1
|
Paiva Machado F, da Silva Rangel L, Nunes Farias Gomes K, Albuquerque Dos Santos JA, Xavier Faria R, Santos MG, Fernandes CP, Rocha L. Potential of Ocotea indecora (Schott) Mez essential oil nanoemulsion in schistosomiasis control: Molluscicidal effects. Exp Parasitol 2024; 259:108717. [PMID: 38340780 DOI: 10.1016/j.exppara.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Schistosomiasis is a neglected disease transmitted through contaminated water in populations with low basic sanitation. The World Health Organization recommends controlling the intermediate host snails of the Biomphalaria genus with the molluscicide niclosamide. This work aims to evaluate the biocidal potential of the nanoemulsion prepared with the essential oil of Ocotea indecora leaves for the control of the mollusk Biomphalaria glabrata, intermediate host of the Schistosoma mansoni, the etiologic agent of schistosomiasis.
Collapse
Affiliation(s)
- Francisco Paiva Machado
- Laboratório de Tecnologia de Produtos Naturais, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr Mario Viana 523, CEP 24241-000, Santa Rosa, Niterói, Rio de Janeiro, Brazil; Departamento de Farmácia e Administração Farmacêutica, Universidade Federal Fluminense, Rua Dr. Mario Viana 523, CEP 24241-000, Santa Rosa, Niterói, Rio de Janeiro, Brazil.
| | - Leonardo da Silva Rangel
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, CEP 21040360, Rio de Janeiro, Brazil
| | - Keyla Nunes Farias Gomes
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, CEP 21040360, Rio de Janeiro, Brazil; Programa de Pós-graduação Em Biotecnologia Vegetal e Bioprocessos, Universidade Federal Do Rio de Janeiro, CEP 21941-599, Rio de Janeiro, RJ, Brazil
| | | | - Robson Xavier Faria
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, CEP 21040360, Rio de Janeiro, Brazil
| | - Marcelo G Santos
- Departamento de Ciências, Universidade Estadual Do Rio de Janeiro, Rua Dr. Francisco Portela 1470, São Gonçalo, CEP 24435-005, Rio de Janeiro, Brazil
| | - Caio P Fernandes
- Laboratório de Nanobiotecnologia Fitofarmacêutica, Fundação Universidade Federal Do Amapá, Rodovia Juscelino Kubitschek, KM-02, CEP 68903-419, Macapá, AP, Brazil
| | - Leandro Rocha
- Laboratório de Tecnologia de Produtos Naturais, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Dr Mario Viana 523, CEP 24241-000, Santa Rosa, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Rondón JJ, Pisarenco VA, Ramón Pardos-Blas J, Sánchez-Gracia A, Zardoya R, Rozas J. Comparative genomic analysis of chemosensory-related gene families in gastropods. Mol Phylogenet Evol 2024; 192:107986. [PMID: 38142794 DOI: 10.1016/j.ympev.2023.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
Chemoreception is critical for the survival and reproduction of animals. Except for a reduced group of insects and chelicerates, the molecular identity of chemosensory proteins is poorly understood in invertebrates. Gastropoda is the extant mollusk class with the greatest species richness, including marine, freshwater, and terrestrial lineages, and likely, highly diverse chemoreception systems. Here, we performed a comprehensive comparative genome analysis taking advantage of the chromosome-level information of two Gastropoda species, one of which belongs to a lineage that underwent a whole genome duplication event. We identified thousands of previously uncharacterized chemosensory-related genes, the majority of them encoding G protein-coupled receptors (GPCR), mostly organized into clusters distributed across all chromosomes. We also detected gene families encoding degenerin epithelial sodium channels (DEG-ENaC), ionotropic receptors (IR), sensory neuron membrane proteins (SNMP), Niemann-Pick type C2 (NPC2) proteins, and lipocalins, although with a lower number of members. Our phylogenetic analysis of the GPCR gene family across protostomes revealed: (i) remarkable gene family expansions in Gastropoda; (ii) clades including members from all protostomes; and (iii) species-specific clades with a substantial number of receptors. For the first time, we provide new and valuable knowledge into the evolution of the chemosensory gene families in invertebrates other than arthropods.
Collapse
Affiliation(s)
- Johnma José Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET) Buenos Aires, Argentina
| | - Vadim A Pisarenco
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - José Ramón Pardos-Blas
- Departamento de Biodiversidad y Biologı́a Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biologı́a Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain.
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
3
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Derby CD, Caprio J. What are olfaction and gustation, and do all animals have them? Chem Senses 2024; 49:bjae009. [PMID: 38422390 DOI: 10.1093/chemse/bjae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Indexed: 03/02/2024] Open
Abstract
Different animals have distinctive anatomical and physiological properties to their chemical senses that enhance detection and discrimination of relevant chemical cues. Humans and other vertebrates are recognized as having 2 main chemical senses, olfaction and gustation, distinguished from each other by their evolutionarily conserved neuroanatomical organization. This distinction between olfaction and gustation in vertebrates is not based on the medium in which they live because the most ancestral and numerous vertebrates, the fishes, live in an aquatic habitat and thus both olfaction and gustation occur in water and both can be of high sensitivity. The terms olfaction and gustation have also often been applied to the invertebrates, though not based on homology. Consequently, any similarities between olfaction and gustation in the vertebrates and invertebrates have resulted from convergent adaptations or shared constraints during evolution. The untidiness of assigning olfaction and gustation to invertebrates has led some to recommend abandoning the use of these terms and instead unifying them and others into a single category-chemical sense. In our essay, we compare the nature of the chemical senses of diverse animal types and consider their designation as olfaction, oral gustation, extra-oral gustation, or simply chemoreception. Properties that we have found useful in categorizing chemical senses of vertebrates and invertebrates include the nature of peripheral sensory cells, organization of the neuropil in the processing centers, molecular receptor specificity, and function.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
5
|
Lin X, Cui X, Tang J, Zhu J, Li J. Predation Risk Effects of Lady Beetle Menochilus sexmaculatus (Fabricius) on the Melon Aphid, Aphis gossypii Glover. INSECTS 2023; 15:13. [PMID: 38249019 PMCID: PMC10816753 DOI: 10.3390/insects15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
Predation risk posed by natural enemies can alter pest performance. In our previous study, we found Menochilus sexmaculatus provides risk cues to melon aphids, resulting in increased numbers of winged aphids. However, the effects of predation risk on multiple traits including behavior, physiology, growth rate, and reproductive capacity of pests are not clear. This study examined the effects of predation risk on host preference, the activities of two important defense enzymes (CAT and SOD), longevity, and offspring production. The Y-tube trial results showed that the risk of M. sexmaculatus significantly altered the host preference of the aphids, leading to avoidance behavior. When exposed to M. sexmaculatus for a long period (24 h), the reproductive period and offspring production were significantly decreased, and adult longevity was significantly shortened. The defense enzyme activities of SOD and CAT, as well as the MDA content (which is considered a marker of oxidative stress and cellular damage) in the aphids, significantly increased under M. sexmaculatus risk. The compounds of M. sexmaculatus extracted with n-hexane and volatile compounds collected with HS-SPME were analyzed by GC-MS, and when combined with the behavior response experiment, the results showed that the alkane compounds n-henicosane, n-docosane, n-tricosane, n-pentacosane, and n-hentriacontane may contribute to the impact of predation risk. The results will be helpful in the comprehensive evaluation of the ability of lady beetles to affect the aphid population, and provide new ideas for using these compounds in aphid control.
Collapse
Affiliation(s)
- Xingming Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Xiangxin Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Jihong Tang
- Key Laboratory of Integrated Pest Management on Tropical Crops of Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jiawei Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| | - Jinhua Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (X.L.); (X.C.); (J.Z.)
| |
Collapse
|
6
|
Solari P, Sollai G, Pasquini V, Giglioli A, Crnjar R, Addis P. Blue-Green Algae as Stimulating and Attractive Feeding Substrates for a Mediterranean Commercial Sea Urchin Species, Paracentrotus lividus. Life (Basel) 2023; 13:1510. [PMID: 37511884 PMCID: PMC10381433 DOI: 10.3390/life13071510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Sea urchins rely on chemical senses to localize suitable food resources, therefore representing model species for chemosensory studies. In the present study, we investigated the chemical sensitivity of the Mediterranean sea urchin Paracentrotus lividus to the blue-green alga Aphanizomenon flos-aquae, namely "Klamath", and to a few amino acids chosen from the biochemical composition of the same algae. To this end, we used the "urchinogram" method, which estimates the movement rate of the sea urchins in response to chemicals. Our results showed that Klamath represents a strong chemical stimulus for P. lividus as it elicits an overall movement of spines, pedicellariae, and tube feet coupled, in some cases, to a coordinated locomotion of the animals. Sea urchins also displayed a sensitivity, even if to a lesser extent, to leucine, threonine, arginine, and proline, thus implying that the amino acids contained in Klamath may account, at least in part, for the stimulating effects exerted by the whole algae. Additionally, our results show that Klamath, as well as spirulina, another blue-green alga with high nutritional value, is very attractive for this sea urchin species. These findings gain further importance considering the potential profit of echinoderms for commercial consumers and their growing role in aquaculture. Klamath and spirulina combine high nutritional profiles with attractive and stimulating abilities and may be considered potential valuable feed supplements in sea urchin aquaculture.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, 09042 Monserrato, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, 09042 Monserrato, Italy
| | - Viviana Pasquini
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy
| | - Angelica Giglioli
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, 09042 Monserrato, Italy
| | - Piero Addis
- Department of Life and Environmental Sciences, University of Cagliari, 09126 Cagliari, Italy
| |
Collapse
|
7
|
Kang G, Allard CAH, Valencia-Montoya WA, van Giesen L, Kim JJ, Kilian PB, Bai X, Bellono NW, Hibbs RE. Sensory specializations drive octopus and squid behaviour. Nature 2023; 616:378-383. [PMID: 37045917 PMCID: PMC10262778 DOI: 10.1038/s41586-023-05808-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.
Collapse
Affiliation(s)
- Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter B Kilian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Xiaochen Bai
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Allard CAH, Kang G, Kim JJ, Valencia-Montoya WA, Hibbs RE, Bellono NW. Structural basis of sensory receptor evolution in octopus. Nature 2023; 616:373-377. [PMID: 37045920 PMCID: PMC10228259 DOI: 10.1038/s41586-023-05822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/10/2023] [Indexed: 04/14/2023]
Abstract
Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Guipeun Kang
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeong Joo Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurobiology, University of California, San Diego, La Jolla, CA, USA.
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
9
|
Jundi D, Coutanceau JP, Bullier E, Imarraine S, Fajloun Z, Hong E. Expression of olfactory receptor genes in non-olfactory tissues in the developing and adult zebrafish. Sci Rep 2023; 13:4651. [PMID: 36944644 PMCID: PMC10030859 DOI: 10.1038/s41598-023-30895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Since the discovery of olfactory receptor (OR) genes, their expression in non-olfactory tissues have been reported in rodents and humans. For example, mouse OR23 (mOR23) is expressed in sperm and muscle cells and has been proposed to play a role in chemotaxis and muscle migration, respectively. In addition, mouse mesencephalic dopaminergic neurons express various ORs, which respond to corresponding ligands. As the OR genes comprise the largest multigene family of G protein-coupled receptors in vertebrates (over 400 genes in human and 1000 in rodents), it has been difficult to categorize the extent of their diverse expression in non-olfactory tissues making it challenging to ascertain their function. The zebrafish genome contains significantly fewer OR genes at around 140 genes, and their expression pattern can be easily analyzed by carrying out whole mount in situ hybridization (ISH) assay in larvae. In this study, we found that 31 out of 36 OR genes, including or104-2, or108-1, or111-1, or125-4, or128-1, or128-5, 133-4, or133-7, or137-3 are expressed in various tissues, including the trunk, pharynx, pancreas and brain in the larvae. In addition, some OR genes are expressed in distinct brain regions such as the hypothalamus and the habenula in a dynamic temporal pattern between larvae, juvenile and adult zebrafish. We further confirmed that OR genes are expressed in non-olfactory tissues by RT-PCR in larvae and adults. These results indicate tight regulation of OR gene expression in the brain in a spatial and temporal manner and that the expression of OR genes in non-olfactory tissues are conserved in vertebrates. This study provides a framework to start investigating the function of ORs in the zebrafish brain.
Collapse
Affiliation(s)
- Dania Jundi
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Jean-Pierre Coutanceau
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
| | - Erika Bullier
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
| | - Soumaiya Imarraine
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France
- CNRS, Laboratoire Jean Perrin-Institut de Biologie Paris Seine (LJP-IBPS), Sorbonne Université, 75005, Paris, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli, 1300, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli, 1352, Lebanon
| | - Elim Hong
- INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
10
|
Rato A, Joaquim S, Matias D, Hubbard PC. What do oysters smell? Electrophysiological evidence that the bivalve osphradium is a chemosensory organ in the oyster, Magallana gigas. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:391-401. [PMID: 36609922 PMCID: PMC10102104 DOI: 10.1007/s00359-022-01608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
The sensing of chemical cues is essential for several aspects of bivalve biology, such as the detection of food and pheromones. However, little is known about chemical communication systems in bivalves or the possible role of the osphradium as a chemosensory organ. To address this, we adapted an electrophysiological technique extensively used in vertebrates-the electro-olfactogram-to record from the osphradium in the Pacific oyster, Magallana gigas. This technique was validated using amino acids as stimulants. The osphradium proved to be sensitive to most proteinogenic L-amino acids tested, evoking tonic, negative, concentration-dependent 'electro-osphradiogram' (EOsG) voltage responses, with thresholds of detection in the range of 10- 6 to 10- 5 M. Conversely, it was insensitive to L-arginine and L-glutamic acid. The current study supports the hypothesis that the osphradium is, indeed, a chemosensory organ. The 'electro-osphradiogram' may prove to be a powerful tool in the isolation and characterization of pheromones and other important chemical cues in bivalve biology.
Collapse
Affiliation(s)
- Ana Rato
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Department of Sea and Marine Resources, Portuguese Institute for Sea and Atmosphere (IPMA, I.P.), Av. 5 de Outubro s/n, 8700-305, Olhão, Portugal.
| | - Sandra Joaquim
- Department of Sea and Marine Resources, Portuguese Institute for Sea and Atmosphere (IPMA, I.P.), Av. 5 de Outubro s/n, 8700-305, Olhão, Portugal.,Interdisciplinary Centre of Marine Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Domitília Matias
- Department of Sea and Marine Resources, Portuguese Institute for Sea and Atmosphere (IPMA, I.P.), Av. 5 de Outubro s/n, 8700-305, Olhão, Portugal.,Interdisciplinary Centre of Marine Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Peter C Hubbard
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| |
Collapse
|
11
|
Roncalli V, Uttieri M, Capua ID, Lauritano C, Carotenuto Y. Chemosensory-Related Genes in Marine Copepods. Mar Drugs 2022; 20:681. [PMID: 36355004 PMCID: PMC9692914 DOI: 10.3390/md20110681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 02/09/2024] Open
Abstract
Living organisms deeply rely on the acquisition of chemical signals in any aspect of their life, from searching for food, mating and defending themselves from stressors. Copepods, the most abundant and ubiquitous metazoans on Earth, possess diversified and highly specified chemoreceptive structures along their body. The detection of chemical stimuli activates specific pathways, although this process has so far been analyzed only on a relatively limited number of species. Here, in silico mining of 18 publicly available transcriptomes is performed to delve into the copepod chemosensory genes, improving current knowledge on the diversity of this multigene family and on possible physiological mechanisms involved in the detection and analysis of chemical cues. Our study identifies the presence of ionotropic receptors, chemosensory proteins and gustatory receptors in copepods belonging to the Calanoida, Cyclopoida and Harpacticoida orders. We also confirm the absence in these copepods of odorant receptors and odorant-binding proteins agreeing with their insect specificity. Copepods have evolved several mechanisms to survive in the harsh marine environment such as producing proteins to respond to external stimulii. Overall, the results of our study open new possibilities for the use of the chemosensory genes as biomarkers in chemical ecology studies on copepods and possibly also in other marine holozooplankters.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marco Uttieri
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Iole Di Capua
- Research Infrastructures for Marine Biological Resources Department (RIMAR)-Marine Organism Taxonomy Core Facility (MOTax), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Ylenia Carotenuto
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
12
|
Ryerson WG, Schwenk K. The kinematics and functional significance of chemosensory tongue-flicking in northern water snakes (Nerodia sipedon) on land, in water, and in between. Integr Comp Biol 2022; 62:852-864. [PMID: 35657730 DOI: 10.1093/icb/icac077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
As organisms transition between different environments, they must do more than simply move through that transition and those environments. Changes in the environment must be detected via the senses. The types of sensory information and the mechanisms of collecting that information may also change as an individual moves through different environments. We use tongue-flicking in northern water snakes, Nerodia sipedon, to examine the mechanics of sensory behavior as snakes move from terrestrial to aquatic habitats. A combination of high-speed video and mesocosm experiment revealed that water snakes will alter the mechanics of tongue-flicking in the context of their environment. Tongue-flicks on land are distinctive, with multiple oscillations, large protrusion distance, and high velocities. Comparatively, tongue-flicks under water are much shorter events, with reduced protrusion and fewer oscillations. At the surface of the water, in the presence of potential anuran prey, water snakes will tap the tips of the tongue on the surface of the water, without undergoing the full oscillations observed on land or underwater. We attribute the differences in the aerial and underwater tongue-flicks to trade-offs in the physical and chemical properties of the environment. The surface tapping behavior we observed is likely snakes altering their behavior to maximize the encounter and collection of frog-specific chemical cues, which are known to travel on the water's surface. Given the ecological transitions and distinctive biogeographical patterns rooted in water snake ecology, there are likely more examples of changing sensory mechanics to be discovered upon further investigation. All our knowledge begins with the senses. (Immanuel Kant, Critique of Pure Reason, 1781).
Collapse
Affiliation(s)
- William G Ryerson
- Biology Department, Saint Anselm College. 100 Saint Anselm Drive, Manchester, NH 03102.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043
| | - Kurt Schwenk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043
| |
Collapse
|
13
|
Cheng L, Han S, Jiang J, Li H, Peng L. Transcriptome Analysis for Identification of Genes Related to Growth and Development, Digestion and Detoxification, Olfaction in the Litchi Stink Bug Tessaratoma papillosa. Front Physiol 2022; 12:774218. [PMID: 35140626 PMCID: PMC8818959 DOI: 10.3389/fphys.2021.774218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Tessaratoma papillosa is a major pest of Litchi chinensis and Dimocarpus longan. Adult and nymph secretions are not only harmful to plants but also to humans. At present, there are not a lot of research on T. papillosa, especially omics research. We used high-throughput sequencing technology to sequence the T. papillosa transcriptome and obtained 67,597 unigenes homologous to Halyomorpha halys (88.03%). Subsequently, RNA-SEQ and comparative analyses were performed on the 14 different developmental stages and tissues. A total of 462 unigenes related to growth and development, 1,851 unigenes related to digestion and detoxification, and 70 unigenes related to olfaction were obtained. Moreover, expression analysis showed that the T. papillosa major life activities genes are uniformly expressed across all developmental states. However, the adult midgut gene expression patterns were utterly different from that of the nymphs. Similarly, female fat body genes exhibited distinct expression patterns compared to that of males and nymphs. Thus, different developmental stages and physiological functions affect gene expression patterns. We also found that most of the differential genes were associated with cellular maintenance. This study will help understand the growth and development of litchi stink bugs, their choice of host plants, food digestion and detoxification, and their reproductive behavior. In addition, this result can provide reference information for some target genes in the process of control of T. papillosa.
Collapse
Affiliation(s)
- Lin Cheng
- Biological Control Research Institute, Fujian Agriculture and Forestry University, China Fruit Fly Research and Control Center of FAO/IAEA, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Shuncai Han
- Biological Control Research Institute, Fujian Agriculture and Forestry University, China Fruit Fly Research and Control Center of FAO/IAEA, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Jingtao Jiang
- Biological Control Research Institute, Fujian Agriculture and Forestry University, China Fruit Fly Research and Control Center of FAO/IAEA, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Haichao Li
- Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Haichao Li,
| | - Lingfei Peng
- Biological Control Research Institute, Fujian Agriculture and Forestry University, China Fruit Fly Research and Control Center of FAO/IAEA, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
- Lingfei Peng,
| |
Collapse
|
14
|
Neuroanatomical and Immunohistological Study of the Main and Accessory Olfactory Bulbs of the Meerkat ( Suricata suricatta). Animals (Basel) 2021; 12:ani12010091. [PMID: 35011198 PMCID: PMC8749820 DOI: 10.3390/ani12010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In wild mammals, chemical senses are crucial to survival, but sensory system information is lacking for many species, including the meerkat (Suricata suricatta), an iconic mammal with a marked social hierarchy that has been ambiguously classified in both canid and felid families. We studied the neuroanatomical basis of the meerkat olfactory and accessory olfactory bulbs, aiming to provide information on the relevance of both systems to the behaviors of this species and contributing to improving its taxonomic classification. The accessory olfactory bulb serves as the integration center of vomeronasal information. When examined microscopically, the accessory olfactory bulb of the meerkat presents a lamination pattern more defined than observed in dogs and approaching the pattern described in cats. The degree of lamination and development in the meerkat main olfactory bulb is comparable to the general pattern observed in mammals but with numerous specific features. Our study supports the functionality of the olfactory and vomeronasal integrative centers in meerkats and places this species within the suborder Feliformia. Our study also confirms the importance of chemical signals in mediating the social behaviors of this species and provides essential neuroanatomical information for understanding the functioning of their chemical senses. Abstract We approached the study of the main (MOB) and accessory olfactory bulbs (AOB) of the meerkat (Suricata suricatta) aiming to fill important gaps in knowledge regarding the neuroanatomical basis of olfactory and pheromonal signal processing in this iconic species. Microdissection techniques were used to extract the olfactory bulbs. The samples were subjected to hematoxylin-eosin and Nissl stains, histochemical (Ulex europaeus agglutinin, Lycopersicon esculentum agglutinin) and immunohistochemical labelling (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2, SMI-32, growth-associated protein 43). Microscopically, the meerkat AOB lamination pattern is more defined than the dog’s, approaching that described in cats, with well-defined glomeruli and a wide mitral-plexiform layer, with scattered main cells and granular cells organized in clusters. The degree of lamination and development of the meerkat MOB suggests a macrosmatic mammalian species. Calcium-binding proteins allow for the discrimination of atypical glomerular subpopulations in the olfactory limbus between the MOB and AOB. Our observations support AOB functionality in the meerkat, indicating chemosensory specialization for the detection of pheromones, as identified by the characterization of the V1R vomeronasal receptor family and the apparent deterioration of the V2R receptor family.
Collapse
|
15
|
Aresta A, Cotugno P, De Vietro N, Longo C, Mercurio M, Ferriol P, Zambonin C, Nonnis Marzano C. Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae). Mar Drugs 2021; 19:711. [PMID: 34940710 PMCID: PMC8706640 DOI: 10.3390/md19120711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was employed for the headspace determination of the volatile organic fraction emitted by two of the most common Mediterranean demosponges, Ircinia variabilis and Sarcotragus spinosulus, and of indole and some biogenic amines released by sponges in an aqueous medium. A total of 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane and 75 µm carboxen/polydimethylsiloxane fibers were used for the headspace extraction of low molecular weight sulfur compounds from a hermetically sealed vial containing sponge fragments, while the direct immersion determination of indole and biogenic amines was performed. The biogenic amines were extracted after in-solution derivatization with isobutyl chloroformate. All analytical parameters (linearity, limits of detection, and quantification, precision, and recovery) were evaluated for indole and biogenic amines. SPME-GC-MS proved to be a reliable means of highlighting the differences between molecules released by different sponges, principally responsible for their smell. The combined approaches allowed the identification of several volatile compounds in the headspace and other molecules released by the sponges in an aqueous medium, including indole and the BAs cadaverine, histamine, isobutylamine, isopentylamine, propylamine, 2-phenylethylamine, putrescine and tryptamine. The results obtained represent a further contribution to the picture of odoriferous molecules secreted by sponges.
Collapse
Affiliation(s)
- Antonella Aresta
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Pietro Cotugno
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Nicoletta De Vietro
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | - Caterina Longo
- Department of Biology, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (C.N.M.)
| | - Maria Mercurio
- Department of Biology, University of Bari Aldo Moro, 70125 Bari, Italy; (M.M.); (C.N.M.)
| | - Pere Ferriol
- Department of Biology, University of the Balearic Islands, 07122 Palma, Spain;
| | - Carlo Zambonin
- Department of Chemistry, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (P.C.); (N.D.V.); (C.Z.)
| | | |
Collapse
|
16
|
Solari P, Pasquini V, Secci M, Giglioli A, Crnjar R, Addis P. Chemosensitivity in the Sea Urchin Paracentrotus lividus (Echinodermata: Echinoidea) to Food-Related Compounds: An Innovative Behavioral Bioassay. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.749493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Like other animals, echinoderms rely on chemical senses to detect and localize food resources. Here, we evaluate the chemical sensitivity of the sea urchin Paracentrotus lividus to a number of stimuli possibly related to food, such as a few sugars, compared to the blue-green algae Spirulina (Arthrospira platensis). To do this we developed a simple, innovative method based on the recording of “urchinograms” estimating the movements of spines, pedicellariae, tube feet, and eventually of the whole sea urchin, in response to chemicals, while keeping both the whole animal and the stimulus in their natural environment, underwater. Our results show that Spirulina is a highly stimulating compound for the sea urchin, by acting in a dose-dependent manner. The animals resulted also sensitive, even if to a lesser extent, to some sugars, such as the monosaccharide glucose, but not to its isomer fructose, while among disaccharides, they sensed cellobiose, but not sucrose or trehalose. From an applied point of view, any insight into the chemical sensitivity of sea urchins toward potential food-related compounds may lead to the discovery of key chemicals that would help improve the efficiency and reduce the costs of dietary substrates for optimization of intensive rearing strategies. Although this method has been developed for P. lividus, it will be suitable to evaluate the chemical sensitivity of other echinoderms and other marine invertebrates characterized by low mobility.
Collapse
|
17
|
Krieger J, Hörnig MK, Kenning M, Hansson BS, Harzsch S. More than one way to smell ashore - Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101022. [PMID: 33385761 DOI: 10.1016/j.asd.2020.101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Matthes Kenning
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745, Jena, Germany.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| |
Collapse
|
18
|
van Giesen L, Kilian PB, Allard CAH, Bellono NW. Molecular Basis of Chemotactile Sensation in Octopus. Cell 2020; 183:594-604.e14. [PMID: 33125889 PMCID: PMC7605239 DOI: 10.1016/j.cell.2020.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
Animals display wide-ranging evolutionary adaptations based on their ecological niche. Octopuses explore the seafloor with their flexible arms using a specialized "taste by touch" system to locally sense and respond to prey-derived chemicals and movement. How the peripherally distributed octopus nervous system mediates relatively autonomous arm behavior is unknown. Here, we report that octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to detect poorly soluble natural products, thereby defining a form of contact-dependent, aquatic chemosensation. CRs form discrete ion channel complexes that mediate the detection of diverse stimuli and transduction of specific ionic signals. Furthermore, distinct chemo- and mechanosensory cells exhibit specific receptor expression and electrical activities to support peripheral information coding and complex chemotactile behaviors. These findings demonstrate that the peripherally distributed octopus nervous system is a key site for signal processing and highlight how molecular and anatomical features synergistically evolve to suit an animal's environmental context.
Collapse
Affiliation(s)
- Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter B Kilian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
19
|
Böttinger LC, Stökl J. Dispersal From Natal Patch Correlates With the Volatility of Female Sex Pheromones in Parasitoid Wasps. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.557527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Russo E, Lauritano C, d'Ippolito G, Fontana A, Sarno D, von Elert E, Ianora A, Carotenuto Y. RNA-Seq and differential gene expression analysis in Temora stylifera copepod females with contrasting non-feeding nauplii survival rates: an environmental transcriptomics study. BMC Genomics 2020; 21:693. [PMID: 33023465 PMCID: PMC7541278 DOI: 10.1186/s12864-020-07112-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in Temora stylifera females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed. We aimed at detecting key genes that may have influenced copepod reproductive potential in natural populations and whose expression was potentially affected by phytoplankton-derived oxylipins, lipoxygenase-derived products strongly impacting copepod naupliar survival. Results On the two sampling dates, temperature, salinity, pH and oxygen remained stable, while variations in phytoplankton cell concentration, oxylipin concentration and oxylipin-per-diatom-cell production were observed. T. stylifera naupliar survival was 25% on May 23rd and 93% on May 30th. De novo assembly generated 268,665 transcripts (isoforms) and 120,749 unique ‘Trinity predicted genes’ (unigenes), of which 50% were functionally annotated. Out of the 331 transcript isoforms differentially expressed between the two sampling dates, 119 sequences were functionally annotated (58 up- and 61 down-regulated). Among predicted genes (unigenes), 144 sequences were differentially expressed and 31 (6 up-regulated and 25 down-regulated) were functionally annotated. Most of the significantly down-regulated unigenes and isoforms were A5 Putative Odorant Binding Protein (Obp). Other differentially expressed sequences (isoforms and unigenes) related to developmental metabolic processes, protein ubiquitination, response to stress, oxidation-reduction reactions and hydrolase activities. DE analysis was validated through Real Time-quantitative PCR of 9 unigenes and 3 isoforms. Conclusions Differential expression of sequences involved in signal detection and transduction, cell differentiation and development offered a functional interpretation to the maternally-mediated low naupliar survival rates observed in samples collected on May 23rd. Down-regulation of A5 Obp along with higher quantities of oxylipins-per-litre and oxylipins-per-diatom-cell observed on May 23rd could suggest oxylipin-mediated impairment of naupliar survival in natural populations of T. stylifera. Our results may help identify biomarker genes explaining variations in copepod reproductive responses at a molecular level.
Collapse
Affiliation(s)
- Ennio Russo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.,Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Giuliana d'Ippolito
- Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Institute of Biomolecular Chemistry, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Diana Sarno
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Eric von Elert
- Universität zu Köln, Aquatic Chemical Ecology Group, Zülpicher Straβe 47b, D-50674, Cologne, Germany
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Ylenia Carotenuto
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
21
|
Sensorial Hierarchy in Octopus vulgaris's Food Choice: Chemical vs. Visual. Animals (Basel) 2020; 10:ani10030457. [PMID: 32164232 PMCID: PMC7143185 DOI: 10.3390/ani10030457] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Coleoids are cephalopods endowed with a highly sophisticated nervous system with keen sense organs and an exceptionally large brain that includes more than 30 differentiated lobes. Within this group, Octopus vulgaris, well known as an intelligent soft-bodied animal, has a significant number of lobes in the nervous system dedicated to decoding and integrating visual, tactile, and chemosensory perceptions. In this study, we aimed to understand the key role of chemical and visual cues during food selection in O. vulgaris. We first defined the preferred food, and subsequently, we set up five different problem-solving tasks, in which the animal’s choice is guided by visual and chemosensory signals, either alone or together, to evaluate whether individual O. vulgaris uses a sensorial hierarchy. Our behavioural experiments show that this species does integrate different sensory information from chemical and visual cues during food selection; however, our results indicate that chemical perception provides accurate and faster information leading to food choice. This research opens new perspectives on O. vulgaris’ predation strategies. Abstract Octopus vulgaris possesses highly sophisticated sense organs, processed by the nervous system to generate appropriate behaviours such as finding food, avoiding predators, identifying conspecifics, and locating suitable habitat. Octopus uses multiple sensory modalities during the searching and selection of food, in particular, the chemosensory and visual cues. Here, we examined food choice in O. vulgaris in two ways: (1) We tested octopus’s food preference among three different kinds of food, and established anchovy as the preferred choice (66.67%, Friedman test p < 0.05); (2) We exposed octopus to a set of five behavioural experiments in order to establish the sensorial hierarchy in food choice, and to evaluate the performance based on the visual and chemical cues, alone or together. Our data show that O. vulgaris integrates sensory information from chemical and visual cues during food choice. Nevertheless, food choice resulted in being more dependent on chemical cues than visual ones (88.9%, Friedman test p < 0.05), with a consistent decrease of the time spent identifying the preferred food. These results define the role played by the senses with a sensorial hierarchy in food choice, opening new perspectives on the O. vulgaris’ predation strategies in the wild, which until today were considered to rely mainly on visual cues.
Collapse
|
22
|
Scaros AT, Andouche A, Baratte S, Croll RP. Histamine and histidine decarboxylase in the olfactory system and brain of the common cuttlefish Sepia officinalis (Linnaeus, 1758). J Comp Neurol 2019; 528:1095-1112. [PMID: 31721188 DOI: 10.1002/cne.24809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Cephalopods are radically different from any other invertebrate. Their molluscan heritage, innovative nervous system, and specialized behaviors create a unique blend of characteristics that are sometimes reminiscent of vertebrate features. For example, despite differences in the organization and development of their nervous systems, both vertebrates and cephalopods use many of the same neurotransmitters. One neurotransmitter, histamine (HA), has been well studied in both vertebrates and invertebrates, including molluscs. While HA was previously suggested to be present in the cephalopod central nervous system (CNS), Scaros, Croll, and Baratte only recently described the localization of HA in the olfactory system of the cuttlefish Sepia officinalis. Here, we describe the location of HA using an anti-HA antibody and a probe for histidine decarboxylase (HDC), a synthetic enzyme for HA. We extended previous descriptions of HA in the olfactory organ, nerve, and lobe, and describe HDC staining in the same regions. We found HDC-positive cell populations throughout the CNS, including the optic gland and the peduncle, optic, dorso-lateral, basal, subvertical, frontal, magnocellular, and buccal lobes. The distribution of HA in the olfactory system of S. officinalis is similar to the presence of HA in the chemosensory organs of gastropods but is different than the sensory systems in vertebrates or arthropods. However, HA's widespread abundance throughout the rest of the CNS of Sepia is a similarity shared with gastropods, vertebrates, and arthropods. Its widespread use with differing functions across Animalia provokes questions regarding the evolutionary history and adaptability of HA as a transmitter.
Collapse
Affiliation(s)
- Alexia T Scaros
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aude Andouche
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Sébastien Baratte
- Laboratoire de Biologie des Organismes et Ecosystemes Aquatiques (BOREA), MNHN, CNRS, SU, UCN, UA, Paris, France
| | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
23
|
Gavagnin M, Carbone M, Ciavatta ML, Mollo E. Natural Products from Marine Heterobranchs: an Overview of Recent Results. CHEMISTRY JOURNAL OF MOLDOVA 2019. [DOI: 10.19261/cjm.2019.617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
24
|
Amodeo P, D'Aniello E, Defranoux F, Marino A, D'Angelo L, Ghiselin MT, Mollo E. The Suitability of Fishes as Models for Studying Appetitive Behavior in Vertebrates. Results Probl Cell Differ 2019; 65:423-438. [PMID: 30083930 DOI: 10.1007/978-3-319-92486-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Fish have proven to be valuable models in the study of the endocrine control of appetite in response to peripheral signals of energetic and nutritional status. In parallel, a growing body of literature points to the importance of sensory experiences as factors affecting food choice in fish, with a special focus on visual and chemical signals allowing discrimination of potential foods within a 3D environment. Accordingly, waterborne compounds, such as monosaccharides or amino acids, are regarded as the main "olfactory" cues driving fish alimentary behavior. However, we recently suggested that hydrophobic molecules also allow food identification in aquatic environments and that fish actually explore a larger variety of chemosensory cues, including the olfactory/volatile compounds, when determining food palatability. In this study, we show that both homeostatic and chemosensory mechanisms involved in food intake are highly conserved in vertebrates and that the chemosensory world of fish is less different from that of terrestrial mammals than commonly thought. As a result, we support a more integrated and synthetic view of the mechanisms of chemical communication in both terrestrial and aquatic systems, which could help to ensure greater translatability of the fish models, such as the zebrafish (Danio rerio), the turquoise killifish (Nothobranchius furzeri), the goldfish (Carassius auratus), or the Japanese medaka fish (Oryzias latipes) to terrestrial vertebrates when approaching complex dynamic patterns in alimentary behavior.
Collapse
Affiliation(s)
- Pietro Amodeo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Enrico D'Aniello
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Fanny Defranoux
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Angela Marino
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Livia D'Angelo
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Napoli, Italy.,Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Michael T Ghiselin
- Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, CA, USA
| | - Ernesto Mollo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.
| |
Collapse
|
25
|
Velez Z, Roggatz CC, Benoit DM, Hardege JD, Hubbard PC. Short- and Medium-Term Exposure to Ocean Acidification Reduces Olfactory Sensitivity in Gilthead Seabream. Front Physiol 2019; 10:731. [PMID: 31333474 PMCID: PMC6616109 DOI: 10.3389/fphys.2019.00731] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Sparus aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.
Collapse
Affiliation(s)
| | - Christina C Roggatz
- Energy and Environment Institute, University of Hull, Hull, United Kingdom.,Department of Biological and Marine Science, University of Hull, Hull, United Kingdom
| | - David M Benoit
- E.A. Milne Centre for Astrophysics and G.W. Gray Centre for Advanced Material, University of Hull, Hull, United Kingdom
| | - Jörg D Hardege
- Department of Biological and Marine Science, University of Hull, Hull, United Kingdom
| | | |
Collapse
|
26
|
Li K, Buchinger TJ, Li W. Discovery and characterization of natural products that act as pheromones in fish. Nat Prod Rep 2019; 35:501-513. [PMID: 29662986 DOI: 10.1039/c8np00003d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2018 Fish use a diverse collection of molecules to communicate with conspecifics. Since Karlson and Lüscher termed these molecules 'pheromones', chemists and biologists have joined efforts to characterize their structures and functions. In particular, the understanding of insect pheromones developed at a rapid pace, set, in part, by the use of bioassay-guided fractionation and natural product chemistry. Research on vertebrate pheromones, however, has progressed more slowly. Initially, biologists characterized fish pheromones by screening commercially available compounds suspected to act as pheromones based upon their physiological function. Such biology-driven screening has proven a productive approach to studying pheromones in fish. However, the many functions of fish pheromones and diverse metabolites that fish release make predicting pheromone identity difficult and necessitate approaches led by chemistry. Indeed, the few cases in which pheromone identification was led by natural product chemistry indicated novel or otherwise unpredicted compounds act as pheromones. Here, we provide a brief review of the approaches to identifying pheromones, placing particular emphasis on the promise of using natural product chemistry together with assays of biological activity. Several case studies illustrate bioassay-guided fractionation as an approach to pheromone identification in fish and the unexpected diversity of pheromone structures discovered by natural product chemistry. With recent advances in natural product chemistry, bioassay-guided fractionation is likely to unveil an even broader collection of pheromone structures and enable research that spans across disciplines.
Collapse
Affiliation(s)
- Ke Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Rd., East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
27
|
Breviglieri CPB, Romero GQ. Prey stimuli trigger trophic interception across ecosystems. AUSTRAL ECOL 2018. [DOI: 10.1111/aec.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Crasso Paulo B. Breviglieri
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| | - Gustavo Q. Romero
- Department of Animal Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas São Paulo 13083-970 Brazil
| |
Collapse
|
28
|
Chartier TF, Deschamps J, Dürichen W, Jékely G, Arendt D. Whole-head recording of chemosensory activity in the marine annelid Platynereis dumerilii. Open Biol 2018; 8:180139. [PMID: 30381362 PMCID: PMC6223215 DOI: 10.1098/rsob.180139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/08/2018] [Indexed: 01/13/2023] Open
Abstract
Chemical detection is key to various behaviours in both marine and terrestrial animals. Marine species, though highly diverse, have been underrepresented so far in studies on chemosensory systems, and our knowledge mostly concerns the detection of airborne cues. A broader comparative approach is therefore desirable. Marine annelid worms with their rich behavioural repertoire represent attractive models for chemosensation. Here, we study the marine worm Platynereis dumerilii to provide the first comprehensive investigation of head chemosensory organ physiology in an annelid. By combining microfluidics and calcium imaging, we record neuronal activity in the entire head of early juveniles upon chemical stimulation. We find that Platynereis uses four types of organs to detect stimuli such as alcohols, esters, amino acids and sugars. Antennae are the main chemosensory organs, compared to the more differentially responding nuchal organs or palps. We report chemically evoked activity in possible downstream brain regions including the mushroom bodies (MBs), which are anatomically and molecularly similar to insect MBs. We conclude that chemosensation is a major sensory modality for marine annelids and propose early Platynereis juveniles as a model to study annelid chemosensory systems.
Collapse
Affiliation(s)
- Thomas F Chartier
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Joran Deschamps
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Wiebke Dürichen
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
B. F. Skinner viewed behaviorism not as the science of behavior, but a philosophy of that science. Such philosophizing is a legitimate part of a scientist's investigative behavior. He sought to eliminate confusion and error by getting rid of objectionable posits such as homunculi, vital forces, intentionalities, purposes and essences, sticking to overt behavior and spurning "mentalism." Skinner believed that there are hard analogies between learning and natural selection, such that what is appropriate in the study of one may be appropriate in the study of the other. Dispensing with teleology is but one example. Where there is selection by consequences, variation has to be taken seriously. Essentialism or typology screens out variation and leads to stereotypes. It may be viewed as treating individuals (in a broad, philosophical sense) as if they were classes. Individuals are concrete, particular things, including species and many other groups, whereas classes are abstract. Individuals can engage in processes, such as behavior. But they do not have definitions (or essences), and there are no laws of nature for them. Trying to find a definition, or an essence, for the human species is trying to find a definition for an indefinable instead of a description for a describable. Idealism has introduced a kind of mentalism into behavioral discourse that behavior analysts should scrupulously avoid. There are no laws for individuals, only for kinds of individuals, and care needs to be taken to avoid confusing laws of nature with contingent, historical fact. Skinner was a (perhaps somewhat inconsistent) realist who presupposed the uniformity of nature in his investigations. Investigative behavior may be more lawful than even he maintained.
Collapse
Affiliation(s)
- Michael T Ghiselin
- California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 95436 USA
| |
Collapse
|
30
|
Distribution of Defensive Metabolites in Nudibranch Molluscs. J Chem Ecol 2018; 44:384-396. [DOI: 10.1007/s10886-018-0941-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|
31
|
Di Cosmo A, Maselli V, Polese G. Octopus vulgaris: An Alternative in Evolution. Results Probl Cell Differ 2018; 65:585-598. [DOI: 10.1007/978-3-319-92486-1_26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
32
|
Steinke M, Randell L, Dumbrell AJ, Saha M. Volatile Biomarkers for Aquatic Ecological Research. ADV ECOL RES 2018. [DOI: 10.1016/bs.aecr.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|