1
|
Alharbi DS, Albalawi SF, Alghrid ST, Alhwity BS, Qushawy M, Mortagi Y, El-Sherbiny M, Prabahar K, Elsherbiny N. Ginger Oil Nanoemulsion Formulation Augments Its Antiproliferative Effect in Ehrlich Solid Tumor Model. Foods 2023; 12:4139. [PMID: 38002196 PMCID: PMC10670723 DOI: 10.3390/foods12224139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that is characterized by uncontrolled cell proliferation. Breast cancer is the most prevalent cancer among women. Ginger oil is a natural cancer fighter and anti-oxidant. However, the minimal absorption of ginger oil from the gastrointestinal tract accounts for its limited medicinal efficacy. The present study was designed to evaluate the efficacy of a nanoemulsion preparation of ginger oil on its oral bioavailability and in vivo anti-cancer efficacy. Ginger oil nanoemulsion was prepared by a high-pressure homogenization technique using different surfactants (Tween 20, 40, and 80). The prepared formulations were evaluated for droplet size, polydispersity index (PDI), zeta potential (ZP), pH, viscosity, and stability by calculating the creaming index percentage. The best formulation was evaluated for shape by TEM. The antitumor activity of the best nano-formulation was determined in comparison with the free oil using the in vivo Ehrlich solid tumor (EST) model. The prepared ginger oil nanoemulsion formulations exhibited acceptable droplet size in the range from 56.67 ± 3.10 nm to 357.17 ± 3.62 nm. A PDI of less than 0.5 indicates the homogeneity of size distribution. The oil globules possessed a negative charge ranging from -12.33 ± 1.01 to -39.33 ± 0.96 mV. The pH and viscosity were in the acceptable range. The TEM image of the best formulation appeared to be spherical with a small size. The ginger oil nanoemulsion reduced in vivo tumor volume and weight, extended animals' life span, and ameliorated liver and kidney function in EST-bearing mice. These effects were superior to using free ginger oil. Collectively, the present study demonstrated that the ginger oil nanoemulsion improved oral absorption with a subsequent enhancement of its anti-proliferative efficacy in vivo, suggesting a nano-formulation of ginger oil for better therapeutic outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Danah S. Alharbi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Shouq F. Albalawi
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Sarah T. Alghrid
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Basma S. Alhwity
- Pharm D Program, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (D.S.A.); (S.F.A.); (S.T.A.); (B.S.A.)
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Yasmin Mortagi
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University, Alarish 45511, North Sinai, Egypt;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 13713, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Kousalya Prabahar
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Chemical Composition and Tyrosinase Inhibitory Activities of Fatty Acids Obtained from Heterotrophic Microalgae, S. limacinum and C. cohnii. Appl Biochem Biotechnol 2023; 195:369-385. [PMID: 36083430 DOI: 10.1007/s12010-022-04143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 02/08/2023]
Abstract
Tyrosinase is the rate-limiting enzyme for melanin production in plant and mammalian cells. Upregulation of this enzyme results in hyperpigmentation disorders. In order to treat pigmentation problems, novel skin whitening compounds are extremely screened. It is found that fatty acids based on their saturation levels either increase or decrease tyrosinase enzyme activity. Thus, fatty acids and their compositions are promising candidates for the treatment of hyperpigmentation or hypopigmentation disorders. Microalgae are rich in both saturated and unsaturated fatty acids, as well. In this study, C. cohnii and S. limacinum fatty acids were evaluated as tyrosinase inhibitor candidates. Mushroom tyrosinase activity studies displayed that both extracts increase tyrosinase enzyme activity dose-dependently. On the other hand, S. limacinum at 200 µg ml-1 concentration almost decreased half of tyrosinase enzyme activity in B16-F10 cells. Besides, it was 3 times more efficient for tyrosinase enzyme activity inhibition and 2 times more effective to decrease melanin synthesis compared to C. cohnii. Considering low toxicity to B16-F10 melanoma and healthy keratinocyte cells (HaCaT), S. limacinum fatty acids could be a suitable source for lipid-based tyrosinase inhibitory functional cosmetics products.
Collapse
|
3
|
Chemical Composition of Tobacco Seed Oils and Their Antioxidant, Anti-Inflammatory, and Whitening Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238516. [PMID: 36500609 PMCID: PMC9739832 DOI: 10.3390/molecules27238516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Tobacco seeds are a valuable food oil resource, and tobacco seed oil is rich in nutrients, especially polyunsaturated fatty acids. The aim of this work was to perform a comprehensive study on the chemical constituents, and the antioxidant, anti-inflammatory, and whitening activities of tobacco seed oils (NC89 and BS4). A GC/MS analysis revealed that NC89 and BS4 had 11 and 6 volatile compounds, respectively. The PUFA contents in NC89 and BS4 were 74.98% and 72.84%, respectively. These two tobacco seed oils also presented good radical scavenging capacities with the neutralization of ABTS, OH-, and superoxide (O2-) radicals in a concentration-dependent manner. Meanwhile, NC89 and BS4 inhibited reactive oxygen species (ROS) accumulation and cell apoptosis, enhanced SOD and CAT activities, and increased the GSH content in H2O2-induced HepG2 cells. In addition, NC89 and BS4 exhibited significant anti-inflammatory activities by inhibiting the expressions of NO, TNF-α, IL-1β, and IL-6 in LPS-induced RAW.264.7 cells through the regulation of the MAPK signaling pathway. Moreover, NC89 and BS4 expressed whitening activities by inhibiting tyrosinase activity and intracellular melanin production. Therefore, tobacco seed oils could be used as an important oil resource for the development of high value-added products.
Collapse
|
4
|
Ooi SL, Pak SC, Campbell R, Manoharan A. Polyphenol-Rich Ginger ( Zingiber officinale) for Iron Deficiency Anaemia and Other Clinical Entities Associated with Altered Iron Metabolism. Molecules 2022; 27:6417. [PMID: 36234956 PMCID: PMC9573525 DOI: 10.3390/molecules27196417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Ginger (Zingiber officinale) is rich in natural polyphenols and may potentially complement oral iron therapy in treating and preventing iron deficiency anaemia (IDA). This narrative review explores the benefits of ginger for IDA and other clinical entities associated with altered iron metabolism. Through in vivo, in vitro, and limited human studies, ginger supplementation was shown to enhance iron absorption and thus increase oral iron therapy's efficacy. It also reduces oxidative stress and inflammation and thus protects against excess free iron. Ginger's bioactive polyphenols are prebiotics to the gut microbiota, promoting gut health and reducing the unwanted side effects of iron tablets. Moreover, ginger polyphenols can enhance the effectiveness of erythropoiesis. In the case of iron overload due to comorbidities from chronic inflammatory disorders, ginger can potentially reverse the adverse impacts and restore iron balance. Ginger can also be used to synthesise nanoparticles sustainably to develop newer and more effective oral iron products and functional ingredients for IDA treatment and prevention. Further research is still needed to explore the applications of ginger polyphenols in iron balance and anaemic conditions. Specifically, long-term, well-designed, controlled trials are required to validate the effectiveness of ginger as an adjuvant treatment for IDA.
Collapse
Affiliation(s)
- Soo Liang Ooi
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Sok Cheon Pak
- School of Dentistry and Medical Sciences, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Ron Campbell
- The Oaks Medical Practice, The Oaks, NSW 2570, Australia
| | - Arumugam Manoharan
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Identification of Five Flavonoid Compounds from the Remaining Ginger Powder Purified by Using High-Speed Counter-Current Chromatography and Their Bioactivity. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Malami I, Jagaba NM, Abubakar IB, Muhammad A, Alhassan AM, Waziri PM, Yakubu Yahaya IZ, Mshelia HE, Mathias SN. Integration of medicinal plants into the traditional system of medicine for the treatment of cancer in Sokoto State, Nigeria. Heliyon 2020; 6:e04830. [PMID: 32939417 PMCID: PMC7479351 DOI: 10.1016/j.heliyon.2020.e04830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/04/2020] [Accepted: 08/27/2020] [Indexed: 01/28/2023] Open
Abstract
This study was designed to explore and record various medicinal plants integrated into the traditional system of medicine for the treatment of cancer. The traditional system of medicine is a routine practiced among the indigenous ethnic groups of Sokoto state. A semi-structured questionnaire was designed and used for data collection around the selected Local Government Areas. A substantial number of plant species were identified, recorded, and collected for preservation. Data collected for each specie was analysed to assess its frequent use among the medicinal plants. A total of 67 species belonging to 31 families have been identified and recorded. Out of the 473 frequency of citation (FC), Acacia nilotica was the most frequently cited specie (32 FC, 64% FC, 0.6 RFC), followed by Guiera senegalensis (27 FC, 54% FC, 0.5 RFC), Erythrina sigmoidea (17 FC, 34% FC, 0.3 RFC), and subsequently Combretum camporum (15 FC, 30% FC, 0.3 RFC). The most common parts of the plants used include the barks (55.2%), the roots (53.2%), and the leaves (41.8%). Additionally, decoction (74.6%), powdered form (49.3%), and maceration (46.3%) are the most frequently used mode of preparation. The historical knowledge of a traditional system of medicine practiced by the native traditional healers of Sokoto for the treatment of cancer has been documented. The present study further provides a baseline for future pharmacological investigations into the beneficial effects of such medicinal plants for the treatment of cancer.
Collapse
Affiliation(s)
- Ibrahim Malami
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training (CAMRET), Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
- Corresponding author.
| | - Nasiru Muhammad Jagaba
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Ibrahim Babangida Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Kebbi State University of Science and Technology, Aliero, PMB 1144, Kebbi State, Nigeria
| | - Aliyu Muhammad
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University Zaria, 810271, Nigeria
| | - Alhassan Muhammad Alhassan
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Peter Maitama Waziri
- Department of Biochemistry, Kaduna State University, Main Campus, PMB 2336, Kaduna, Nigeria
| | - Ibrahim Zakiyya Yakubu Yahaya
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Halilu Emmanuel Mshelia
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| | - Sylvester Nefy Mathias
- Department of Pharmacognosy and Ethnopharmacy, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, PMB 2346, Sokoto, Nigeria
| |
Collapse
|
7
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
8
|
Anti-proliferation activities of three bioactive components purified by high-speed counter-current chromatography in essential oil from ginger. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Wang LX, Zhao WH, Lu YF, Wang CX. Antioxidant and Cytotoxic Activities of Distillates Purified by Means of Molecular Distillation from Ginger Extract Obtained with Supercritical CO 2 Fluid. Chem Biodivers 2019; 16:e1900357. [PMID: 31573145 DOI: 10.1002/cbdv.201900357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
The ginger extract obtained with supercritical CO2 fluid was purified by molecular distillation (MD), and the chemical compositions, antioxidant and cytotoxic activities of ginger extract and its distillates were investigated. Analysis revealed that the ginger extract was rich in terpene hydrocarbons, along with oxygenated terpenes and other non-volatile compounds. The MD distillates were prepared in a series of stages and the active compounds like terpenes and gingerols could be separated by MD. The major compounds of the distillates purified by MD at 40 °C, 80 Pa and 60 °C, 80 Pa were terpene hydrocarbons. Additional distillates obtained by MD at 80 °C, 80 Pa and 100 °C, 60 Pa were predominated by terpene hydrocarbons and oxygenated terpenes. Until the operating conditions of MD reached 150 °C and 2 Pa, some non-volatile compounds were concentrated in the final distillate. Moreover, antioxidant activities and the cytotoxic effects on three human cancer cells in final MD distillate were superior to other extracts, and this phenomenon could be mainly supported by the phenols. The MD could be used to prepare ginger distillates with better antioxidant and cytotoxic activities.
Collapse
Affiliation(s)
- Li-Xia Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Wen-Hua Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi-Fei Lu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xu Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
10
|
Li LD, Mao PW, Shao KD, Bai XH, Zhou XW. Ganoderma proteins and their potential applications in cosmetics. Appl Microbiol Biotechnol 2019; 103:9239-9250. [PMID: 31659419 DOI: 10.1007/s00253-019-10171-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Ganoderma have been regarded as a traditional source of natural bioactive compounds for centuries and have recently been exploited for potential components in the cosmetics industry. Besides Ganoderma polysaccharides and triterpenes, multiple proteins have been found in Ganoderma. With the in-depth study of these proteins, various pharmacological functions of Ganoderma have become important in the discovery and development of new products. In the review, we summarized and discussed the kinds and characteristics of Ganoderma proteins, especially on fungal immunomodulatory proteins (FIPs) which can be potentially developed into cosmeceuticals or nutricosmetics and are a suitable target for production using established biotechnological methods. Furthermore, we discuss their pharmacological activities of the proteins with a focus on their pharmacological functions related to cosmetics, such as antioxidant activity, inhibition of melanin, antibacterial activity, and regulation of inflammatory mediators. Numerous other questions also are addressed before the proteins can be widely accepted and used as cosmetic additives.
Collapse
Affiliation(s)
- Liu-Dingji Li
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Pei-Wen Mao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ke-Di Shao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Xiao-Hui Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Xuan-Wei Zhou
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, and School of Agriculture and Biology, Shanghai Jiao Tong University, No. 311 Agriculture and Biology New Building, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|