1
|
Singh N, Kaushik A, Ghori I, Rai P, Dong L, Sharma A, Malhotra BD, John R. Electrochemical and Plasmonic Detection of Myocardial Infarction Using Microfluidic Biochip Incorporated with Mesoporous Nanoscaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32794-32811. [PMID: 38860871 DOI: 10.1021/acsami.4c01398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
This paper reports a microfluidic device for the electrochemical and plasmonic detection of cardiac myoglobin (cMb) and cardiac troponin I (cTnI) with noticeable limits of detection (LoD) as low as a few picograms per milliliter (pg/mL) ranges, achieved in a short detection time. The device features two working electrodes, each with a mesoporous Ni3V2O8 nanoscaffold grafted with reduced graphene oxide (rGO) that improves the interaction of diffusing analyte molecules with the sensing surface by providing a high surface area and reaction kinetics. Electrochemical studies reveal sensitivities as high as 9.68 μA ng/mL and a LoD of 2.0 pg/mL for cTnI, and 8.98 μA ng/mL and 4.7 pg/mL for cMb. Additionally, the surface plasmon resonance (SPR) studies demonstrate a low-level LoD of 8.8 pg/mL for cMb and 7.3 pg/mL for cTnI. The dual-modality sensor enables dynamic tracking of kinetic antigen-antibody interactions during sensing, self-verification through providing signals of two modes, and reduced false readout. This study demonstrates the complementary nature of the electrochemical and SPR modes in biosensing, with the electrochemical mode being highly sensitive and the SPR mode providing superior tracking of molecular recognition behaviors. The presented sensor represents a significant innovation in cardiovascular disease management and can be applied to monitor other clinically important biomolecules.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Ajeet Kaushik
- Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Inayathullah Ghori
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| | - Prabhakar Rai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Liang Dong
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Bansi D Malhotra
- Environment & Biomedical Metrology Section, CSIR-National Physical Laboratory, New Delhi 110012, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad 502284, India
| |
Collapse
|
2
|
Hemmerová E, Homola J. Combining plasmonic and electrochemical biosensing methods. Biosens Bioelectron 2024; 251:116098. [PMID: 38359667 DOI: 10.1016/j.bios.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
The idea of combining electrochemical (EC) and plasmonic biosensor methods was introduced almost thirty years ago and the potential of electrochemical-plasmonic (EC-P) biosensors has been highlighted ever since. Despite that, the use of EC-P biosensors in analytics has been rather limited so far and the search for unique applications of the EC-P method continues. In this paper, we review the advances in the field of EC-P biosensors and discuss the features and benefits they can provide. In addition, we identify the main challenges for the development of EC-P biosensors and the limitations that prevent EC-P biosensors from more widespread use. Finally, we review applications of EC-P biosensors for the investigation and quantification of biomolecules, and for the study of biomolecular and cellular processes.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic.
| |
Collapse
|
3
|
Basu S, Das D, Ansari Z, Rana N, Majhi B, Patra D, Kanungo A, Morgan D, Dutta S, Sen K. A multispectroscopic approach for ultra-trace sensing of prostate specific antigen (PSA) by iron nanocomposite fabricated on graphene nanoplatelet. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 301:122955. [PMID: 37301032 DOI: 10.1016/j.saa.2023.122955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Herein we report an easy, rapid and cost-effective method for spectroscopic sensing of a prostate cancer biomarker prostate specific antigen (PSA) using a novel nanocomposite. The material is a synthetic quinoxaline derivative-based iron nanocomposite fabricated on graphene nanoplatelet surface (1d-Fe-Gr). Presence of graphene enhanced the efficacy of synthesized 1d-Fe-Gr to sense PSA in serum medium with an impressive limit of detection (LOD) value of 0.878 pg/mL compared to 1d-Fe alone (LOD 17.619 pg/mL) using UV-visible absorption spectroscopy. LOD of PSA by 1d-Fe-Gr using Raman spectroscopy is even more impressive (0.410 pg/mL). Moreover, presence of interfering biomolecules like glucose, cholesterol, bilirubin and insulin in serum improves the detection threshold significantly in presence of 1d-Fe-Gr which otherwise cause LOD values of PSA to elevate in control sets. In presence of these biomolecules, the LOD values improve significantly as compared to healthy conditions in the range 0.623-3.499 pg/mL. Thus, this proposed detection method could also be applied efficiently to the patients suffering from different pathophysiological disorders. These biomolecules may also be added externally during analyses to improve the sensing ability. Fluorescence, Raman and circular dichroism spectroscopy were used to study the underlying mechanism of PSA sensing by 1d-Fe-Gr. Molecular docking studies confirm the selective interaction of 1d-Fe-Gr with PSA over other cancer biomarkers.
Collapse
Affiliation(s)
- Shalmali Basu
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Debashree Das
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Zarina Ansari
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Nabakumar Rana
- Department of Physics, University of Calcutta, 92, APC Road, Kolkata 700009, India
| | - Bhim Majhi
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Dipendu Patra
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Ajay Kanungo
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - David Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Sanjay Dutta
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, WB, India
| | - Kamalika Sen
- Department of Chemistry, University of Calcutta, 92, APC Road, Kolkata 700009, India.
| |
Collapse
|
4
|
Simone G. Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing. Crit Rev Anal Chem 2023; 54:2183-2208. [PMID: 36601882 DOI: 10.1080/10408347.2022.2161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite being extremely old concepts, plasmonics and surface plasmon resonance-based biosensors have been increasingly popular in the recent two decades due to the growing interest in nanooptics and are now of relevant significance in regards to applications associated with human health. Plasmonics integration into point-of-care devices for health surveillance has enabled significant levels of sensitivity and limit of detection to be achieved and has encouraged the expansion of the fields of study and market niches devoted to the creation of quick and incredibly sensitive label-free detection. The trend reflects in wearable plasmonic sensor development as well as point-of-care applications for widespread applications, demonstrating the potential impact of the new generation of plasmonic biosensors on human well-being through the concepts of personalized medicine and global health. In this context, the aim here is to discuss the potential, limitations, and opportunities for improvement that have arisen as a result of the integration of plasmonics into microsystems and lab-on-chip over the past five years. Recent applications of plasmonic biosensors in microsystems and sensor performance are analyzed. The final analysis focuses on the integration of microfluidics and lab-on-a-chip with quantum plasmonics technology prospecting it as a promising solution for chemical and biological sensing. Here it is underlined how the research in the field of quantum plasmonic sensing for biological applications has flourished over the past decade with the aim to overcome the limits given by quantum fluctuations and noise. The significant advances in nanophotonics, plasmonics and microsystems used to create increasingly effective biosensors would continue to benefit this field if harnessed properly.
Collapse
Affiliation(s)
- Giuseppina Simone
- Chemical Engineering, University of Naples 'Federico II', Naples, Italy
| |
Collapse
|
5
|
Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. SENSORS (BASEL, SWITZERLAND) 2022; 22:5200. [PMID: 35890880 PMCID: PMC9323394 DOI: 10.3390/s22145200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Metabolic syndrome (MS) is a cluster of conditions that increases the probability of heart disease, stroke, and diabetes, and is very common worldwide. While the exact cause of MS has yet to be understood, there is evidence indicating the relationship between MS and the dysregulation of the immune system. The resultant biomarkers that are expressed in the process are gaining relevance in the early detection of related MS. However, sensing only a single analyte has its limitations because one analyte can be involved with various conditions. Thus, for MS, which generally results from the co-existence of multiple complications, a multi-analyte sensing platform is necessary for precise diagnosis. In this review, we summarize various types of biomarkers related to MS and the non-invasively accessible biofluids that are available for sensing. Then two types of widely used sensing platform, the electrochemical and optical, are discussed in terms of multimodal biosensing, figure-of-merit (FOM), sensitivity, and specificity for early diagnosis of MS. This provides a thorough insight into the current status of the available platforms and how the electrochemical and optical modalities can complement each other for a more reliable sensing platform for MS.
Collapse
Affiliation(s)
- Sung Sik Chu
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Hung Anh Nguyen
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Jimmy Zhang
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
| | - Shawana Tabassum
- Department of Electrical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Hung Cao
- Department of Biomedical Engineering, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA; (S.S.C.); (J.Z.)
- Department of Electrical Engineering and Computer Science, Henry Samueli School of Engineering, University of California Irvine, Irvine, CA 92697, USA;
| |
Collapse
|
6
|
Noushin T, Hossain NI, Tabassum S. IoT-Enabled Integrated Smart Wound Sensor for Multiplexed Monitoring of Inflammatory Biomarkers at the Wound Site. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.851041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds that stall at the inflammatory phase of healing may create several life-threatening complications such as tissue damage, septicemia, and organ failures. In order to prevent these adverse clinical outcomes and accelerate the wound healing process, it is crucial to monitor the wound status in real-time so that immediate therapeutic interventions can be implemented. In addition, continuous monitoring of the wound status can prevent drug overdose at the wound site, leading to on-demand and personalized drug delivery. Inflammatory mediators, such as Interleukin-6 (IL-6) and Interleukin-10 (IL-10) are promising indicators for the progression of wound healing and predictors of disease severity. Toward this end, this work reports a flexible wound patch for multiplexed monitoring of IL-6 and IL-10 at the wound site in order to provide real-time feedback on the inflammation phase of the wound. An optimized composition of gold nanoparticles integrated multiwalled carbon nanotube was demonstrated to improve sensor performance substantially. The sensor also exhibited excellent repeatable, reversible, and drift characteristics. A miniaturized Internet-of-things (IoT)-enabled potentiostat was also developed and integrated with the flexible sensor to realize a wearable system. This IoT-enabled wearable device provides a smart and cost-effective solution to improving the existing wound care through continuous, real-time, and in-situ monitoring of multiple wound biomarkers.
Collapse
|
7
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
8
|
Wang Q, Ren ZH, Zhao WM, Wang L, Yan X, Zhu AS, Qiu FM, Zhang KK. Research advances on surface plasmon resonance biosensors. NANOSCALE 2022; 14:564-591. [PMID: 34940766 DOI: 10.1039/d1nr05400g] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The surface plasmon resonance (SPR) phenomenon is of wide interest due to its sensitivity to changes in surface refractive index for the label-free, highly sensitive and rapid detection of biomarkers. This paper reviews research progress on SPR biosensors modified with different substrate structures and surface materials, surface plasmon resonance imaging (SPRI), and SPR-enhanced electrochemiluminescent (ECL) biosensors for applications in biosensing in the last five years. This paper focuses on the research on the application of the SPR phenomenon in the field of bio-detection, reviews the sensing characteristics of SPR biosensors with substrate structures of prisms, gratings, and optical fibers, and summarizes and analyzes the sensitivity and interference resistance of SPR sensors with surface modification of different materials (high-refractive index dielectric films, metallic micro- and nanostructures, and surface antifouling materials). Considering that imaging is an important tool for biomedical detection, this paper reviews the research progress on SPRI technology in the field of biomedical detection. In addition, this paper also reviews the research progress on SPR-enhanced ECL biosensors in the field of biosensing. Finally, this paper provides an outlook on the development trends of biosensing technology in terms of portable high-precision SPR sensors, reduction of self-loss of thin film materials, optimization of image processing techniques and simplification of electrode modification for ECL sensors.
Collapse
Affiliation(s)
- Qi Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, P. R. China
- State Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang 110819, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Zi-Han Ren
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Wan-Ming Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Lei Wang
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xin Yan
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ai-Song Zhu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Feng-Mei Qiu
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Ke-Ke Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao 266061, P. R. China
| |
Collapse
|
9
|
Ali MA, Hu C, Yuan B, Jahan S, Saleh MS, Guo Z, Gellman AJ, Panat R. Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat Commun 2021; 12:7077. [PMID: 34873183 PMCID: PMC8648898 DOI: 10.1038/s41467-021-27361-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Sensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.
Collapse
Affiliation(s)
- Md. Azahar Ali
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Chunshan Hu
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Bin Yuan
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Sanjida Jahan
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Mohammad S. Saleh
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Zhitao Guo
- grid.147455.60000 0001 2097 0344Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Andrew J. Gellman
- grid.147455.60000 0001 2097 0344Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Microfluidics-Based Plasmonic Biosensing System Based on Patterned Plasmonic Nanostructure Arrays. MICROMACHINES 2021; 12:mi12070826. [PMID: 34357236 PMCID: PMC8303257 DOI: 10.3390/mi12070826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
This review aims to summarize the recent advances and progress of plasmonic biosensors based on patterned plasmonic nanostructure arrays that are integrated with microfluidic chips for various biomedical detection applications. The plasmonic biosensors have made rapid progress in miniaturization sensors with greatly enhanced performance through the continuous advances in plasmon resonance techniques such as surface plasmon resonance (SPR) and localized SPR (LSPR)-based refractive index sensing, SPR imaging (SPRi), and surface-enhanced Raman scattering (SERS). Meanwhile, microfluidic integration promotes multiplexing opportunities for the plasmonic biosensors in the simultaneous detection of multiple analytes. Particularly, different types of microfluidic-integrated plasmonic biosensor systems based on versatile patterned plasmonic nanostructured arrays were reviewed comprehensively, including their methods and relevant typical works. The microfluidics-based plasmonic biosensors provide a high-throughput platform for the biochemical molecular analysis with the advantages such as ultra-high sensitivity, label-free, and real time performance; thus, they continue to benefit the existing and emerging applications of biomedical studies, chemical analyses, and point-of-care diagnostics.
Collapse
|
11
|
Yang F, Ye S, Dong W, Zheng D, Xia Y, Yi C, Tao J, Sun C, Zhang L, Wang L, Chen Q, Wang Y, Nie Z. Laser-Scanning-Guided Assembly of Quasi-3D Patterned Arrays of Plasmonic Dimers for Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100325. [PMID: 33969563 DOI: 10.1002/adma.202100325] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Indexed: 06/12/2023]
Abstract
The application of plasmonic dimeric nanostructures in color displays, data storage, and especially metamaterials necessitates the patterning of dimers into ordered arrays, but controllable assembly of plasmonic nanoparticles into patterned dimer arrays on substrates still remains a challenge. Here, a facile laser-scanning-based strategy to fabricate quasi-3D patterned arrays of plasmonic nanoparticle dimers with controlled orientation for plasmonic information encryption is reported. Laser scanning of polymer-covered plasmonic nanoparticle (e.g., gold) arrays selectively exposes the surface of irradiated nanoparticle via localized photothermal heating, guiding the assembly of another type of nanoparticles onto the exposure nanoparticle surface to form dimers on substrates. This combined top-down/bottom-up approach is highly flexible in forming high-resolution patterns of plasmonic dimers from nanoparticles of different sizes and shapes. The z-axis orientation, interparticle spacing, and nanoparticle size and shape of plasmonic dimers can be precisely tuned, enabling the modulation of the coupled resonances of the dimer arrays. Moreover, it is demonstrated that the patterned dimer arrays can be used in information encryption where their plasmonic color can be repeatedly displayed and erased. This work provides an important addition to tools for the fabrication of patterned complex plasmonic nanostructures from as-synthesized nanoparticles with broad applications.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shunsheng Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Di Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yifan Xia
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jing Tao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Chang Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lu Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - QianYun Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
12
|
Ranjan P, Parihar A, Jain S, Kumar N, Dhand C, Murali S, Mishra D, Sanghi SK, Chaurasia JP, Srivastava AK, Khan R. Biosensor-based diagnostic approaches for various cellular biomarkers of breast cancer: A comprehensive review. Anal Biochem 2020; 610:113996. [PMID: 33080213 DOI: 10.1016/j.ab.2020.113996] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Pushpesh Ranjan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Arpana Parihar
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Surbhi Jain
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | - Neeraj Kumar
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-AMPRI, Bhopal, 462026, India
| | - Chetna Dhand
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - S Murali
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Deepti Mishra
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Sunil K Sanghi
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - J P Chaurasia
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, India.
| |
Collapse
|
13
|
Fattahi Z, Khosroushahi AY, Hasanzadeh M. Recent progress on developing of plasmon biosensing of tumor biomarkers: Efficient method towards early stage recognition of cancer. Biomed Pharmacother 2020; 132:110850. [PMID: 33068930 DOI: 10.1016/j.biopha.2020.110850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most extended disease with an improved death rate over the past several time. Due to the restrictions of cancer analysis methods, the patient's real survival rate is unknown. Therefore, early stage diagnosis of cancer is crucial for its strong detection. Bio-analysis based on biomarkers may help to overcome the problem Biosensors with high sensitivity and specificity, low-cost, high analysis speed and minimum limit of detection are practical alternatives for laboratory tests. Surface plasmon resonance (SPR) is reaching a maturity level sufficient for their application in detection and determination cancer biomarkers in clinical samples. This review discusses main concepts and performance characteristics of SPR biosensor. Mainly, it focuses on newly emerged enhanced SPR biosensors towards high-throughput and ultrasensitive screening of cancer biomarkers such as PSA, α-fetoprotein, CEA, CA125, CA 15-3, HER2, ctDNA, ALCAM, hCG, VEGF, TNF, Interleukin, IFN-γ, CD24, CD44, Ferritin, COLIV using labeling processes with focusing on the future application in biomedical research and clinical diagnosis. This article reviews current status of the field, showcasing a series of early successes in the application of SPR for clinical bioanalysis of cancer related biomolecules and detailing a series of considerations regarding sensing schemes, exposing issues with analysis in biofluids, while providing an outlook of the challenges currently associated with plasmonic materials, bioreceptor selection, microfluidics, and validation of a clinical bioassay for applying SPR biosensors to clinical samples. Research opportunities are proposed to further advance the field and transition SPR biosensors from research proof-of-concept stage to actual clinical usage.
Collapse
Affiliation(s)
- Zahra Fattahi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Abstract
In recent years, advances in immunosensor device fabrication have significantly expanded the use of this technology in a broad range of applications including clinical diagnosis, food analysis, quality control, environmental studies and industrial monitoring. The most important aspect in fabrication is to obtain a design that provides a low detection limit. The utilization of nanomaterials as a label, catalyst and biosensing transducer is, perhaps, the most popular approach in ultrasensitive devices. This chapter reviews recent advances in immunosensor fabrication and summarizes the most recent studies. Strategies employed to significantly improve sensitivity and specificity of immunosensor technology and the advantages and limitations thereof are explored.
Collapse
Affiliation(s)
- Muhammet Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Elif Burcu Aydin
- Tekirdağ Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
15
|
Mutalik SP, Pandey A, Mutalik S. Nanoarchitectronics: A versatile tool for deciphering nanoparticle interaction with cellular proteins, nucleic acids and phospholipids at biological interfaces. Int J Biol Macromol 2020; 151:136-158. [DOI: 10.1016/j.ijbiomac.2020.02.150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
|
16
|
Singh N, Ali MA, Rai P, Ghori I, Sharma A, Malhotra BD, John R. Dual-modality microfluidic biosensor based on nanoengineered mesoporous graphene hydrogels. LAB ON A CHIP 2020; 20:760-777. [PMID: 31951241 DOI: 10.1039/c9lc00751b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A dual-modality microfluidic biosensor is fabricated using a mesoporous nanostructured cysteine-graphene hydrogel for the quantification of human cardiac myoglobin (cMb). In this device, the nanoengineered mesoporous l-cysteine-graphene (Cys-RGO) hydrogel performs the role of a dual-modality sensing electrode for the measurements conducted using differential pulse voltammetry and surface plasmon resonance (SPR) techniques. High surface reactivity, mesoporous structure and fast electron transfer combined with good reaction kinetics of the graphene hydrogel in this device indicate excellent performance for the detection of human cardiac myoglobin in serum samples. In electrochemical modality, this microfluidic chip exhibits a high sensitivity of 196.66 μA ng-1 mL cm-2 for a linear range of concentrations (0.004-1000 ng mL-1) with a low limit of detection (LOD) of 4 pg mL-1 while the SPR technique shows a LOD of 10 pg mL-1 for cMb monitoring in the range 0.01-1000 ng mL-1. The intra-assay coefficient of variation was less than 8% for standard samples and 9% for real serum samples, respectively. This Cys-RGO hydrogel-based microfluidic SPR chip allows real-time dynamic tracking of cMb molecules with a high association constant of 4.93 ± 0.2 × 105 M-1 s-1 and a dissociation constant of 1.37 ± 0.08 × 10-4 s-1, self-verification, reduced false readout, and improved detection reliability.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India.
| | - Md Azahar Ali
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana-46556, USA
| | - Prabhakar Rai
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Inayathullah Ghori
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India. and Department of Cardiology, Kamineni Koti Hospital, Hyderabad-500001, Telangana, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - B D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India
| | - Renu John
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, 502285 Telangana, India.
| |
Collapse
|