1
|
Hu L, Zhu Y, Wang C, Khalifa I, Wang Z, Zhang H, Jia Y, Liang X. A critical review of persimmon-derived pectin: Innovations in extraction, structural characterization, biological potentials, and health-promoting effects. Food Chem 2025; 463:141453. [PMID: 39368198 DOI: 10.1016/j.foodchem.2024.141453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Persimmon-derived pectin (PP) is a versatile dietary polysaccharide with considerable industrial and biological significance, demonstrating a range of functionalities and health-promoting benefits. This review explores the changes in PP during postharvest and processing, detailing structural alterations and extraction techniques for optimal characteristics. Key functional attributes of PP-such as emulsification, rheology, antioxidant capacity, immunomodulation, and gut microbiota regulation-highlight its potential applications in food, healthcare, pharmaceuticals, and cosmetics. The review also explores methods to enhance the functional properties of PP through synergistic interactions with polyphenols. A strategic roadmap for advancing PP research is proposed, connecting extraction methods, structural characteristics, and functional properties to tailor PP for specific applications in food science and technology. Overall, persimmon-derived pectin is positioned as a valuable food-derived bioactive ingredient with diverse capabilities, poised to drive innovation and advance nutritional science across multiple sectors.
Collapse
Affiliation(s)
- Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China; Key Laboratory of Aquatic Products Processing and Safety Control, Xinxiang 453000, China; Engineering and Technology Research Center of Aquatic Products Processing and Quality control, Xinxiang 453000, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453000, China.
| |
Collapse
|
2
|
Jia Y, Wang Z, Liang X, Tu C, Khalifa I, Wang C, Zhu Y, Chen H, Hu L, Li C. Unlocking the potential of persimmons: A comprehensive review on emerging technologies for post-harvest challenges, processing innovations, and prospective applications. Food Chem 2024; 459:140344. [PMID: 38991450 DOI: 10.1016/j.foodchem.2024.140344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Persimmons are widely acknowledged as a valuable source of both medicinal and nutritional components, providing a diverse spectrum of nutrients and phytochemicals. Despite these benefits, biases against persimmons persists due to their characteristic astringent flavor that sets them apart from other fruits. Although several studies have explored various aspects of persimmons, a comprehensive review that addresses post-harvest challenges, processing innovations, and potential applications is notably absent in the literature. This review aims to fill this gap by discussing a range of topics, including emerging preservation technologies, methods for detecting and eliminating astringency, identification of functional elements, health-promoting prospects, and advancements in processed persimmon products. The primary objective is to enhance the utilization of persimmons and promote the development of diverse, customized products, thereby fostering the emergence of functional and futuristic foods.
Collapse
Affiliation(s)
- Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Chuang Wang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yingheng Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Haoyu Chen
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lanlan Hu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
López-Bermudo L, Moreno-Chamba B, Salazar-Bermeo J, Hayward NJ, Morris A, Duncan GJ, Russell WR, Cárdenas A, Ortega Á, Escudero-López B, Berná G, Martí Bruña N, Duncan SH, Neacsu M, Martin F. Persimmon Fiber-Rich Ingredients Promote Anti-Inflammatory Responses and the Growth of Beneficial Anti-Inflammatory Firmicutes Species from the Human Colon. Nutrients 2024; 16:2518. [PMID: 39125398 PMCID: PMC11314113 DOI: 10.3390/nu16152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Persimmon fruit processing-derived waste and by-products, such as peels and pomace, are important sources of dietary fiber and phytochemicals. Revalorizing these by-products could help promote circular nutrition and agricultural sustainability while tackling dietary deficiencies and chronic diseases. In this study, fiber-rich fractions were prepared from the by-products of Sharoni and Brilliant Red persimmon varieties. These fractions were quantified for their phenolic composition and assessed for their ability to promote the growth of beneficial human colonic Firmicutes species and for their in vitro anti-inflammatory potential. Gallic and protocatechuic acids, delphinidin, and cyanidin were the main phenolics identified. Faecalibacterium prausnitzii strains showed significantly higher growth rates in the presence of the Brilliant Red fraction, generating more than double butyrate as a proportion of the total short-chain fatty acids (39.5% vs. 17.8%) when compared to glucose. The fiber-rich fractions significantly decreased the inflammatory effect of interleukin-1β in Caco-2 cells, and the fermented fractions (both from Sharoni and Brilliant Red) significantly decreased the inflammatory effect of interleukin-6 and tumor necrosis factor-α in the RAW 264.7 cells. Therefore, fiber-rich fractions from persimmon by-products could be part of nutritional therapies as they reduce systemic inflammation, promote the growth of beneficial human gut bacteria, and increase the production of beneficial microbial metabolites such as butyrate.
Collapse
Affiliation(s)
- Lucía López-Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bryan Moreno-Chamba
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
- Institute of Food Engineering for Development, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Julio Salazar-Bermeo
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
- Institute of Food Engineering for Development, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Nicholas J. Hayward
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Amanda Morris
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Gary J. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Antonio Cárdenas
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ángeles Ortega
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Blanca Escudero-López
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Genoveva Berná
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Nuria Martí Bruña
- Institute of Research, Development and Innovation in Sanitary Biotechnology of Elche, Miguel Hernández University, 03202 Elche, Spain; (B.M.-C.)
| | - Sylvia H. Duncan
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Madalina Neacsu
- Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Pablo de Olavide University, University of Seville, CSIC, 41092 Seville, Spain; (L.L.-B.); (Á.O.); (B.E.-L.); (G.B.)
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Zhang Y, Zhu L, Zhao M, Jia Y, Li K, Li C. The effects of inulin on solubilizing and improving anti-obesity activity of high polymerization persimmon tannin. Int J Biol Macromol 2024; 270:132232. [PMID: 38734349 DOI: 10.1016/j.ijbiomac.2024.132232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
High polymerization persimmon tannin has been reported to have lipid-lowering effects. Unfortunately, the poor solubility restricts its application. This research aimed to investigate the effect and mechanism of inulin on solubilizing of persimmon tannin. Furthermore, we examined whether the addition of inulin would affect the attenuated obesity effect of persimmon tannin. Transmission electron microscope (TEM), Isothermal titration calorimetry (ITC) and Fourier transform infrared spectroscopy (FT-IR) results demonstrated that inulin formed a gel-like network structure, which enabled the encapsulation of persimmon tannin through hydrophobic and hydrogen bond interactions, thereby inhibiting the self-aggregation of persimmon tannin. The turbidity of the persimmon tannin solution decreased by 56.2 %, while the polyphenol content in the supernatant increased by 60.0 %. Furthermore, biochemical analysis and 16s rRNA gene sequencing technology demonstrated that persimmon tannin had a significant anti-obesity effect and improved intestinal health in HFD-fed mice. Moreover, inulin was found to have a positive effect on enhancing the health benefits of persimmon tannin, including improving hepatic steatosis and gut microbiota dysbiosis. it enhanced the abundance of beneficial core microbes while decreasing the abundance of harmful bacteria. Our findings expand the applications of persimmon tannin in the food and medical sectors.
Collapse
Affiliation(s)
- Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Lin Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Mengyao Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yangyang Jia
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| |
Collapse
|
5
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
6
|
Wang R, Shi X, Li K, Bunker A, Li C. Activity and potential mechanisms of action of persimmon tannins according to their structures: A review. Int J Biol Macromol 2023; 242:125120. [PMID: 37263329 DOI: 10.1016/j.ijbiomac.2023.125120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
One distinguishing feature of the persimmon, that differentiates it from other fruits, is its high proanthocyanidins content, known as persimmon tannin (PT). Despite the poor absorption of PT in the small intestine, results from animal studies demonstrate that PT has many health benefits. Our goal in this review is to summarize the literature that elucidates the relationship between PT structure and activity. In addition, we also summarize the potential mechanisms underlying the health benefits that result from PT consumption; this includes the hypolipidemic, hypoglycemic, antioxidant, anti-inflammatory, antiradiation, antibacterial and antiviral, detoxification effects on snake venom, and the absorption of heavy metals and dyes. Studies show that PT is a structurally distinct proanthocyanidins that exhibits a high degree of polymerization. It is galloylation-rich and possesses unique A-type interflavan linkages in addition to the more common B-type interflavan bonds. Thus, PT is converted into oligomeric proanthocyanidins by depolymerization strategies, including the nucleophilic substitution reaction, acid hydrolysis, and hydrogenolysis. In addition, multiple health benefits exerted by PT mainly involve the inactivation of lipogenic and intracellular inflammatory signaling pathways, activation of the fatty acid oxidation signaling pathway, regulation of gut microbiota, and highly absorptive properties.
Collapse
Affiliation(s)
- Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xin Shi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Alex Bunker
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Food Science, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Matsumura Y, Kitabatake M, Kayano SI, Ito T. Dietary Phenolic Compounds: Their Health Benefits and Association with the Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12040880. [PMID: 37107256 PMCID: PMC10135282 DOI: 10.3390/antiox12040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Oxidative stress causes various diseases, such as type II diabetes and dyslipidemia, while antioxidants in foods may prevent a number of diseases and delay aging by exerting their effects in vivo. Phenolic compounds are phytochemicals such as flavonoids which consist of flavonols, flavones, flavanonols, flavanones, anthocyanidins, isoflavones, lignans, stilbenoids, curcuminoids, phenolic acids, and tannins. They have phenolic hydroxyl groups in their molecular structures. These compounds are present in most plants, are abundant in nature, and contribute to the bitterness and color of various foods. Dietary phenolic compounds, such as quercetin in onions and sesamin in sesame, exhibit antioxidant activity and help prevent cell aging and diseases. In addition, other kinds of compounds, such as tannins, have larger molecular weights, and many unexplained aspects still exist. The antioxidant activities of phenolic compounds may be beneficial for human health. On the other hand, metabolism by intestinal bacteria changes the structures of these compounds with antioxidant properties, and the resulting metabolites exert their effects in vivo. In recent years, it has become possible to analyze the composition of the intestinal microbiota. The augmentation of the intestinal microbiota by the intake of phenolic compounds has been implicated in disease prevention and symptom recovery. Furthermore, the “brain–gut axis”, which is a communication system between the gut microbiome and brain, is attracting increasing attention, and research has revealed that the gut microbiota and dietary phenolic compounds affect brain homeostasis. In this review, we discuss the usefulness of dietary phenolic compounds with antioxidant activities against some diseases, their biotransformation by the gut microbiota, the augmentation of the intestinal microflora, and their effects on the brain–gut axis.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shin-ichi Kayano
- Department of Nutrition, Faculty of Health Sciences, Kio University, Kitakatsuragi-gun, Nara 635-0832, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
8
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
9
|
Corrie L, Awasthi A, Kaur J, Vishwas S, Gulati M, Kaur IP, Gupta G, Kommineni N, Dua K, Singh SK. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals (Basel) 2023; 16:197. [PMID: 37259345 PMCID: PMC9967581 DOI: 10.3390/ph16020197] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 11/26/2023] Open
Abstract
Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600007, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Kamal Dua
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
11
|
Fareed N, El-Kersh DM, Youssef FS, Labib RM. Unveiling major ethnopharmacological aspects of genus Diospyros in context to its chemical diversity: A comprehensive overview. J Food Biochem 2022; 46:e14413. [PMID: 36136087 DOI: 10.1111/jfbc.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
Diospyros species (DS), "Ebenaceae," were known for their therapeutic uses in folk medicine since days of yore. Thereafter, scientific evidence related their health benefits to a myriad of chemical classes, for instance, naphthoquinones, flavonoids, tannins, coumarins, norbergenin derivatives, sterols, secoiridoids, sesquiterpenes, diterpenoids, triterpenoids, volatile organic compounds (VOCs), and carotenoids. The available literature showed that more than 200 compounds were isolated and identified via spectroscopic techniques. Many pharmacological activities of DS have been previously described, such as antioxidant, neuroprotective, antibacterial, antiviral, antiprotozoal, antifungal, antiinflammatory, analgesic, antipyretic and cosmeceutical, investigated, and confirmed through versatile in vitro and in vivo assays. Previous studies proved that genus Diospyros is a rich reservoir of valuable bioactive compounds. However, further comparative studies among its different species are recommended for more precise natural source-based drug discovery and clinical application. Accordingly, this review is to recall the chemical abundance and diversity among different members of genus Diospyros and their ethnopharmacological and pharmacological uses. PRACTICAL APPLICATIONS: Practically, providing sufficient background on both secondary metabolites divergence and pharmacological properties of genus Diospyros has many fruitful aspects. As demonstrated below, extracts and many isolated compounds have significant curative properties, which can lead to the discovery of pharmaceutically relevant alternative substitutes to conventional medicine. Consequently, molecular docking on various receptors can be applied. On the grounds, Naoxinqing tablets, a standardized herbal product containing D. kaki leaves extract, have been patented and recorded in Chinese Pharmacopeia as an approved Traditional Chinese Medicine (TCM) for the treatment of cerebro- and cardiovascular diseases, although the underlying mechanism remains under advisement. Moreover, the antimicrobial applications of DS are of considerable concern; since the widespread use of antibiotics resulted in different forms of bacterial resistance, hence, limiting and compromising effective treatment. In addition, as a result of contemporary rampant memory disorders, neuroprotective activities of different extracts of DS became of great emphasis.
Collapse
Affiliation(s)
- Nada Fareed
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| | - Rola M Labib
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbasia, Cairo, 11566, Egypt
| |
Collapse
|
12
|
Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, Liu L, Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med 2022; 9:972603. [PMID: 36158845 PMCID: PMC9492915 DOI: 10.3389/fcvm.2022.972603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing researches have considered gut microbiota as a new “metabolic organ,” which mediates the occurrence and development of metabolic diseases. In addition, the liver is an important organ of lipid metabolism, and abnormal lipid metabolism can cause the elevation of blood lipids. Among them, elevated low-density lipoprotein cholesterol (LDL-C) is related with ectopic lipid deposition and metabolic diseases, and statins are widely used to lower LDL-C. In recent years, the gut microbiota has been shown to mediate statins efficacy, both in animals and humans. The effect of statins on microbiota abundance has been deeply explored, and the pathways through which statins reduce the LDL-C levels by affecting the abundance of microbiota have gradually been explored. In this review, we discussed the interaction between gut microbiota and cholesterol metabolism, especially the cholesterol-lowering effect of statins mediated by gut microbiota, via AMPK-PPARγ-SREBP1C/2, FXR and PXR-related, and LPS-TLR4-Myd88 pathways, which may help to explain the individual differences in statins efficacy.
Collapse
Affiliation(s)
- ChangXin Sun
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZePing Wang
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LanQing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoNan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiYe Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZongLiang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LongTao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: LongTao Liu
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Min Wu
| |
Collapse
|
13
|
Zhu W, Oteiza PI. Proanthocyanidins at the gastrointestinal tract: mechanisms involved in their capacity to mitigate obesity-associated metabolic disorders. Crit Rev Food Sci Nutr 2022; 64:220-240. [PMID: 35943169 DOI: 10.1080/10408398.2022.2105802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The prevalence of overweight and obesity is continually increasing worldwide. Obesity is a major public health concern given the multiple associated comorbidities. Finding dietary approaches to prevent/mitigate these conditions is of critical relevance. Proanthocyanidins (PACs), oligomers or polymers of flavan-3-ols that are extensively distributed in nature, represent a major part of total dietary polyphenols. Although current evidence supports the capacity of PACs to mitigate obesity-associated comorbidities, the underlying mechanisms remain speculative due to the complexity of PACs' structure. Given their limited bioavailability, the major site of the biological actions of intact PACs is the gastrointestinal (GI) tract. This review discusses the actions of PACs at the GI tract which could underlie their anti-obesity effects. These mechanisms include: i) inhibition of digestive enzymes at the GI lumen, including pancreatic lipase, α-amylase, α-glucosidase; ii) modification of gut microbiota composition; iii) modulation of inflammation- and oxidative stress-triggered signaling pathways, e.g. NF-κB and MAPKs; iv) protection of the GI barrier integrity. Further understanding of the mechanisms and biological activities of PACs at the GI tract can contribute to develop nutritional and pharmacological strategies oriented to mitigate the serious comorbidities of obesity.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, California, USA
- Department of Environmental Toxicology, University of California, Davis, California, USA
| |
Collapse
|
14
|
Bu F, Yao X, Lu Z, Yuan X, Chen C, Li L, Li Y, Jiang F, Zhu L, Shi G, Chen Y. Pathogenic or Therapeutic: The Mediating Role of Gut Microbiota in Non-Communicable Diseases. Front Cell Infect Microbiol 2022; 12:906349. [PMID: 35873168 PMCID: PMC9301375 DOI: 10.3389/fcimb.2022.906349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Noncommunicable diseases (NCDs) lead to 41 million deaths every year and account for 71% of all deaths worldwide. Increasing evidence indicates that gut microbiota disorders are closely linked to the occurrence and development of diseases. The gut microbiota, as a potential transmission medium, could play a key role in the transmission and treatment of diseases. The gut microbiota makes noncommunicable diseases communicable. New methods of the prevention and treatment of these diseases could be further explored through the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yugen Chen
- *Correspondence: Yugen Chen, ; Guoping Shi,
| |
Collapse
|
15
|
You H, Deng X, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. The Ameliorative Effect of COST on Diet-Induced Lipid Metabolism Disorders by Regulating Intestinal Microbiota. Mar Drugs 2022; 20:md20070444. [PMID: 35877737 PMCID: PMC9317995 DOI: 10.3390/md20070444] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: Chitosan oligosaccharides, with an average molecular weight ≤ 1000 Da (COST), is a natural marine product that has the potential to improve intestinal microflora and resist lipid metabolism disorders. (2) Methods: First, by establishing a mice model of lipid metabolism disorder induced by a high fat and high sugar diet, it is proven that COST can reduce lipid metabolism disorder, which may play a role in regulating intestinal microorganisms. Then, the key role of COST in the treatment of intestinal microorganisms is further confirmed through the method of COST-treated feces and fecal bacteria transplantation. (3) Conclusions: intestinal microbiota plays a key role in COST inhibition of lipid metabolism disorder induced by a high fat and high sugar diet. In particular, COST may play a central regulatory role in microbiota, including Bacteroides, Akkermansia, and Desulfovibrio. Taken together, our work suggests that COST may improve the composition of gut microbes, increase the abundance of beneficial bacteria, improve lipid metabolism disorders, and inhibit the development of metabolic disorders.
Collapse
Affiliation(s)
- Huimin You
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (H.Y.); (X.D.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.)
| |
Collapse
|
16
|
Wang X, Qi Y, Zheng H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants (Basel) 2022; 11:antiox11061212. [PMID: 35740109 PMCID: PMC9220293 DOI: 10.3390/antiox11061212] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, which are probably the most important secondary metabolites produced by plants, have attracted tremendous attention due to their health-promoting effects, including their antioxidant, anti-inflammatory, antibacterial, anti-adipogenic, and neuro-protective activities, as well as health properties. However, due to their complicated structures and high molecular weights, a large proportion of dietary polyphenols remain unabsorbed along the gastrointestinal tract, while in the large intestine they are biotransformed into bioactive, low-molecular-weight phenolic metabolites through the residing gut microbiota. Dietary polyphenols can modulate the composition of intestinal microbes, and in turn, gut microbes catabolize polyphenols to release bioactive metabolites. To better investigate the health benefits of dietary polyphenols, this review provides a summary of their modulation through in vitro and in vivo evidence (animal models and humans), as well as their possible actions through intestinal barrier function and gut microbes. This review aims to provide a basis for better understanding the relationship between dietary polyphenols, gut microbiota, and host health.
Collapse
|
17
|
M. González C, Hernando I, Moraga G. In Vitro and In Vivo Digestion of Persimmon and Derived Products: A Review. Foods 2021; 10:foods10123083. [PMID: 34945634 PMCID: PMC8701093 DOI: 10.3390/foods10123083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
The link between nutrition and health has focused on the strategy of diet-based programs to deal with various physiological threats, such as cardiovascular disease, oxidative stress, and diabetes. Therefore, the consumption of fruits and vegetables as a safeguard for human health is increasingly important. Among fruits, the intake of persimmon is of great interest because several studies have associated its consumption with health benefits due to its high content of bioactive compounds, fiber, minerals, and vitamins. However, during digestion, some changes take place in persimmon nutritional compounds that condition their subsequent use by the human body. In vitro studies indicate different rates of recovery and bioaccessibility depending on the bioactive compound and the matrix in which they are found. In vivo studies show that the pharmacological application of persimmon or its functional components, such as proanthocyanidins, can help to prevent hyperlipidemia and hyperglycemia. Thus, persimmon and persimmon derived products have the potential to be a fruit recommended for diet therapy. This review aims to compile an updated review of the benefits of persimmon and its derived products, focusing on the in vitro and in vivo digestibility of the main nutrients and bioactive compounds.
Collapse
|
18
|
Yang Z, Xu M, Li Q, Wang T, Zhang B, Zhao H, Fu J. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int J Biol Macromol 2021; 182:1874-1882. [PMID: 34058211 DOI: 10.1016/j.ijbiomac.2021.05.178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to investigate the effect of polysaccharide extracts from persimmon (PPE) on the proliferation of Lactobacillus and the gut microbiota of mice. Lactobacillus strains were cultured in medium containing PPE, and differential gene expression was evaluated using transcriptomics. In addition, 16S rDNA was employed to analyze the abundance and diversity of fecal colonies in mice, and the influence of PPE on the intestinal flora in mice was further examined. The results showed that Lactobacillus acidophilus NCFM and Lactobacillus acidophilus CICC 6075 could proliferate in PPE medium. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analysis indicated that glucose metabolism-related genes, such as phosphoyruvate hydratase (eno) and PTS mannose transporter subunit IIAB (manX), were up-regulated. The metabolic pathways of fructose and mannose were also significantly up-regulated. After gavage of mice with PPE, 16S rDNA sequencing of mouse feces indicated that the beneficial bacteria in the intestines proliferated and the abundance of harmful bacteria was reduced. PPE can maintain the balance of intestinal microorganisms in mice. Therefore, PPE has a significant positive effect on both Lactobacillus proliferation and gut microbiota of mice.
Collapse
Affiliation(s)
- Ziyuan Yang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Qi Li
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| | - Jianmin Fu
- Non-timber Forest R&D Center, Chinese Academy of Forestry, Zhengzhou 450003, China.
| |
Collapse
|
19
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou G, Meng L, Xin Y, Jiang X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism 2021; 117:154712. [PMID: 33497712 DOI: 10.1016/j.metabol.2021.154712] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 12/27/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes is the fastest-growing metabolic disease in the world. Many clinical studies have found that type 2 diabetes patients have metabolic disorders and chronic inflammatory states accompanied by disturbances in the gut microbiota. The gut microbiota plays an important role in body metabolism and immune regulation, and disturbances in the gut microbiota in conjunction with destruction of the intestinal barrier in type 2 diabetes patients causes damage to multiple organs. Therefore, the gut microbiota may be a new therapeutic target for treating type 2 diabetes and related diseases. In this review, we introduce the characteristics of the gut microbiota in type 2 diabetes and related diseases, as well as highlight the potential molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders, and chronic inflammation. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of type 2 diabetes and related diseases. AUTHOR SUMMARY: Type 2 diabetes (T2D) is the fastest-growing metabolic disease in the world. Many clinical studies have found that T2D patients have metabolic disorders and chronic inflammatory states, accompanied by disturbances of the gut microbiota and increased intestinal permeability. The number of human gut microbiota is more than 10 times of human cells, and they play an important role in the body's metabolism and immune regulation. The abnormal intestinal metabolites and intestinal barrier disruption caused by the gut microbiota dysbiosis in the T2D facilitate intestinal bacteria and their harmful metabolites entering the circulatory system. The abnormal entering will cause the damage to multiple organs through disturbing insulin sensitivity, glucose metabolism, and immune homeostasis. Therefore, the gut microbiota may be a new therapeutic target for improving T2D and its related diseases. In this review, we introduce the compositional characteristics of the gut microbiota in T2D, and highlight some new molecular mechanisms of their effects on intestinal barrier disruption, metabolic disorders and chronic inflammation in T2D and its related diseases. Finally, we summarize an intestinal microecological therapeutic strategy, with a focus on shaping the intestinal bacteria, to improve the malignant progress of T2D and related diseases.
Collapse
Affiliation(s)
- Ge Yang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuan Tian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Department of Gynecology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Guowen Hou
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
20
|
Liang J, Kou S, Chen C, Raza SHA, Wang S, Ma X, Zhang WJ, Nie C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol 2021; 21:85. [PMID: 33752593 PMCID: PMC7983215 DOI: 10.1186/s12866-021-02143-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Weaning stress of piglets causes a huge economic loss to the pig industry. Balance and stability of the intestinal microenvironment is an effective way to reduce the occurance of stress during the weaning process. Clostridium butyricum, as a new microecological preparation, is resistant to high temperature, acid, bile salts and some antibiotics. The aim of present study is to investigate the effects of C. butyricum on the intestinal microbiota and their metabolites in weaned piglets. Results There was no statistical significance in the growth performance and the incidence of diarrhoea among the weaned piglets treated with C. butyricum during 0–21 days experimental period. Analysis of 16S rRNA gene sequencing results showed that the operational taxonomic units (OTUs), abundance-based coverage estimator (ACE) and Chao index of the CB group were found to be significantly increased compared with the NC group (P < 0.05). Bacteroidetes, Firmicutes and Tenericutes were the predominant bacterial phyla in the weaned piglets. A marked increase in the relative abundance of Megasphaera, Ruminococcaceae_NK4A214_group and Prevotellaceae_UCG-003, along with a decreased relative abundance of Ruminococcaceae_UCG-005 was observed in the CB group, when compared with the NC group (P < 0.05). With the addition of C. butyricum, a total of twenty-two significantly altered metabolites were obtained in the feces of piglets. The integrated pathway analysis by MetaboAnalyst indicated that arginine and proline metabolism; valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were the main three altered pathways, based on the topology. Furthermore, Spearman’s analysis revealed some altered gut microbiota genus such as Oscillospira, Ruminococcaceae_NK4A214_group, Megasphaera, Ruminococcaceae_UCG-005, Prevotella_2, Ruminococcaceae_UCG-002, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-003 were associated with the alterations in the fecal metabolites (P < 0.05), indicating that C. butyricum presented a potential protective impact through gut microbiota. The intestinal metabolites changed by C. butyricum mainly involved the variation of citrulline, dicarboxylic acids, branched-chain amino acid and tryptophan metabolic pathways. Conclusions Overall, this study strengthens the idea that the dietary C. butyricum treatment can significantly alter the intestinal microbiota and metabolite profiles of the weaned piglets, and C. butyricum can offer potential benefits for the gut health.
Collapse
Affiliation(s)
- Jing Liang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wen-Ju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
21
|
Moorthy M, Sundralingam U, Palanisamy UD. Polyphenols as Prebiotics in the Management of High-Fat Diet-Induced Obesity: A Systematic Review of Animal Studies. Foods 2021; 10:foods10020299. [PMID: 33540692 PMCID: PMC7913110 DOI: 10.3390/foods10020299] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity is a disease growing at an alarming rate and numerous preclinical studies have proven the role of polyphenols in managing this disease. This systematic review explores the prebiotic effect of polyphenols in the management of obesity among animals fed on a high-fat diet. A literature search was carried out in PubMed, Scopus, CINAHL, Web of Science, and Embase databases following the PRISMA guidelines. Forty-four studies reported a significant reduction in obesity-related parameters. Most notably, 83% of the studies showed a decrease in either body weight/visceral adiposity/plasma triacylglyceride. Furthermore, 42 studies reported a significant improvement in gut microbiota (GM), significantly affecting the genera Akkermansia, Bacteroides, Blautia, Roseburia, Bifidobacteria, Lactobacillus, Alistipes, and Desulfovibrio. Polyphenols’ anti-obesity, anti-hyperglycaemic, and anti-inflammatory properties were associated with their ability to modulate GM. This review supports the notion of polyphenols as effective prebiotics in ameliorating HFD-induced metabolic derangements in animal models.
Collapse
Affiliation(s)
- Mohanambal Moorthy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway 47500, Selangor, Malaysia
| | - Usha Sundralingam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
| | - Uma D. Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia;
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway 47500, Selangor, Malaysia
- Correspondence: ; Tel.: +603-5514-5840 or +6012-38-09-092
| |
Collapse
|
22
|
Čoklo M, Maslov DR, Kraljević Pavelić S. Modulation of gut microbiota in healthy rats after exposure to nutritional supplements. Gut Microbes 2020; 12:1-28. [PMID: 32845788 PMCID: PMC7524141 DOI: 10.1080/19490976.2020.1779002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Rats are experimental animals, frequently used as model organisms in the biomedical studies, and increasingly used to study the gut microbiota. Specifically, the aim of latter studies is either the elucidation of relationship between intestinal dysbiosis and diseases or the determination of nutrients or pharmaceutical agents which can cause the modulation in the presence or abundance of gut microbiota. AIM Herein, the research studies conducted on the gut microbiota of healthy rats are presented in a summarized and concise overview. The focus is on studies aimed to reveal the shifts in microbial composition and functional changes after exposure to various types of nutritional supplements. METHODS We performed the search of PubMed database using the term "rat gut microbiome microbiota" and examined studies aimed to assess the composition of gut microbiota in physiological homeostasis as well as the effect of various nutritional supplements on the gut microbiota of healthy rats.
Collapse
Affiliation(s)
- Mirna Čoklo
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Dina Rešetar Maslov
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
23
|
Bian M, Wang J, Wang Y, Nie A, Zhu C, Sun Z, Zhou Z, Zhang B. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail. Biomed Pharmacother 2020; 131:110719. [PMID: 33152909 DOI: 10.1016/j.biopha.2020.110719] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High-purine diet can cause gut microbiota disorder, which is closely related to the occurrence of hyperuricemia (HUA). At the same time, the development of HUA is often accompanied by renal impairment. Chicory, a natural medicine, has a significant effect on lowering uric acid. However, whether its concrete mechanism is associated with the regulation of gut microbiota and renal damage is still unclear. METHODS Hyperuricemic quails induced by high-purine diet were used, and quails were divided into control (CON), model (MOD), and model plus high, middle, low doses of chicory. The uricosuric effect was evaluated by detecting the uric acid levels in serum and feces. Meanwhile, the morphology of intestine and kidney were observed by hematoxylin and eosin (HE) staining, and the expression of intestinal barrier junction proteins Occludin, Claudin-1 were detected by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Furthermore, the latent mechanism was clarified by analyzing 16S rRNA amplicon of gut microbiota and measuring the changes of LPS/TLR4 axis inflammatory response of the kidney by western blotting and enzyme-linked immunosorbent assay (ELISA). RESULTS The results showed that serum uric acid levels were significantly decreased, and the feces uric acid levels were noticeably increased after the intervention of chicory. In addition, chicory could repair the damage of intestinal mucosa and improve the permeability of intestinal barrier. Moreover, the 16S rRNA sequencing analysis uncovered that chicory restored gut microbiota by increasing the probiotics flora (Bifidobacterium, Erysipelotrichaceae) and reducing the pathogenic bacteria group (Helicobacteraceae). Furthermore, it was found that chicory reduced the LPS/TLR4 axis inflammatory response by down regulating the serum LPS and TLR4/NF-κB inflammatory pathway in kidney, thus promoting the excretion of uric acid in kidney. CONCLUSION Chicory intervention ameliorated HUA via modulating the imbalance of gut microbiota and suppressing LPS/TLR4 axis inflammatory reaction in quail model, which may be a promising candidate for hyperuricemia-relieving properties.
Collapse
Affiliation(s)
- Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Juan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Zongxi Sun
- Guangxi International Zhuang Medicine Hospital, Nanning, 530201, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Bing Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
24
|
Jin L, Shi X, Yang J, Zhao Y, Xue L, Xu L, Cai J. Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein Cell 2020; 12:346-359. [PMID: 32989686 PMCID: PMC8106559 DOI: 10.1007/s13238-020-00785-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial ecosystem comprises a complex community in which bacteria interact with each other. The potential roles of the intestinal microbiome play in human health have gained considerable attention. The imbalance of gut microbial community has been looked to multiple chronic diseases. Cardiovascular diseases (CVDs) are leading causes of morbidity worldwide and are influenced by genetic and environmental factors. Recent advances have provided scientific evidence that CVD may also be attributed to gut microbiome. In this review, we highlight the complex interplay between microbes, their metabolites, and the potential influence on the generation and development of CVDs. The therapeutic potential of using intestinal microbiomes to treat CVD is also discussed. It is quite possible that gut microbes may be used for clinical treatments of CVD in the near future.
Collapse
Affiliation(s)
- Ling Jin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoming Shi
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Yangyu Zhao
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| | - Li Xu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China.
| | - Jun Cai
- Hypertension center of Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
25
|
Yamashita Y, Sakakibara H, Toda T, Ashida H. Insights into the potential benefits of black soybean ( Glycine max L.) polyphenols in lifestyle diseases. Food Funct 2020; 11:7321-7339. [PMID: 32852022 DOI: 10.1039/d0fo01092h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Black soybean (Glycine max L.), a cultivar containing abundant polyphenols in its seed coat such as anthocyanins and flavan-3-ols, has been reported to possess various health benefits toward lifestyle diseases. In this review article, the safety evaluation of polyphenol-rich black soybean seed coat extract (BE) and absorption of BE polyphenols are summarized. Additionally, we describe the antioxidant activity of BE polyphenols and their ability to induce antioxidant enzymes. The health benefits of BE and its polyphenols, such as anti-obesity and anti-hyperglycemic activities through the activation of AMP-activated protein kinase and translocation of glucose transporter 4, respectively, are also discussed. Furthermore, we found that black soybean polyphenols were involved in the improvement of vascular function. These emerging data require further investigation in scientific studies and human trials to evaluate the prevention of lifestyle diseases using black soybean polyphenols.
Collapse
Affiliation(s)
- Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| | | | - Toshiya Toda
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya 663-8558, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
26
|
Sakakibara H, Shimoi K. Anti-stress effects of polyphenols: animal models and human trials. Food Funct 2020; 11:5702-5717. [PMID: 32633737 DOI: 10.1039/d0fo01129k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyphenols, a category of plant compounds that contain multiple phenol structural units, are widely distributed throughout the plant kingdom and have multiple benefits for human health including anti-obesity, anti-hyperglycemic, and anti-hyperlipidemic effects. Additionally, polyphenols have recently gained attention for their anti-stress effects. In this review article, we summarize physiological responses against exposure to stressors and discuss biomarkers for exposure to stressors that are widely used in animal studies and human trials. We also review commonly used animal models for evaluating anti-stress effects. Finally, we discuss recent findings related to the anti-stress effects of polyphenols evaluated in animal models and human trials, and their putative mechanisms. These emerging data require further investigation in scientific studies and human trials to evaluate the anti-stress effects of polyphenols and their potential use for the prevention of stress-related health problems.
Collapse
|
27
|
Hu S, Yang H, Gao X, Li S, Jiang W, Liu Y. Egg oil from Portunus trituberculatus alleviated obesity and regulated gut microbiota in mice. Sci Rep 2020; 10:8454. [PMID: 32439940 PMCID: PMC7242455 DOI: 10.1038/s41598-020-65199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Egg oil from Portunus trituberculatus (Pt-egg oil) can overcome insulin resistance resulting from abundant bioactive lipids. However, its effects on obesity and gut microbiota were unclear. Here, we evaluated whether Pt-egg oil could improve obesity and gut microbiota or not in high-fat diet feeding mice. Results exhibited that Pt-egg oil markedly reduced body weight and adipose weight gain, improved lipid accumulation and circulatory cytokines, inhibited epididymal adipose cell size. Moreover, Pt-egg oil modified gut microbiota, involving decreases in the ratio of Firmicutes to Bacteroidetes, Proteobacteria, Actinobacteria, and increase in Verrucomicrobia phylum. Pt-egg oil reduced serum and fecal lipopolysaccharide (LPS) levels and down-regulated Toll-like receptor 4 pathway in both epididymal adipose and liver tissues. Meanwhile, Pt-egg oil increased short chain fatty acids and up-regulated of G-protein-coupled receptors in both epididymal adipose and liver tissues. These suggest that Pt-egg oil could be alternative food supplement for the prophylactic effects on anti-obesity and improvement in human gut health.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China.
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China.
| | - Xiang Gao
- College of Food Science, Qingdao University, Qingdao, 266071, China
| | - Shijie Li
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Wei Jiang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Yu Liu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| |
Collapse
|
28
|
Meleshko T, Pallah O, Petrov V, Boyko N. Extracts of pomegranate, persimmon, nettle, dill, kale and Sideritis specifically modulate gut microbiota and local cytokines production: in vivo study. SCIENCERISE: BIOLOGICAL SCIENCE 2020. [DOI: 10.15587/2519-8025.2020.204781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Phenolics and Carbohydrates in Buckwheat Honey Regulate the Human Intestinal Microbiota. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6432942. [PMID: 32184894 PMCID: PMC7061112 DOI: 10.1155/2020/6432942] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022]
Abstract
Intestinal microbiota plays an important role in human health. The aim of this paper is to determine the impact of the phenolics and carbohydrate in buckwheat honey on human intestinal microbiota. We investigated the phenolics and carbohydrate compositions of eight buckwheat honey samples using high-performance liquid chromatography and ion chromatography. The human intestinal microbes were cultured in a medium supplemented with eight buckwheat honey samples or the same concentration of fructooligosaccharides. The bacterial 16S rDNA V4 region sequence of DNA extraction was determined by the Illumina MiSeq platform. 12 phenolics and 4 oligosaccharides were identified in almost all buckwheat honey samples, namely, protocatechuic acid, 4-hydroxy benzoic acid, vanillin, gallic acid, p-coumaric acid, benzoic acid, isoferulic acid, methyl syringate, trans,trans-abscisic acid, cis,trans-abscisic acid, ferulic acid, 4-hydroxybenzaldehyde, kestose, isomaltose, isomaltotriose, and panose. Most notably, this is the first study to reveal the presence of 4-hydroxybenzaldehyde in buckwheat honey. 4-Hydroxybenzaldehyde seems to be a land marker of buckwheat honey. Our results indicate that buckwheat honey can provide health benefits to the human gut by selectively supporting the growth of indigenous Bifidobacteria and restraining the pathogenic bacterium in the gut tract. We infer that buckwheat honey may be a type of natural intestinal-health products.
Collapse
|
30
|
Yang L, Zhang J, Xu J, Wei X, Yang J, Liu Y, Li H, Zhao C, Wang Y, Zhang L, Gai Z. Helicobacter pylori Infection Aggravates Dysbiosis of Gut Microbiome in Children With Gastritis. Front Cell Infect Microbiol 2019; 9:375. [PMID: 31781514 PMCID: PMC6859803 DOI: 10.3389/fcimb.2019.00375] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Introduction:Helicobacter pylori infection consistently leads to chronic and low degree of inflammatory response in gastric mucosa and is closely related with gastrointestinal and extra-gastric diseases. Effects of local microbiome in the stomach have been studied in adults and children with H. pylori infection. It is, however, not known whether the intestinal microbial community differs in children with varying H. pylori infection. The aim of this study is to characterize the altered composition of microbiome induced by H. pylori infection and in gastritis. Materials and Methods: This study involved 154 individuals, including 50 children affected by H. pylori-induced gastritis, 42 children with H. pylori-negative gastritis, and 62 healthy controls. Gut microbiome composition was analyzed using 16S rRNA gene-based pyrosequencing. Fecal bacterial diversity and composition were then compared. Results: On the basis of an analysis of similarities and differences, we found that children with H. pylori-induced gastritis exhibited gut bacteria dysbiosis. The ratio of Firmicutes/Bacteroidetes (F:B) at the phylum level had dramatically decreased in H. pylori-positive gastritis group (HPG) and H. pylori-negative gastritis group (HNG), compared with the healthy control group (HCG). At the family and genus levels, relative abundance of Bacteroidaceae and Enterobacteriaceae was prevalent in HPG and HNG, whereas relative abundance of Lachnospiraceae, Bifidobacteriaceae, and Lactobacillaceae was seen in HCG. Prevalence of different taxa of gut microbiome at the class, order, family, and genus levels was also observed among the three groups. Conclusions: Gastritis can cause changes in composition of fecal microbiome, which is exacerbated by H. pylori infection. These changes in gut microbiome may be related to drug resistance and development of chronic gastrointestinal diseases.
Collapse
Affiliation(s)
- Lu Yang
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jiaming Zhang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Junjie Xu
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Xuxia Wei
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, China
| | - Yi Liu
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Hua Li
- Department of Digestive Disease, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Changying Zhao
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Ying Wang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Lei Zhang
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Zhongtao Gai
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, China.,Research Institute of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, China
| |
Collapse
|
31
|
Cao SY, Zhao CN, Xu XY, Tang GY, Corke H, Gan RY, Li HB. Dietary plants, gut microbiota, and obesity: Effects and mechanisms. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Wang Y, Liu Y, Kim E, Li B, Payne GF. Electrochemical reverse engineering to probe for drug-phenol redox interactions. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Xie M, Chen G, Wan P, Dai Z, Zeng X, Sun Y. Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Lipid Metabolism and Intestinal Microbiota in High-Fat-Diet-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:171-183. [PMID: 30561211 DOI: 10.1021/acs.jafc.8b05444] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Kudingcha made from the leaves of Ilex kudingcha and chlorogenic acid have antiobesity and intestinal microbiota modulating effects. However, the effects of kudingcha dicaffeoylquinic acids (diCQAs) on obesity and intestinal microbiota are still poorly understood. In the present study, the effects of kudingcha diCQAs on adipose accumulation and intestinal microbiota were investigated in high-fat-diet-fed mice. As a result, kudingcha diCQAs decreased the liver and adipose tissue masses, concentrations of serum inflammatory factors, and hepatic expressions of lipid synthesis related genes and increased the expressions of genes involved in lipid degradation in the liver. Kudingcha diCQAs also exhibited considerable effects on intestinal microbiota. They increased the relative abundances of Bifidobacterium and Akkermansia and affected the function of the microbial community including bile acid biosynthesis. Kudingcha diCQAs had antiobesity potential, possibly acting through affecting intestinal microbiota. Furthermore, the effects of kudingcha diCQAs on fat accumulation and intestinal microbiota had a dose-dependent manner.
Collapse
Affiliation(s)
- Minhao Xie
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering , Nanjing University of Finance and Economics , Nanjing 210023 , People's Republic of China
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Guijie Chen
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Peng Wan
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Zhuqing Dai
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| | - Yi Sun
- College of Food Science and Technology , Nanjing Agricultural University , Nanjing 210095 , People's Republic of China
| |
Collapse
|
34
|
Zhang B, Ren D, Zhao Y, Liu Y, Zhai X, Yang X. Artemisia sphaerocephala Krasch polysaccharide prevents hepatic steatosis in high fructose-fed mice associated with changes in the gut microbiota. Food Funct 2019; 10:8137-8148. [DOI: 10.1039/c9fo01890e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High fructose (HF) diet-induced liver steatosis is associated with intestinal microbiota dysbiosis.
Collapse
Affiliation(s)
- Bo Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xichuan Zhai
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
| |
Collapse
|
35
|
Wu XM, Tan RX. Interaction between gut microbiota and ethnomedicine constituents. Nat Prod Rep 2019; 36:788-809. [DOI: 10.1039/c8np00041g] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This highlight reviews the interaction processes between gut microbiota and ethnomedicine constituents, which may conceptualize future therapeutic strategies.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy
- Nanjing University of Chinese Medicine
- Nanjing
- China
- State Key Laboratory of Pharmaceutical Biotechnology
| |
Collapse
|