.); (B.S.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Correspondence: ; Tel.: +971-3-713-7524; Fax: +971-3-767-2033
| |
Collapse
|
14
|
Zhao W, Song F, Hu D, Chen H, Zhai Q, Lu W, Zhao J, Zhang H, Chen W, Gu Z, Wang G. The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients 2020; 12:E2507. [PMID: 32825154 PMCID: PMC7551042 DOI: 10.3390/nu12092507] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disorder characterized by the excess accumulation of fat in the hepatocytes. It is commonly associated with severe obesity and inflammation. Free fatty acids (FFAs) are the key to regulate lipid metabolism and immune response in hepatocyte cells. This study examined the effects of AEN (alcohol extract of nutmeg, the seed of Myristica fragrans Houtt.) on the inhibition of lipid synthesis and inflammation in vitro and in vivo and on high-fat diet-induced obesity in NAFLD mice. Our results showed that AEN treatment could downregulate the expression of lipid synthesis-related genes fatty acid synthase (FASN) and sterol regulatory element-binding protein 1c (SREBP-1c) and lower the lipid content of cells. AEN also inhibited FFAs-mediated inflammation-related cytokines interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) expression in cells. In a mouse model, AEN reduced the bodyweight of obese mice and improved NAFLD without affecting food intake. Further analysis revealed that AEN significantly reduced inflammation level, cholesterol and lipid accumulation, blood glucose, and other liver function indexes in mice fed with a high-fat diet. In conclusion, AEN inhibited the aggravation of obesity and inflammation by downregulating lipid-gene expression in the liver to ameliorate NAFLD.
Collapse
Affiliation(s)
- Wenyu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Diangeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.Z.); (F.S.); (D.H.); (H.C.); (Q.Z.); (W.L.); (J.Z.); (H.Z.); (W.C.); (Z.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| |
Collapse
|
15
|
Shang A, Gan RY, Xu XY, Mao QQ, Zhang PZ, Li HB. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Crit Rev Food Sci Nutr 2020; 61:2061-2077. [PMID: 32462901 DOI: 10.1080/10408398.2020.1769548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Chengdu National Agricultural Science and Technology Center (NASC), Chengdu, China
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Pang-Zhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, Victoria, Australia
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Qin H, Xu H, Yu L, Yang L, Lin C, Chen J. Sesamol intervention ameliorates obesity-associated metabolic disorders by regulating hepatic lipid metabolism in high-fat diet-induced obese mice. Food Nutr Res 2019; 63:3637. [PMID: 31692782 PMCID: PMC6814895 DOI: 10.29219/fnr.v63.3637] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Obesity has currently become a serious social problem to be solved. Sesamol, a natural bioactive substance extracted from sesame oil, has shown multiple physiological functions, and it might have an effect on the treatment of obesity. Objective This study was conducted to investigate the therapeutic effect and potential mechanisms of sesamol on the treatment of obesity and metabolic disorders in high-fat diet (HFD)-induced obese mice. Methods C57BL/6J male mice were fed HFD for 8 weeks to induce obesity, followed by supplementation with sesamol (100 mg/kg body weight [b.w.]/day [d] by gavage) for another 4 weeks. Hematoxylin and eosin staining was used to observe lipid accumulation in adipose tissues and liver. Chemistry reagent kits were used to measure serum lipids, hepatic lipids, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels. ELISA kits were used to determine the serum insulin and free fatty acid (FFA) levels. Western blotting was used to detect the protein levels involved in lipid metabolism in the liver. Results Sesamol significantly reduced the body weight gain of obese mice and suppressed lipid accumulation in adipose tissue and liver. Sesamol also improved serum and hepatic lipid profiles, and increased insulin sensitivity. In the sesamol-treated group, the levels of serum ALT and AST decreased significantly. Furthermore, after sesamol treatment, the hepatic sterol regulatory element binding protein-1 (SREBP-1c) decreased, while the phosphorylated hormone sensitive lipase (p-HSL), the carnitine palmitoyltransferase 1α (CPT1α), and the peroxisome proliferator-activated receptor coactivator-1α (PGC1α) increased, which were responsible for the fatty acid synthesis, lipolysis, and fatty acid β-oxidation, respectively. Conclusions Sesamol had a positive effect on anti-obesity and ameliorated the metabolic disorders of obese mice. The possible mechanism of sesamol might be the regulation of lipid metabolism in the liver.
Collapse
Affiliation(s)
- Hong Qin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Haiyan Xu
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Liang Yu
- Department of Research and Development Office, Hunan First Normal University, Changsha, China
| | - Lina Yang
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Cui Lin
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition Science and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
17
|
Karri S, Sharma S, Hatware K, Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed Pharmacother 2018; 110:224-238. [PMID: 30481727 DOI: 10.1016/j.biopha.2018.11.076] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
In the present scenario, obesity is a challenging health problem and its prevalence along with comorbidities are on the rise around the world. According to world health organization and organisation for economic co-operation and development epidemiology reports, overweight and obesity are the fifth foremost causes of deaths globally. The increasing rate of obesity is becoming a mammoth problem which enormously affects an individual's quality of life. The conventional therapy of obesity mainly involves synthetic moieties and surgical procedures, which has many harmful side effects and chances of recurrence with severity. Hence, the Present review is a metanalysis of all the available data on the use of the plants with their biological source, active phytochemical constituents and a probable mechanism of action as natural anti-obesity agents. The metanalysis of data during the period of 2000-2018 was performed with the help of scientific data search engine National Center for Biotechnology Information (NCBI/PubMed). This data reveals the need and scope of further research in the development of new natural phytoconstituents for the management of obesity.
Collapse
Affiliation(s)
- Sravani Karri
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Sanjay Sharma
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India.
| | - Ketan Hatware
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| | - Kiran Patil
- NMIMS, School of Pharmacy and Technology Management, Shirpur, Maharashtra, India
| |
Collapse
|
18
|
Phokrai P, Poolsri W, Suwankulanan S, Phakdeeto N, Kaewkong W, Pekthong D, Richert L, Srisawang P. Suppressed de novo lipogenesis by plasma membrane citrate transporter inhibitor promotes apoptosis in HepG2 cells. FEBS Open Bio 2018; 8:986-1000. [PMID: 29928578 PMCID: PMC5986055 DOI: 10.1002/2211-5463.12435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Suppression of the expression or activities of enzymes that are involved in the synthesis of de novo lipogenesis (DNL) in cancer cells triggers cell death via apoptosis. The plasma membrane citrate transporter (PMCT) is the initial step that translocates citrate from blood circulation into the cytoplasm for de novo long-chain fatty acids synthesis. This study investigated the antitumor effect of the PMCT inhibitor (PMCTi) in inducing apoptosis by inhibiting the DNL pathway in HepG2 cells. The present findings showed that PMCTi reduced cell viability and enhanced apoptosis through decreased intracellular citrate levels, which consequently caused inhibition of fatty acid and triacylglycerol productions. Thus, as a result of the reduction in fatty acid synthesis, the activity of carnitine palmitoyl transferase-1 (CPT-1) was suppressed. Decreased CPT-1 activity also facilitated the disruption of mitochondrial membrane potential (ΔΨm) leading to stimulation of apoptosis. Surprisingly, primary human hepatocytes were not affected by PMCTi. Increased caspase-8 activity as a consequence of reduction in fatty acid synthesis was also found to cause disruption of ΔΨm. In addition, apoptosis induction by PMCTi was associated with an enhanced reactive oxygen species generation. Taken together, we suggest that inhibition of the DNL pathway following reduction in citrate levels is an important regulator of apoptosis in HepG2 cells via suppression of CPT-1 activity. Thus, targeting the DNL pathway mediating CPT-1 activity by PMCTi may be a selective potential anticancer therapy.
Collapse
Affiliation(s)
- Phornpun Phokrai
- Department of Medical TechnologyFaculty of Science and TechnologyBansomdejchaopraya Rajabhat UniversityBangkokThailand
| | - Wan‐angkan Poolsri
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Somrudee Suwankulanan
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Narinthorn Phakdeeto
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Worasak Kaewkong
- Department of BiochemistryFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Dumrongsak Pekthong
- Department of Pharmacy PracticeFaculty of Pharmaceutical SciencesNaresuan UniversityPhitsanulokThailand
| | | | - Piyarat Srisawang
- Department of PhysiologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|